COMPUTER SCIENCE AND ENGINEERING CSE

Department of Computer Science and Engineering
College of Engineering

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Prerequisites</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Computer Science as a Profession</td>
<td></td>
<td>The computing and programming profession. Professionalism and ethics. Industry practice. Experiments with programming.</td>
</tr>
<tr>
<td>101</td>
<td>Computing Concepts and Competencies</td>
<td></td>
<td>Fall, Spring. 3(2-2) SA: CPS 100, CPS 130</td>
</tr>
<tr>
<td>131</td>
<td>Technical Computing and Problem Solving</td>
<td></td>
<td>Spring, 3(1-3) P: (MTH 124 or concurrently) or (MTH 132 or concurrently) or (MTH 152H or concurrently) or (LB 118 or concurrently) SA: CPS 131</td>
</tr>
<tr>
<td>201</td>
<td>Fundamentals of Information Technology</td>
<td></td>
<td>Fall, Spring. 3(3-0) P: (CSE 101 or CSE 131) and (MTH 103 or MTH 116 or MTH 124 or MTH 132 or MTH 152H or LB 118) LB: high school algebra; literacy in web and computer tools, such as editor and browser. SA: CSE 240</td>
</tr>
<tr>
<td>220</td>
<td>Programming in C</td>
<td></td>
<td>Spring, 3(2-2) P: (EGR 100 or ECE 101) and (MTH 132 or concurrently) or (MTH 152H or concurrently) R: Open to undergraduate students. Not open to students with credit in CSE 251. Basics of programming in C. Data types, operators, control, functions, arrays, pointers, file processing, testing and debugging.</td>
</tr>
<tr>
<td>231</td>
<td>Introduction to Programming I</td>
<td></td>
<td>Fall, Spring. 3(3-2) P: (LB 118 or concurrently) or (MTH 124 or concurrently) or (MTH 132 or concurrently) or (MTH 152H or concurrently) SA: CSE 230 Introduction to programming using Python. Design, implementation and testing of programs to solve problems such as those in engineering, mathematics and science. Programming fundamentals, functions, objects, and use of libraries of functions.</td>
</tr>
<tr>
<td>232</td>
<td>Introduction to Programming II</td>
<td></td>
<td>Fall, Spring. 4(3-2) P: (CSE 231 or CMSE 202) and (LB 118 or MTH 124 or MTH 132 or MTH 152H) SA: CSE 330 Continuation of object-centered design and implementation in C++. Building programs from modules. Data abstraction and classes to implement abstract data types. Static and dynamic memory allocation. Data structure implementation and algorithm efficiency. Lists, tables, stacks, and queues. Templates and generic programming.</td>
</tr>
<tr>
<td>251</td>
<td>Programming in C</td>
<td></td>
<td>Fall, Spring. 1(0-2) P: CSE 231 or CSE 131 or EGR 102 RB: Students are expected to have experience in programming in some language other than C R: Open to undergraduate students or graduate students. Programming in the C language. Data and control. Compiling and linking.</td>
</tr>
<tr>
<td>290</td>
<td>Independent Study in Computer Science</td>
<td></td>
<td>Fall, Spring. 1 credit. A student may earn a maximum of 3 credits in all enrollments for this course. R: Approval of department; application required. SA: CPS 290 Supervised individual study in an area of computer science.</td>
</tr>
<tr>
<td>291</td>
<td>Selected Topics in Computer Science</td>
<td></td>
<td>Fall, Spring. 1 to 4 credits. A student may earn a maximum of 6 credits in all enrollments for this course. R: Approval of department. SA: CPS 291 Topics selected to supplement and enrich existing courses and lead to the development of new courses.</td>
</tr>
<tr>
<td>320</td>
<td>Computer Organization and Architecture</td>
<td></td>
<td>Fall, Spring. 3(3-0) P: CSE 232 and CSE 260 R: Open to students in the Department of Computer Science and Engineering or in the Computer Engineering Major or in the Lyman Briggs Computer Science Coordinate Major or in the Lyman Briggs Computer Science Major or in the Computer Science Disciplinary Teaching Minor. SA: CPS 320 Not open to students with credit in ECE 331. Boolean algebra and digital logic. Combinational and sequential circuits. Representations of data and instructions. Architecture and major components of computer systems. Assembly language programming and interfacing to high level languages. Assembler and linker processing.</td>
</tr>
<tr>
<td>331</td>
<td>Algorithms and Data Structures</td>
<td></td>
<td>Fall, Spring. 3(3-0) P: CSE 232 and CSE 260 R: Open to students in the Department of Computer Science and Engineering or in the Computer Engineering Major or in the Lyman Briggs Computer Science Coordinate Major or in the Lyman Briggs Computer Science Major or in the Computer Science Disciplinary Teaching Minor. Linear data structures, trees, graphs and algorithms which operate on them. Fundamental algorithms for searching, sorting, string matching, graph problems. Design and analysis of algorithms.</td>
</tr>
<tr>
<td>335</td>
<td>Object-oriented Software Design</td>
<td></td>
<td>Fall, Spring. 4(4-0) P CSE 232 and CSE 260 R: Open to students in the Department of Computer Science and Engineering or in the Computer Engineering Major or in the Lyman Briggs Computer Science Coordinate Major or in the Lyman Briggs Computer Science Major or in the Computer Science Disciplinary Teaching Minor. SA: CSE 370 Development of large software projects. Libraries, and product families. Object-oriented programming using inheritance and polymorphism. Design methods. Specification and the use of contracts to design reliable software. Configuration management and life-cycle issues.</td>
</tr>
<tr>
<td>402</td>
<td>Biometrics and Pattern Recognition</td>
<td></td>
<td>Fall, Spring. 3(3-0) P: CSE 331 and STT 351 R: Open to juniors or seniors in the College of Engineering or in the Lyman Briggs Computer Science Coordinate Major or in the Lyman Briggs Computer Science Major. Automated techniques used for feature extraction and pattern matching focusing on face, fingerprint and iris recognition.</td>
</tr>
<tr>
<td>410</td>
<td>Operating Systems</td>
<td></td>
<td>Fall, Spring. 3(3-0) P: (CSE 232 and CSE 260) and (CSE 320 or ECE 331) R: Open to juniors or seniors in the College of Engineering or in the Computer Science Minor or in the Lyman Briggs Computer Science Coordinate Major or in the Lyman Briggs Computer Science Major. Principles and evolution of operating systems. Processes and threads. Primary and secondary storage management. Case studies of modern operating systems.</td>
</tr>
<tr>
<td>415</td>
<td>Introduction to Parallel Computing</td>
<td></td>
<td>Spring, 3(3-0) P: CSE 320 and CSE 331 R: Open to juniors or seniors in the College of Engineering or in the Computer Science Minor or in the Lyman Briggs Computer Science Coordinate Major or in the Lyman Briggs Computer Science Major. Core principles and techniques of parallel computing. Parallel architectures. Parallel programming models. Principles of parallel algorithm testing. Performance analysis and optimization. Use of parallel computers.</td>
</tr>
<tr>
<td>420</td>
<td>Computer Architecture</td>
<td></td>
<td>Spring, 3(3-0) P: (CSE 232 and CSE 260) and (CSE 320 or ECE 331) R: Open to juniors or seniors in the College of Engineering or in the Computer Science Minor or in the Lyman Briggs Computer Science Coordinate Major or in the Lyman Briggs Computer Science Major or in the Computer Science Disciplinary Teaching Minor. SA: CPS 420 Organization and architecture of computer systems. Arithmetic Logic Unit and control unit implementation. Hardwired and microprogrammed control. Pipelined processors; data and branch hazards. Memory hierarchy and storage devices. Input-output and peripheral devices. Advanced architectures.</td>
</tr>
</tbody>
</table>
422 Computer Networks
Fall, Spring. 3(3-0) P: (STT 351 or ECE 280) and (CSE 410 or concurrently) R: Open to juniors or seniors in the College of Engineering or in the Computer Science Minor or in the Lyman Briggs Computer Science Coordinate Major or in the Lyman Briggs Computer Science Major. SA: CPS 422

425 Introduction to Computer Security
Spring. 3(3-0) P: CSE 422 or concurrently R: Open to juniors or seniors in the College of Engineering or in the Computer Science Minor or in the Lyman Briggs Computer Science Coordinate Major or in the Lyman Briggs Computer Science Major.

429 Interdisciplinary Topics in CyberSecurity
Spring. 3(3-0) Interdepartmental with Criminal Justice. Administered by Computer Science and Engineering. P: CSE 101 or CSE 131 or CSE 231 R: Open to juniors or seniors or graduate students.
Technical, legal, criminal, medical business, and communication aspects of CyberSecurity.

431 Algorithm Engineering
Fall, Spring. 3(3-0) P: CSE 331 R: Open to juniors or seniors in the College of Engineering or in the Computer Science Minor or in the Lyman Briggs Computer Science Coordinate Major or in the Lyman Briggs Computer Science Major.
Algorithm analysis, design, implementation, and optimization for broad range of problem categories including techniques to recognize and cope with intractable problems.

435 Software Engineering
Fall. 3(3-0) P: (CSE 331 and CSE 335) and completion of Tier I writing requirement R: Open to juniors or seniors in the College of Engineering or in the Computer Science Minor or in the Lyman Briggs Computer Science Coordinate Major or in the Lyman Briggs Computer Science Major.
Software lifecycle including specification, design, coding, testing, and verification of a software product. Stepwise refinement and traceability. Software maintenance and documentation.

440 Introduction to Artificial Intelligence
Fall. 3(3-0) P: CSE 331 R: Open to juniors or seniors in the College of Engineering or in the Computer Science Major or in the Lyman Briggs Computer Science Coordinate Major or in the Lyman Briggs Computer Science Major. SA: CPS 440

444 Information Technology Project Management
Spring. 3(3-0) Interdepartmental with Information Technology Management and Media and Information. Administered by Information Technology Minor. P: ITM 311 R: Open to students in the Information Technology Minor.
Practical training and experiences in design, testing, and launch of new information technologies and systems.

450 Translation of Programming Languages
Fall. 3(3-0) P: CSE 331 and (CSE 320 or ECE 331) R: Open to juniors or seniors in the College of Engineering or in the Computer Science Minor or in the Lyman Briggs Computer Science Coordinate Major or in the Lyman Briggs Computer Science Major. SA: CPS 450

460 Computability and Formal Language Theory
Fall. 3(3-0) P: CSE 331 R: Open to juniors or seniors in the College of Engineering or in the Computer Science Minor or in the Lyman Briggs Computer Science Coordinate Major or in the Lyman Briggs Computer Science Coordinate Major or in the Lyman Briggs Computer Science Major.
Formal models of computation such as finite state automata, pushdown automata and Turing machines. Formal definitions of languages, problems, and language classes including recursive, recursively enumerable, regular, and context free languages. The relationships among various models of computation, language classes, and problems. Church’s thesis and the limits of computability. Proofs of program properties including correctness.

471 Media Processing and Multimedia Computing
Spring. 3(3-0) P: CSE 320 or CSE 331 or CSE 335 R: Open to juniors or seniors in the College of Engineering or in the Computer Science Minor or in the Lyman Briggs Computer Science Coordinate Major or in the Lyman Briggs Computer Science Coordinate Major or in the Lyman Briggs Computer Science Major.

472 Computer Graphics
Spring. 3(3-0) P: CSE 331 or CSE 335 R: Open to juniors or seniors in the College of Engineering or in the Computer Science Minor or in the Lyman Briggs Computer Science Coordinate Major or in the Lyman Briggs Computer Science Major. SA: CPS 472

473 Fundamentals of 3D Game Development
Fall. 3(3-0) P: CSE 331 or CSE 335 R: Open to students in the Computer Engineering Major or in the Computer Science Major or in the Lyman Briggs Computer Science Coordinate Major or in the Lyman Briggs Computer Science Major or in the Computer Science Dis
Fundamental algorithms and techniques for 3D computer game development including geometry transformations, procedural and keyframe animation, models and scene graphs, skeletal animation and skinned characters, illuminations and shading, collision detection, and level of detail.

476 Mobile Application Development
Spring. 3(3-0) P: CSE 320 or CSE 331 or CSE 335 R: Open to juniors or seniors in the College of Engineering or in the Computer Science Minor or in the Lyman Briggs Computer Science Coordinate Major or in the Lyman Briggs Computer Science Major.
Software development techniques for mobile devices such as smart phones and tablet computers.

477 Web Application Architecture and Development
Spring. 3(3-0) P: CSE 320 or CSE 331 or CSE 335 R: Open to juniors or seniors in the College of Engineering or in the Computer Science Minor or in the Lyman Briggs Computer Science Coordinate Major or in the Lyman Briggs Computer Science Major.
Fundamentals of World Wide Web (WWW) programming, including protocols, client-server interaction, markup languages, client- and server-side programming, databases, and remote procedure calls. Development of a WWW server and WWW sites with browser-based interfaces to remote databases. Students will incorporate scaling, throughput, and latency considerations in the development of widely-distributed systems.

480 Database Systems
Spring. 3(3-0) P: CSE 331 or CSE 335 R: Open to juniors or seniors in the College of Engineering or in the Computer Science Minor or in the Lyman Briggs Computer Science Coordinate Major or in the Lyman Briggs Computer Science Major. SA: CPS 480
Storage of and access to physical databases including indexing, hashing, and range accesses. Relational data models, database design principles, query languages, query optimization, transaction processing and recovery techniques. Object-oriented and distributed databases.

482 Big Data Analysis
Spring. 3(3-0) P: CSE 331 and CSE 335 and STT 351 R: Open to juniors or seniors in the College of Engineering or in the Lyman Briggs Computer Science Coordinate Major or in the Lyman Briggs Computer Science Major.
Data collection, storage, and preprocessing, and analysis techniques. Programming for large-scale data analysis. Case studies and applications.
484 Information Retrieval
Fall. 3(3-0) P: CSE 331 RB: STT 351 R: Open to students in the Computer Engineering Major or in the Computer Science Major or in the Lyman Briggs Computer Science Coordinate Major or in the Lyman Briggs Computer Science Major or in the Computer Science Disciplinary Teaching Minor. Retrieval models including Boolean, vector space, and probabilistic models. Architecture of information retrieval systems. Text clustering, categorization and filtering. Recommendation systems. Natural language processing for text retrieval. Information extraction, question answering. Multimedia retrieval. Digital libraries.

490 Independent Study in Computer Science
Fall, Spring. 1 to 3 credits. A student may earn a maximum of 3 credits in all enrollments for this course. R: Open to students in the Computer Engineering Major or in the Computer Science Major. Approval of department; application required. SA: CPS 490

491 Selected Topics in Computer Science
Fall, Spring. 1 to 4 credits. A student may earn a maximum of 9 credits in all enrollments for this course. R: Open to students in the Computer Engineering Major or in the Computer Science Major or in the Lyman Briggs Computer Science Coordinate Major or in the Lyman Briggs Computer Science Major or in the Computer Science Disciplinary Teaching Minor. Approval of department. SA: CPS 491

498 Collaborative Design (W)
Fall, Spring. 4(2-4) P: (CSE 420 or CSE 422 or CSE 425 or CSE 435 or CSE 440 or CSE 450) or (CSE 460 or CSE 471 or CSE 472 or CSE 473 or CSE 480 or CSE 484) and (CSE 335 and CSE 410) and completion of Tier I writing requirement R: Open to students in the Computer Science Major or in the Lyman Briggs Computer Science Coordinate Major. SA: CSE 449, CSE 478, CSE 479

Development of a comprehensive software and/or hardware solution to a problem in a team setting with emphasis on working with a client. Participation in a design cycle including specification, design, implementation, testing, maintenance, and documentation. Issues of professionalism, ethics, and communication.

801 Introduction to Computational Science for Evolutionary Biologists
Fall. 3(3-0) R: A strong background in molecular biology, evolution, or ecology. R: Not open to graduate students in the College of Engineering or in the Department of Computer Science and Engineering. Approval of department. Introductory and intermediate programming and scripting for data analysis and modeling. Algorithmic considerations. Scientific controls, workflows, and reproducibility.

802 Pattern Recognition and Analysis
Spring. 3(3-4) R: (CSE 331 and MTH 314 and STT 441) or CSE 331 and MTH 314 and STT 441 R: Open to graduate students in the Department of Computer Science and Engineering. Algorithms for classifying and understanding data. Statistical and syntactic methods, supervised and unsupervised machine learning. Cluster analysis and ordination. Exploratory data analysis. Methodology for design of classifiers.

803 Computer Vision
Fall. 3(3-0) R: CSE 331 and MTH 314 and STT 351 R: Open only to Computer Science or Electrical Engineering majors. SA: CPS 803

812 Distributed Systems
Spring. 3(3-0) R: CSE 410 R: Open to students in the Electrical Engineering Major or in the Computer Science Major. SA: CPS 812

Principles, paradigms, techniques used in distributed systems. Assumptions and techniques for distributed systems. Fault-tolerance and security issues in distributed systems. Research issues in the design and implementation of distributed systems.

813 Advanced VLSI Design
Spring. 3(3-0) R: CSE 410 R: Open only to students in the Electrical Engineering Major or in the Computer Science Major. SA: ECE 410 SA: EE 813

814 Formal Methods in Software Development
Fall of odd years. 3(3-0) R: Open only to majors in the Department of Computer Science and Engineering or approval of department. SA: CPS 814

Formal specification languages, integrating verification with development. Design and the implementation of term project.

820 Advanced Computer Architecture
Fall. Spring. 3(3-0) R: CSE 410 and CSE 420 R: Open only to Computer Science or Electrical Engineering majors. SA: CPS 820

Instruction set architecture. Pipelining, vector processors, cache memory, high bandwidth memory design, virtual memory, input and output. Benchmarking techniques. New developments related to single CPU systems.

822 Parallel Computing
Fall. 3(3-0) R: CSE 422 R: Open only to graduate students in the Department of Computer Science and Engineering. SA: CPS 822

Advanced topics in emerging computer networking technologies, including high-speed wide area networks and local area networks, wireless and mobile computing networks, optical networks, and multimedia networking.

824 Advanced Computer Networks and Communications
Fall. 3(3-0) R: CSE 422 R: Open only to graduate students in the Department of Computer Science and Engineering. SA: CPS 824

Advanced topics in emerging computer networking technologies, including high-speed wide area networks and local area networks, wireless and mobile computing networks, optical networks, and multimedia networking.

825 Computer and Network Security
Spring. 3(3-0) R: CSE 410 and CSE 422

Threat assessments, secure software, intrusions and intrusion detection.

830 Design and Theory of Algorithms
Fall. Spring. 3(3-0) R: CSE 232 and CSE 460 R: Open only to majors in the Department of Computer Science and Engineering or approval of department. SA: CPS 830

Analysis of algorithms. Algorithm design techniques. Efficient algorithms for classical problems. Intractable problems and techniques to handle them.

835 Algorithmic Graph Theory
Spring. 3(3-0) R: CSE 232 and CSE 460 and (MTH 309 or MTH 314) R: Open to students in the Department of Computer Science and Engineering or approval of department. SA: CPS 835

Classical concepts in Graph Theory. Algorithmic aspects of graphs such as finding paths, network flow, spanning trees and matching.

836 Probabilistic Models and Algorithms in Computational Biology
Fall. 3(3-0) R: Basic understanding of data structures; probabilities; programming experiences (no restriction to programming language) Canonical probabilistic models and algorithms used in important bioinformatics tools

841 Artificial Intelligence
Fall. 3(3-0) R: CSE 440 R: Open only to Computer Science or Electrical Engineering majors. SA: CPS 841

Types of intelligence, knowledge representation, cognitive models. Goal-based systems, heuristic search and games, expert systems. Language understanding, robotics and computer vision, theorem proving and deductive systems, and learning.
842 Natural Language Processing
Spring of odd years. 3(3-0) RB: Programming skills, basic probability and statistics knowledge. Models and algorithms for natural language processing and multi-disciplinary audiences. Knowledge-based and statistical approaches to a variety of language-related applications.

843 Language and Interaction
Spring of even years. 3(3-0) RB: Programming skills. Basic probability and statistical knowledge. Artificial intelligence. Introduction to foundations and the state-of-the-art technology enabling natural language communication with artificial agents. Speech recognition, acoustic modeling and language modeling, dialogue and discourse modeling. Multi-disciplinary teams will learn to overcome discipline-specific language and conceptual issues. Experimental design, statistical analysis, data visualization, and paper and grant writing for multi-disciplinary audiences.

845 Multi-disciplinary Research Methods for the Study of Evolution
Spring. 3(3-0) Interdepartmental with Microbiology and Molecular Genetics and Zoology. Administered by Computer Science and Engineering. Techniques for engaging in multi-disciplinary research collaborations, including biology, computer science, and engineering. Students engage in group projects to answer fundamental questions about the dynamics of actively evolving systems including both natural and computational. Multi-disciplinary teams will learn to overcome discipline-specific language and conceptual issues. Experimental design, statistical analysis, data visualization, and paper and grant writing for multi-disciplinary audiences.

847 Machine Learning
Spring. 3(3-0) P: CSE 841 RB: Algorithms, programming in C or equivalent, probability and statistics, artificial intelligence. R: Open only to students in the Department of Computer Science and Engineering or approval of department. Computational study of learning and data mining. Strengths and limitations of various learning paradigms, including supervised learning, learning from scalar reward, unsupervised learning, and learning with domain knowledge.

848 Evolutionary Computation
Fall of even years. 3(3-0) Interdepartmental with Electrical and Computer Engineering. Administered by Computer Science and Engineering. RB: CSE 841 and CSE 440 R: Open to graduate students in the Department of Computer Science and Engineering and open to graduate students in the Department of Electrical and Computer Engineering or approval of department. Investigation of evolutionary computation from a historical, theoretical and application viewpoint. Readings from the present literature, experiments with provided software on the application of evolutionary computation principles.

860 Foundations of Computing
Spring of even years. 3(3-0) RB: CSE 460 R: Open only to majors in the Department of Computer Science and Engineering or approval of department. SA: CPS 860 Models of computation: partial recursive functions, Turing machines, alternative models of computing. Basic theory and limitations of computability. Undecidability. Resource-bounded computational complexity, non-determinism, NP-completeness.

867 Nature and Practice of Cognitive Science
Spring. 3(3-0) Interdepartmental with Integrative Biology and Linguistics and Philosophy. Administered by Psychology, RB: Undergraduate course work in behavioral biology, cognitive psychology, philosophy, linguistics, or artificial intelligence. SA: ZOL 867 Survey of how different disciplines explore the cognitive processes underlying intelligent behavior.

870 Advanced Software Engineering
Spring. 3(3-0) RB: CSE 470 or undergrad-uate software engineering course R: Open only to students in the Department of Computer Science and Engineering. Methods and techniques supporting later lifecycle activities, including software testing and maintenance, reuse, and reverse engineering. Domain-specific software engineering methods. Human-computer interfaces, distributed systems, and visualization techniques.

872 Advanced Computer Graphics
Fall. 3(3-0) RB: CSE 472 Advanced aspects of digital image generation, geometric modeling, computer animation and rendering methods.

880 Advanced Database Systems
Fall. 3(3-0) RB: CSE 480 R: Open only to majors in the Department of Computer Science and Engineering or approval of department. SA: CPS 880 Distributed and object-oriented databases and knowledgebase systems. Design theory, query optimization, and transaction processing.

881 Data Mining
Fall. 3(3-0) RB: Programming skills in C, C++, Java and Matlab. Basic knowledge in calculus, probability and statistics. Techniques and algorithms for knowledge discovery in databases, from data preprocessing and transformation to model validation and post-processing. Core concepts include association analysis, sequential pattern discovery, anomaly detection, predictive modeling, and cluster analysis. Application of data mining to various application domains.

885 Artificial Neural Networks

890 Independent Study
Fall, Spring, Summer. 1 to 3 credits. A student may earn a maximum of 6 credits in all enrollments for this course. R: Open only to Computer Science or Electrical Engineering majors. Approval of department. SA: CPS 890 Independent study of some topic, system, or language not covered in a regular course.

891 Selected Topics
Fall. 1 to 3 credits. A student may earn a maximum of 9 credits in all enrollments for this course. R: Open only to Computer Science or Electrical Engineering majors. SA: CPS 891 Selected topics in computer science of current interest and importance but not covered in a regular course.

898 Master's Project
Spring. 3 credits. A student may earn a maximum of 6 credits in all enrollments for this course. R: Open to students in the Department of Computer Science and Engineering. Approval of department. In depth student project where the student performs original research, research replication, or survey and reporting on a topic such as system design and development, or system conversion or installation.

899 Master's Thesis Research
Fall, Spring, Summer. 1 to 8 credits. A student may earn a maximum of 24 credits in all enrollments for this course. R: Open only to Computer Science majors. Approval of department. SA: CPS 899 Master's thesis research.

902 Selected Topics in Recognition by Machine
Spring. 3(3-0) A student may earn a maximum of 9 credits in all enrollments for this course. RB: CSE 802 and CSE 803 R: Open only to Computer Science or Electrical Engineering majors. SA: CPS 902 Advanced topics in pattern recognition and computer vision such as Markov random fields, modeling and recognition of three dimensional objects, and integration of visual modules.

910 Selected Topics in Computer Networks and Distributed Systems
Spring of even years. 3(3-0) A student may earn a maximum of 9 credits in all enrollments for this course. RB: CSE 422 and CSE 812 R: Open only to Computer Science or Electrical Engineering majors. SA: CPS 910 Advanced topics and developments in high-bandwidth computer networks, protocol engineering, and distributed computer systems.

912 Advanced Topics in Distributed Computing Systems
Spring of odd years. 3(3-0) A student may earn a maximum of 9 credits in all enrollments for this course. RB: CSE 410 and CSE 812 Advanced topics and developments in Internet computing, distributed algorithm and operating systems, distributed middleware, high-performance distributed computing, peer-to-peer computing, security and fault tolerance of distributed systems, mobile computing, ubiquitous and pervasive computing, and distributed data management.
914 Formal Methods in Software Development
Fall. 3(3-0) A student may earn a maximum of 9 credits in all enrollments for this course.
P: CSE 814 RB: Undergraduate courses in software engineering and in logic. R: Open to graduate students in the Department of Computer Science and Engineering.
Current research in selected areas of software engineering such as: approaches for the incorporation of formal methods in software development; current projects using formal methods in software engineering; object-oriented analysis and development techniques; and approaches for the incorporation of user interface analysis and design in software development.

920 Selected Topics in High Performance Computer Systems
Spring of odd years. 3(3-0) A student may earn a maximum of 9 credits in all enrollments for this course. Interdepartmental with Electrical and Computer Engineering. Administered by Computer Science and Engineering. R: Open to students in the Computer Science Major or approval of department. SA: CPS 920
Design of high performance computer systems. Seminar format.

941 Selected Topics in Artificial Intelligence
Fall. 3(3-0) A student may earn a maximum of 9 credits in all enrollments for this course. RB: CSE 841 R: Open only to Computer Science or Electrical Engineering majors. SA: CPS 941
Topic such as second generation expert systems, human factors, natural language processing, speech understanding, neural networks, genetic algorithms and opportunistic planning.

960 Selected Topics in Algorithms and Complexity
Spring of odd years. 3(3-0) A student may earn a maximum of 9 credits in all enrollments for this course. RB: CSE 830 and CSE 860 R: Open only to graduate students in the Department of Computer Science and Engineering. Approval of department. SA: CPS 960
Current research in the general theory of algorithms and computational complexity.

980 Selected Topics in Database Systems
Spring. 3(3-0) A student may earn a maximum of 9 credits in all enrollments for this course. RB: CSE 880 R: Open only to Computer Science or Electrical Engineering majors. SA: CPS 980
Recent developments in areas such as distributed and parallel database systems, object oriented database systems, knowledgebase and expert database systems.

999 Doctoral Dissertation Research
Fall, Spring, Summer. 1 to 36 credits. A student may earn a maximum of 36 credits in all enrollments for this course. R: Open to graduate students in the Computer Science major. Approval of department. SA: CPS 999
Doctoral dissertation research.