CSS—Crop and Soil Sciences

262 Turfgrass Management Seminar
Spring. 1(2-0) A student may earn a maximum of 2 credits in all enrollments for this course. P: CSS 232 or concurrently. Presentations by turf students and industry professionals. Topics include internship experiences, technical expertise, and keys to successful career pathways.

264 Golf Course Design and Construction Techniques
Spring. 2(2-0) P: CSS 210 and CSS 232 and CSS 267 SA: CSS 164
Concepts and theory of golf course design and construction including location, space, topography, clientele, and environmental concerns.

267 Performance Turf Design and Construction
Spring. 2(2-2) P: CSS 232
Performance turfgrass design, construction, renovation and establishment principles.

269 Turfgrass Strategies: Integration and Synthesis
Spring. 2(3-0) P: CSS 232 and CSS 267
Issues in turfgrass management including employee relations, cultural, and environmental problems. Offered first ten weeks of semester.

272 Turfgrass Soil Fertility
Spring. 2(3-0) RB: CSS 210 SA: CSS 044, CSS 342
Soil-plant relationships, soil acidity and alkalinity, macro- and micro-nutrients, fertilizer materials, soil fertility, evaluations, and fertilizer programming. Offered first ten weeks of semester.

282 Turfgrass Physiology
Spring. 2(3-0) P: (CSS 232) Completion of Tier I writing requirement. RB: PLB 105 SA: CSS 382, CSS 068, CSS 332
Physiological principles of turfgrass growth and development. Water relations, light, temperature, respiration, photosynthesis, mineral nutrition, and hormone action. Impact of mowing, cultivation, and traffic on turfgrass growth. Offered first ten weeks of semester.

290 Independent Study in Crop and Soil Science
Fall, Spring, Summer. 1 to 4 credits. A student may earn a maximum of 6 credits in all enrollments for this course. P: Open to students in the Institute of Agricultural Technology. Approval of department; application required. SA: CSS 057
Field, laboratory, or library research problems.

294 Issues in International Agriculture
Spring. 1(1-0) P: Completion of Tier I Writing Requirement. R: Open to undergraduate students or agricultural technology students. SA: CSS 494
Global issues related to food production, soil resources and sustainability of agriculture in developing and developed countries.

313 Data Interpretation and Writing in the Agronomic Sciences (W)
Spring. 2(2-0) P: (CSS 110 and CSS 210) and completion of Tier I writing requirement) and (CSS 101 or CSS 232) R: Not open to freshmen.
Data analysis, interpretation, integration, and technical writing in agronomic sciences.

326 Weed Science
Spring. 2(2-0) P: CSS 101 or CSS 232 or HRT 203 R: Not open to students in the Institute of Agricultural Technology. SA: CSS 302, CSS 402
Weed biology and ecology. Integrated weed management including cultural, mechanical, biological, and chemical control practices. Herbicide mode of action, selectivity in plants, environmental considerations.

330 Soil Chemistry
Spring. 2(2-2) P: CSS 210 and CEM 141
Organic and inorganic soil processes including mineralogy, adsorption, desorption, and precipitation. Chemistry of soil organic matter and inorganic soil components.

331 Water Management in Agriculture and Food Systems
Spring. 3(3-0) Interdepartmental with Technology Systems Management. Administered by Technology Systems Management. P: MTH 103 or MTH 124 or MTH 132 or LB 118 SA: TSM 431
Principles of water management, use efficiency and conservation in agricultural production, natural resources and food processing facilities. Best agricultural water management practices, water rights, irrigation scheduling, irrigation systems selection, evaluation and management and drainage principles. Large scale water use, management and conservation in food processing.

340 Applied Soil Physics
Spring. 2(2-2) P: CSS 210
Soil physical properties including solids, water, air, and heat. Transport processes in soil.

343 Principles of Precision Agriculture
Spring. 3(2-2) Interdepartmental with Technology Systems Management. Administered by Technology Systems Management. P: MTH 103 or MTH 114 or MTH 116 or MTH 124 or MTH 132

350 Introduction to Plant Genetics
Spring. 3(4-0) P: PLB 105 or BS 161 R: Not open to freshmen.
Fundamentals of plant genetics with applications to agriculture and natural resources.

360 Soil Biology
Spring. 3(2-2) P: CSS 210 RB: CSS 330
Overview of organismal diversity and biological soil processes. Role of macroorganisms and microorganisms in soil processing, including nutrient cycling.

411 Fire and Environmental Quality
Spring of odd years. 3(3-0) Interdepartmental with Forestry. Administered by Crop and Soil Sciences. P: (CSS 210) and (CEM 141 or LB 171 or CEM 181H) RB: BS 162 or BS 172 or BS 182H or PLB 105 or LB 144
The role of fire in cultivated and natural environments. Use of fire by humans. Combustion reactions, fire effects on soil health, and air and water quality, and impacts on human communities around the world. Local field trip required.

420 Cover Crops in Agroecosystems
Spring. 3(2-2) Interdepartmental with Horticulture. Administered by Crop and Soil Sciences. P: (CSS 101 or HRT 251 or HRT 341) and CSS 210 and Completion of Tier I Writing Requirement. Management, environmental, economic, and social considerations of cover crops across agroecosystems.

424 Sustainable Agriculture and Food Systems: Integration and Synthesis
Spring. 3(3-0) Interdepartmental with Animal Science and Community Sustainability and Horticulture. Administered by Crop and Soil Sciences. P: CSS 124 and (CSS 224 or concurrently) R: Open to juniors or seniors or graduate students.

425 Microbial Ecology
Spring. 3(3-0) Interdepartmental with Microbiology and Molecular Genetics. Administered by Microbiology and Molecular Genetics. RB: MMG 301 SA: MPH 425
Microbial population and community interactions. Microbial activities in natural systems, including associations with plants or animals.

431 International Agricultural Systems
Spring. 3(3-0) P: (ANR 250 or ISS 310 or ISS 315 or ISS 318 or ISS 320 or ISS 330A or ISS 330B or ISS 330C or ISS 336) and completion of Tier I writing requirement R: Not open to freshmen.
World production capacity for food, fiber and biofuel as related to soil, biology and climatic resources. Principles and case studies of sustainable systems presented from developing and developed countries. Emerging issues in agricultural globalization and biodiversity.

441 Plant Breeding and Biotechnology-
Spring. 3(3-0) Interdepartmental with Forestry and Horticulture. Administered by Crop and Soil Sciences. P: (CSS 350 or concurrently) or (IBIO 341 or concurrently)
Plant improvement by genetic manipulation. History of plant breeding. Traditional and biotechnological means of improving plant cultivars by genetic manipulation. Importance of plant breeding to our food system, economy, and environment.

442 Agricultural Ecology
Spring. 3(3-0) R: Open to juniors or seniors or graduate students.
Ecological principles in the design and management of agricultural ecosystems. Integration of ecological factors regulating crop and rangeland productivity.

445 Evolution (W)
Fall, Spring, Summer. 3(3-0) Interdepartmental with Integrative Biology and Plant Biology. Administered by Integrative Biology. P: (IBIO 341 or CSS 350) and completion of Tier I writing requirement R: Not open to freshmen. SA: ZOL 345, ZOL 445
451 Biotechnology Applications for Plant Breeding and Genetics
Spring, 3(2-2) Interdepartmental with Forestry and Horticulture. Administered by Crop and Soil Sciences. P: CSS 350 or IBIO 341 R: Open to juniors or seniors or graduate students.
Principles, concepts, and techniques of agricultural plant biotechnology. Recombinant DNA technology, plant molecular biology and transformation in relation to plant improvement.

452 Watershed Concepts
Fall, Spring, Summer. 3(3-0) Interdepartmental with Agricultural Engineering and Forestry and Fisheries and Wildlife. Administered by Agricultural Engineering. RB: Organic chemistry SA: ESA 452, RD 452, CSS 452
Watershed hydrology and management. The hydrologic cycle, water quality, aquatic ecosystems, and social systems. Laws and institutions for managing water resources.

455 Environmental Pollutants in Soil and Water
Spring, 3(3-0) P: CEM 143 or CEM 251 RB: CSS 210 R: Open to juniors or seniors or graduate students.
Environmental sources, physiochemical and biological processes, management of plant nutrients, heavy metals, organic contaminants, pesticides and pharmaceuticals in soil and water.

461 Seminar in Plant, Animal and Microbial Biotechnology
Spring, 1(1-0) Interdepartmental with Animal Science and BioSystems Engineering and Horticulture. Administered by Horticulture. P: (ANS 425 or concurrently) or (BE 360 or concurrently) or (CSS 451 or concurrently) or (MMG 445 or concurrently)
Current applications of plant, animal and microbial biotechnology in agriculture and related industries. Technologies under development and factors associated with moving from laboratory to product development. Field trips required.

464 Statistics for Biologists
Spring, 3(3-0) Interdepartmental with Animal Science and Statistics and Probability. Administered by Statistics and Probability. P: MTH 103 or MTH 110 or MTH 116 or MTH 132 RB: STT 421
Biological random variables. Estimation of population parameters. Testing hypotheses. Linear correlation and regression. Analyses of counted and measured data to compare several biological groups including contingency tables and analysis of variance.

467 BioEnergy Feedstock Production
Spring, 3(3-0) Interdepartmental with Bio-systems Engineering and Forestry. Administered by Crop and Soil Sciences. P: MTH 103 or MTH 116 or MTH 124 or MTH 132 or LB 110 or MTH 152H or MTH 133 or MTH 153H or LB 119 RB: CSS 101 and CSS 210
Agronomic, economic, technological, and environmental principles involved in bioenergy feedstock production. Cultivation, harvest, transportation, and storage of agricultural and forest biomasses.

470 Soil Resources
Spring, 3(2-3) P: CSS 210 R: Not open to freshmen or sophomores.
Evaluation of the properties, genesis, and classification of soil resources to assist in making land-use decisions.

477 Pesticides in Pest Management
Spring of even years. 3(3-0) Interdepartmental with Entomology and Horticulture. Administered by Entomology. RB: General chemistry, entomology, plant pathology, weed science. R: Open to juniors or seniors or graduate students.
Chemistry, modes of action, product development and regulation of pesticides. Environmental and social aspects of pesticide use.

480 Soil Fertility and Management
Spring, 3(3-0) P: CSS 210 and (CSS 330 or CSS 340 or CSS 360 or (CSS 470 or concurrently)) R: Open to seniors in the Agronomy minor or in the Crop and Soil Sciences major.
Comprehensive management of agricultural soils. Soil fertility, including liming and fertilizer materials and other nutrient sources. Site specific soil management. Environmental impacts including soil erosion, runoff, and organic matter mineralization.

486 Biotechnology in Agriculture: Applications and Ethical Issues
Spring of even years. 3(3-0) Interdepartmental with Forestry and Horticulture and Philosophy. Administered by Horticulture. P: BS 161 or PLB 105 RB: CSS 350 or ZOL 341 R: Not open to freshmen or sophomores.
Current and future roles of biotechnology in agriculture: scientific basis, applications. Environmental, social, and ethical concerns.

488 Agricultural Cropping Systems: Integration and Problem Solving
Spring, 3(2-2) P: (CSS 101 and CSS 210) and completion of Tier I writing requirement. RB: (PLP 405 and ENT 404) and Course work in crop production and management. R: Open to seniors in the Agronomy minor or in the Crop and Soil Sciences major.
Integration and synthesis of agronomic and related concepts in agricultural cropping systems. Problem solving and application of information.

490 Independent Study
Fall, Spring, Summer. 1 to 4 credits. A student may earn a maximum of 8 credits in all enrollments for this course. P: CSS 101 or CSS 210 R: Approval of department; application required.
Individual work on field, laboratory, or library research problem of special interest to the student.

491 Special Topics
Fall, Spring, Summer. 1 to 4 credits. A student may earn a maximum of 8 credits in all enrollments for this course. P: CSS 101 or CSS 210 Topics from crop production, crop physiology, turfgrass management, organic soils, turfgrass soils, soil fertility, plant and soil relationships, genetics, biotechnology, environmental science, or sustainable agriculture.

492 Professional Development Seminar II
Spring. 1(0-2) P: (CSS 192 or CSS 262) and (CSS 210 and completion of Tier I writing requirement) R: Open to seniors in the Department of Plant, Soil and Microbial Sciences.
Synthesis, integration and application of agronomic principles to current issues in agronomy via discussion and oral and written communication.

493 Professional Internship in Crop and Soil Sciences
Summer. 3 credits. A student may earn a maximum of 6 credits in all enrollments for this course. A student may earn a maximum of 6 credits in all enrollments for any or all of these courses: ABM 493, ANR 493, ANS 493, CMP 493, CSS 493, CSUS 493, EEP 493, FIM 493, FSC 493, FW 493, HRT 493, PKG 493, and PLP 493. P: Completion of Tier I Writing Requirement R: Approval of department; application required.
Supervised professional experiences in crop and soil sciences.

499 Undergraduate Research
Fall, Spring, Summer. 3(0-9) A student may earn a maximum of 9 credits in all enrollments for this course. R: Approval of department; application required.
Faculty supervised research in a selected area of crop and soil sciences or environmental soil science.

802 Weed Biology
Spring of even years. 2(2-0) RB: A previous course in weed science or plant biology or ecology.
Weed biology, including weed seed production and dispersal and seed fate. Weed life history traits and ecophysiology, including invasive species. Data collection in weed ecology research.

805 Herbicide Action and Metabolism
Spring of odd years. 2(2-2) P: A previous course in weed science or plant biology or ecology.
Properties and characteristics of herbicides. Processes involved in herbicide action, transport, and fate in plants and soils.

814 Advanced Statistics for Biologists

819 Advanced Plant Breeding
Spring of even years. 3(3-0) Interdepartmental with Forestry and Horticulture. Administered by Horticulture. RB: STT 422 and ZOL 341 Genetic expectations resulting from breeding strategies with cross- and self-pollinated crop plants. Germplasm collections, mapping populations, and modifications of reproductive biology useful for crop improvement.

820 Plant Reproductive Biology and Polyploidy
Spring of odd years. 1(3-0) Interdepartmental with Forestry and Horticulture and Plant Biology and Plant Pathology. Administered by Horticulture. RB: Introductory Genetics and Plant Biology Genetic processes underlying variations in plant reproductive biology and polyploidy. Utilization of these characteristics in plant breeding.
829 Computational and Applied Plant Breeding
Spring of odd years. 3(3-0) Interdepartmental with Horticulture. Administered by Crop and Soil Sciences. P: HRT 819 and STT 814
Theoretical and applied methods of genetics and statistics in plant breeding; selection theory and methods; heritability; genotype-environment interaction; methods to enhance genetic progress and efficiency through statistical genetics, genomics, and marker assisted selection.

841 Foundation in Computational and Plant Sciences
Spring, 3(3-0) Interdepartmental with Biochemistry and Molecular Biology and Computational Mathematics, Science, and Engineering and Horticulture and Plant Biology. Administered by Horticulture.
Computational modeling applied to plant biology. Data analysis, algorithmic thinking, model building, bioinformatics, and molecular biology using coding and computational resources.

843 Forum in Computational and Plant Sciences
Fall, Spring. 1(1-0) A student may earn a maximum of 4 credits in all enrollments for this course. Interdepartmental with Biochemistry and Molecular Biology and Computational Mathematics, Science, and Engineering and Horticulture and Plant Biology. Administered by Plant Biology.
Professional development focused on diverse modes of communication in support of interdisciplinary science with an emphasis on plant and computational sciences.

844 Frontiers in Computational and Plant Sciences
Spring, 3(3-0) Interdepartmental with Biochemistry and Molecular Biology and Computational Mathematics, Science, and Engineering and Horticulture and Plant Biology. Administered by Crop and Soil Sciences. RB: Basic programming, mathematical modeling, and statistics
Interdisciplinary research interfacing computational and plant sciences. Molecular system biology, phenomics, and mechanisms connecting genotype and phenotype

850 Soil Chemistry
Spring, 3(3-3) R: Open to graduate students in the College of Agriculture and Natural Resources or in the College of Engineering or in the College of Natural Science.
I on activities, ionic exchange and equilibrium reactions. Soil pH, macro- and micronutrients, saline soils and availability of nutrients to plants.

863 Mineral-Water Interactions
Spring of even years. 4(3-2) Interdepartmental with Geological Sciences. Administered by Geological Sciences. R: Open only to graduate students in the Department of Crop and Soil Sciences or Department of Geological Sciences or Department of Geography.
Mineralogy, petrology and geochemistry of fluid-rock reactions in geologic, sedimentary and geochemical cycles. Rock and mineral weathering, soil formation, genesis and burial diagenesis of sediments and sedimentary rocks, and metamorphism.

865 Environmental Fate of Organic Contaminants in Soils
Spring of even years. 3(3-0) RB: Undergraduate level coursework in general and organic chemistry, and introductory microbiology.
Chemistry and biology of toxicants in soils as determinants of environmental fate.

880 Scientific Communication and Professional Development
Spring, 1(0-2)
Interactive professional experiences including grant preproposal preparation and presentation, scientific presentations, mock position interviews, and resume preparation.

890 Independent Study
Fall, Spring, Summer. 1 to 6 credits. A student may earn a maximum of 8 credits in all enrollments for this course. R: Open to graduate students in the College of Agriculture and Natural Resources or in the College of Engineering or in the College of Natural Science.
Individual study on field, laboratory, or library research.

891 Current Topics in Ecology and Evolution
Summer, 1 to 2 credits. A student may earn a maximum of 10 credits in all enrollments for this course. Interdepartmental with Integrative Biology and Plant Biology. Administered by Integrative Biology. SA: ZOL 891
Presentation and critical evaluation of theoretical and empirical developments in ecology and evolutionary biology by visiting scientists.

891B Selected Topics in Plant Breeding and Genetics
Fall, Spring. Summer. 1 to 2 credits. A student may earn a maximum of 6 credits in all enrollments for this course. Interdepartmental with Forestry and Horticulture. Administered by Horticulture. R: Open only to graduate students in the Plant Breeding and Genetics major or Genetics major. Approval of department.
Selected topics in plant breeding.

892 Plant Breeding and Genetics Seminar
Fall, Spring, Summer. 1(1-0) A student may earn a maximum of 8 credits in all enrollments for this course. Interdepartmental with Forestry and Horticulture. Administered by Horticulture.
Experience in review, organization, oral presentation, and analysis of research.

892B Ecological Food and Farming Systems Seminar
Fall, Spring, 1 credit. Interdepartmental with Community, Ag, Recreation and Res Studies. Administered by Crop and Soil Sciences.
Experiential learning, and multidisciplinary and applied research, in ecological food and farming systems.

893 Selected Topics
Fall, Spring. Summer. 1 to 3 credits. A student may earn a maximum of 6 credits in all enrollments for this course. R: Open to graduate students in the College of Agriculture and Natural Resources or in the College of Engineering or in the College of Natural Science.
Selected topics in crop and soil sciences of current interest and importance.

899 Master's Thesis Research
Fall, Spring, Summer. 1 to 12 credits. A student may earn a maximum of 99 credits in all enrollments for this course. R: Open to master's students in the Department of Plant, Soil and Microbial Sciences.
Master's thesis research.

941 Quantitative Genetics in Plant Breeding
Spring of even years. 3(2-2) Interdepartmental with Forestry and Horticulture. Administered by Crop and Soil Sciences. RB: CSS 819 and STT 464
Theoretical and genetic basis of statistical analysis of quantitative traits using genetic markers. Computational tools for the study of quantitative traits.

999 Doctoral Dissertation Research
Fall, Spring, Summer. 1 to 24 credits. A student may earn a maximum of 36 credits in all enrollments for this course. R: Open to doctoral students in the Department of Plant, Soil and Microbial Sciences.
Doctoral dissertation research.