201 Fundamentals of Information Technology
Fall, Spring. 3(2-0) P: (CSE 101 or CSE 131) and (MTH 103 or MTH 116 or MTH 124 or MTH 132 or MTH 152H or LB 118) RB: high school algebra; literacy in web and computer tools, such as editor and browser. SA: CSE 240
Digital representation of objects such as numbers, signals, and 3-dimensional shapes. Algorithms that operate on digital objects. Computer communications and the Internet. Computer security and web services.

220 Programming in C
Fall, Spring. 3(2-2) P: (EGR 100 or ECE 101) and ((MTH 132 or concurrently) or (MTH 152H or concurrently) or (LB 118 or concurrently)) R: Open to undergraduate students. Not open to students with credit in CSE 251.
Basics of programming in C. Data types, operators, control, functions, arrays, pointers, file processing, testing and debugging.

231 Introduction to Programming I
Fall, Spring. Summer. 4(3-2) P: (LB 118 or concurrently) or (MTH 124 or concurrently) or (MTH 132 or concurrently) or (MTH 152H or concurrently) SA: CSE 230
Introduction to programming using Python. Design, implementation and testing of programs to solve problems such as those in engineering, mathematics and science. Programming fundamentals, functions, objects, and use of libraries of functions.
429 Interdisciplinary Topics in CyberSecurity
Fall. 3(3-0) Interdepartmental with Criminal Justice. Administered by Computer Science and Engineering. P: CSE 101 or CSE 131 or CSE 231 R: Open to juniors or seniors or graduate students. Technical, legal, criminal, medical business, and communication aspects of CyberSecurity.

435 Software Engineering
Fall. 3(3-0) P: (CSE 331 and CSE 335) and completion of Tier I writing requirement R: Open to students in the Computer Engineering Major or in the Computer Science Major or in the Lyman Briggs Computer Science Coordinate Major or in the Lyman Briggs Computer Science Major or in the Computer Science Disciplinary Teaching Minor. SA: CSE 470
Software lifecycle including specification, design, coding, testing, and verification of a software product. Stepwise refinement and traceability. Software maintenance and documentation.

440 Introduction to Artificial Intelligence
Fall. 3(3-0) P: Computer Engineering Major or in the Computer Science Major or in the Lyman Briggs Computer Science Coordinate Major or in the Lyman Briggs Computer Science Major or in the Computer Science Disciplinary Teaching Minor.

444 Information Technology Project Management
Spring. 3(3-0) Interdepartmental with Information Technology Management and Media and Information. Administered by Information Technology Management. P: ITM 311 R: Open to students in the Information Technology Minor.
Practical training and experiences in design, testing, and launch of new information technologies and systems.

450 Translation of Programming Languages
Spring. 3(3-0) P: CSE 331 and (CSE 320 or ECE 331) R: Open to students in the Computer Engineering Major or in the Computer Science Major or in the Lyman Briggs Computer Science Coordinate Major or in the Lyman Briggs Computer Science Major or in the Computer Science Disciplinary Teaching Minor.

460 Computability and Formal Language Theory
Fall, Spring. 3(3-0) P: CSE 331 R: Open to students in the Computer Engineering Major or in the Computer Science Major or in the Lyman Briggs Computer Science Coordinate Major or in the Lyman Briggs Computer Science Major or in the Computer Science Disciplinary Teaching Minor. SA: CSE 360
Formal models of computation such as finite state automata, pushdown automata and Turing machines. Formal definitions of languages, problems, and language classes including recursive, recursively enumerable, regular, and context free languages. The relationships among various models of computation, language classes, and problems. Church's thesis and the limits of computability. Proofs of program properties including correctness.

471 Media Processing and Multimedia Computing
Fall. 3(3-0) P: CSE 320 or CSE 331 or CSE 335 R: Open to students in the Computer Engineering Major or in the Computer Science Major or in the Lyman Briggs Computer Science Coordinate Major or in the Lyman Briggs Computer Science Major or in the Computer Science Disciplinary Teaching Minor. SA: CSE 440

472 Computer Graphics
Spring. 3(3-0) P: CSE 331 or CSE 335 R: Open to students in the Computer Engineering Major or in the Computer Science Major or in the Lyman Briggs Computer Science Coordinate Major or in the Lyman Briggs Computer Science Major or in the Computer Science Disciplinary Teaching Minor. SA: CSE 472

473 Fundamentals of 3D Game Development
Fall. 3(3-0) P: CSE 331 or CSE 335 R: Open to students in the Computer Engineering Major or in the Computer Science Major or in the Lyman Briggs Computer Science Coordinate Major or in the Lyman Briggs Computer Science Major or in the Computer Science Disciplinary Teaching Minor.
Fundamental algorithms and techniques for 3D computer game development including geometric transformations, procedural and keyframe animation, models and scene graphs, skeletal animation and skinned characters, illuminations and shading, collision detection, and level of detail.

476 Mobile Application Development
Spring. 3(3-0) P: CSE 320 or CSE 331 or CSE 335 R: Open to students in the Computer Engineering Major or in the Computer Science Major or in the Lyman Briggs Computer Science Coordinate Major or in the Lyman Briggs Computer Science Major or in the Computer Science Disciplinary Teaching Minor.
Software development techniques for mobile devices such as smart phones and tablet computers.

477 Web Application Architecture and Development
Spring. 3(3-0) P: CSE 331 R: Open to students in the Computer Engineering Major or in the Computer Science Major or in the Lyman Briggs Computer Science Coordinate Major or in the Lyman Briggs Computer Science Major or in the Computer Science Disciplinary Teaching Minor.
Fundamentals of World Wide Web (WWW) programming, including protocols, client-server interaction, markup languages, client- and server-side programming, databases, and remote procedure calls. Development of a WWW server and WWW sites with browser-based interfaces to remote databases. Students will incorporate scaling, throughput, and latency considerations in the development of widely-distributed systems.

480 Database Systems
Spring. 3(3-0) P: CSE 331 R: Open to students in the Computer Engineering Major or in the Lyman Briggs Computer Science Coordinate Major or in the Lyman Briggs Computer Science Major or in the Computer Science Major or in the Computer Science Disciplinary Teaching Minor. SA: CPS 480
Storage of and access to physical databases including indexing, hashing, and range accesses. Relational data models, database design principles, query languages, query optimization, transaction processing and recovery techniques. Object-oriented and distributed databases.

482 Big Data Analysis
Spring. 3(3-0) P: CSE 331 and CSE 335 and STT 351 R: Open to juniors or seniors in the College of Engineering or in the Lyman Briggs Computer Science Coordinate Major or in the Lyman Briggs Computer Science Major.
Data collection, storage, and preprocessing, and analysis techniques. Programming for large-scale data analysis. Case studies and applications.

484 Information Retrieval
Fall. 3(3-0) P: CSE 331 RB: STT 351 R: Open to students in the Computer Engineering Major or in the Computer Science Major or in the Lyman Briggs Computer Science Coordinate Major or in the Lyman Briggs Computer Science Major or in the Computer Science Disciplinary Teaching Minor.

490 Independent Study in Computer Science
Fall, Spring. 1 to 3 credits. A student may earn a maximum of 3 credits in all enrollments for this course. R: Open to students in the Computer Engineering Major or in the Computer Science Major. Approval of department; application required. SA: CPS 490 Supervised individual study in an area of computer science.
Topics selected to supplement and enrich existing courses and lead to the development of new courses.

Collaborative Design (W)
Fall, Spring. 4(2-4) P: ((CSE 420 or CSE 422 or CSE 425 or CSE 435 or CSE 440 or CSE 450) or (CSE 460 or CSE 471 or CSE 472 or CSE 473 or CSE 480 or CSE 484)) and (CSE 335 and CSE 410) and completion of Tier 1 writing requirement R: Open to students in the Computer Science Major or in the Lyman Briggs Computer Science Coordinate Major.

Development of a comprehensive software and/or hardware solution to a problem in a team setting with emphasis on working with a client. Participation in a design cycle including specification, design, implementation, testing, maintenance, and documentation. Issues of professionalism, ethics, and communication.

Introduction to Computational Science for Evolutionary Biologists
Fall. 3(0-3) R: A strong background in molecular biology, evolution, or ecology. R: Not open to graduate students in the College of Engineering or in the Department of Computer Science and Engineering. Approval of department.

Introductory and intermediate programming and scripting for data analysis and modeling. Algorithmic considerations. Scientific controls, workflows, and reproducibility.

Pattern Recognition and Analysis
Spring. 3(3-0) R: CSE 331 and MTH 314 and STT 441 or CSE 331 and MTH 314 and STT 441 R: Open to graduate students in the Department of Computer Science and Engineering or in the Department of Electrical and Computer Engineering.

Computer Vision
Fall. 3(3-0) R: CSE 331 and MTH 314 and STT 351 R: Open only to Computer Science or Electrical Engineering majors. SA: CPS 803

Distributed Systems
Spring. 3(3-0) R: CSE 410 R: Open to students in the Electrical Engineering Major or in the Computer Science Major. SA: CPS 812
Principles, paradigms, techniques used in distributed systems. Assurance techniques for distributed systems. Fault-tolerance and security issues in distributed systems. Research issues in the design and implementation of distributed systems.

Advanced VLSI Design
Spring. 3(3-0) R: CSE 410 and CSE 420 R: Open only to majors in the Department of Computer Science and Engineering or approval of department. SA: CPS 814

Formal specification languages, integrating verification with development. Design and the implementation of term project.

Advanced Computer Architecture
Fall, Spring. 3(3-0) R: MTH 472 R: Open only to majors in the Department of Computer Science and Engineering. SA: CPS 820

Instruction set architecture. Pipelining, vector processors, cache memory, high bandwidth memory design, virtual memory, input and output. Benchmarking techniques. New developments related to single CPU systems.

Parallel Computing
Fall. 3(3-0) R: CSE 420 R: Open only to Computer Science or Electrical Engineering majors. SA: CPS 824

Advanced Computer Networks and Communications
Fall. 3(3-0) R: CSE 422 R: Open only to graduate students in the Department of Computer Science and Engineering. SA: CPS 825

Advanced topics in emerging computer networking technologies, including high-speed wide area networks and local area networks, wireless and mobile computing networks, optical networks, and multimedia networking.

Computer and Network Security
Spring. 3(3-0) R: CSE 410 and CSE 422
Threat assessments, secure software, intrusions and intrusion detection.
847 Machine Learning
Spring. 3(3-0) P. CSE 841 RB: Algorithms, programming in C or equivalent, probability and statistics, artificial intelligence. R: Open only to students in the Department of Computer Science and Engineering or approval of department. Computational study of learning and data mining. Strengths and limitations of various learning paradigms, including supervised learning, learning from scalar reward, unsupervised learning, and learning with domain knowledge.

848 Evolutionary Computation
Fall of even years. 3(3-0) Interdepartmental with Electrical and Computer Engineering. Administered by Computer Science and Engineering. RB: CSE 841 and CSE 440 R: Open to graduate students in the Department of Computer Science and Engineering and open to graduate students in the Department of Electrical and Computer Engineering or approval of department. Investigation of evolutionary computation from a historical, theoretical and application viewpoint. Readings from the present literature, experiments with provided software on the application of evolutionary computation principles.

860 Foundations of Computing
Spring of even years. 3(3-0) RB: CSE 460 R: Open only to majors in the Department of Computer Science and Engineering or approval of department. SA: CPS 890 Models of computation: partial recursive functions, Turing machines, alternative models of computing. Basic theory and limitations of computability. Undecidability. Resource-bounded computational complexity, non-determinism, NP-completeness.

867 Nature and Practice of Cognitive Science
Spring. 3(3-0) Interdepartmental with Integrative Biology and Linguistics and Philosophology and Psychology. Administered by Integrative Biology. RB: Undergraduate course work in behavioral biology, cognitive psychology, philosophy, linguistics, or artificial intelligence. SA: ZOL 867 Survey of how different disciplines explore the cognitive processes underlying intelligent behavior.

870 Advanced Software Engineering
Spring. 3(3-0) RB: (CSE 470) or undergraduate software engineering course R: Open only to students in the Department of Computer Science and Engineering. Methods and techniques supporting later lifecycle activities, including software testing and maintenance, reuse, and reverse engineering. Domain-specific software engineering methods. Human-computer interfaces, distributed systems, and visualization techniques.

872 Advanced Computer Graphics
Fall. 3(3-0) RB: CSE 472 Advanced aspects of digital image generation, geometric modeling, computer animation and rendering methods.

880 Advanced Database Systems
Fall. 3(3-0) RB: CSE 480 R: Open only to majors in the Department of Computer Science and Engineering or approval of department. SA: CPS 880 Distributed and object-oriented databases and knowledgebase systems. Design theory, query optimization, and transaction processing.

881 Data Mining
Fall. 3(3-0) RB: Programming skills in C, C++, Java and Matlab. Basic knowledge in calculus, probability and statistics. Techniques and algorithms for knowledge discovery in databases, from data preprocessing and transformation to model validation and post-processing. Core concepts include association analysis, sequential pattern discovery, anomaly detection, predictive modeling, and cluster analysis. Application of data mining to various application domains.

885 Artificial Neural Networks

890 Independent Study
Fall, Spring, Summer. 1 to 3 credits. A student may earn a maximum of 6 credits in all enrollments for this course. R: Open only to Computer Science or Electrical Engineering majors. Approval of department. SA: CPS 990 Independent study of some topic, system, or language not covered in a regular course.

891 Selected Topics
Fall, Spring. 1 to 3 credits. A student may earn a maximum of 9 credits in all enrollments for this course. R: Open only to Computer Science or Electrical Engineering majors. SA: CPS 891 Selected topics in computer science of current interest and importance but not covered in a regular course.

898 Master’s Project
Spring. 3 credits. A student may earn a maximum of 6 credits in all enrollments for this course. R: Open to students in the Department of Computer Science and Engineering. Approval of department. In depth student project where the student performs original research, research replication, or survey and reporting on a topic such as system design and development, or system conversion or installation.

899 Master’s Thesis Research
Fall, Spring, Summer. 1 to 8 credits. A student may earn a maximum of 24 credits in all enrollments for this course. R: Open only to Computer Science majors. Approval of department. SA: CPS 899 Master’s thesis research.

902 Selected Topics in Recognition by Machine
Spring. 3(3-0) A student may earn a maximum of 9 credits in all enrollments for this course. RB: CSE 802 and CSE 803 R: Open only to Computer Science or Electrical Engineering majors. SA: CPS 902 Advanced topics in pattern recognition and computer vision such as Markov random fields, modeling and recognition of three dimensional objects, and integration of visual modules.

910 Selected Topics in Computer Networks and Distributed Systems
Spring of even years. 3(3-0) A student may earn a maximum of 9 credits in all enrollments for this course. RB: CSE 422 and CSE 812 R: Open only to Computer Science or Electrical Engineering majors. SA: CPS 910 Advanced topics and developments in high-bandwidth computer networks, protocol engineering, and distributed computer systems.

912 Advanced Topics in Distributed Computing Systems
Spring of odd years. 3(3-0) A student may earn a maximum of 9 credits in all enrollments for this course. RB: CSE 410 and CSE 812 Advanced topics and developments in Internet computing, distributed algorithm and operating systems, distributed middleware, high-performance distributed computing, peer-to-peer computing, security and fault tolerance of distributed systems, mobile computing, ubiquitous and pervasive computing, and distributed data management.

914 Formal Methods in Software Development
Fall. 3(3-0) A student may earn a maximum of 9 credits in all enrollments for this course. P: CSE 814 RB: Undergraduate courses in software engineering and in logic. R: Open to graduate students in the Department of Computer Science and Engineering. Current research in selected areas of software engineering such as: approaches for the incorporation of formal methods in software development; current projects using formal methods in software engineering; object-oriented analysis and development techniques; and approaches for the incorporation of user interface analysis and design in software development.

920 Selected Topics in High Performance Computer Systems
Fall, Spring. 3(3-0) A student may earn a maximum of 9 credits in all enrollments for this course. Interdepartmental with Electrical and Computer Engineering. Administered by Computer Science and Engineering. R: Open to students in the Computer Science Major or approval of department. SA: CPS 920 Design of high performance computer systems. Seminar format.

921 Advanced Topics in Digital Circuits and Systems
Fall, Spring. 3(3-0) A student may earn a maximum of 6 credits in all enrollments for this course. Interdepartmental with Electrical and Computer Engineering. Administered by Electrical and Computer Engineering. SA: EE 921 Topics vary each semester.

941 Selected Topics in Artificial Intelligence
Fall. 3(3-0) A student may earn a maximum of 9 credits in all enrollments for this course. RB: CSE 841 R: Open only to Computer Science or Electrical Engineering majors. SA: CPS 941 Topic such as second generation expert systems, human factors, natural language processing, speech understanding, neural networks, genetic algorithms and opportunistic planning.
960 **Selected Topics in Algorithms and Complexity**
Spring of odd years. 3(3-0) A student may earn a maximum of 9 credits in all enrollments for this course. RB: CSE 830 and CSE 860 R: Open only to graduate students in the Department of Computer Science and Engineering. Approval of department. SA: CPS 960
Current research in the general theory of algorithms and computational complexity.

980 **Selected Topics in Database Systems**
Spring. 3(3-0) A student may earn a maximum of 9 credits in all enrollments for this course. RB: CSE 880 R: Open only to Computer Science or Electrical Engineering majors. SA: CPS 980
Recent developments in areas such as distributed and parallel database systems, object oriented database systems, knowledgebase and expert database systems.

999 **Doctoral Dissertation Research**
Fall, Spring, Summer. 1 to 36 credits. A student may earn a maximum of 36 credits in all enrollments for this course. R: Open to graduate students in the Computer Science major. Approval of department. SA: CPS 999
Doctoral dissertation research.