MATERIALS AND ENGINEERING

Department of Chemical Engineering and Materials Science
College of Engineering

200 Materials and Society
Fall. 2(2-0) RB: High school physics and chemistry.
Material capabilities, limitations, and their utilization in the service and advancement of society. Role of materials in our day-to-day lives. Resource and environmental concerns including current material-related issues.

250 Materials Science and Engineering
Fall, Spring. 3(2-3) P: CEM 141 or CEM 151 or LB 171 SA: MSM 250
Structure of metals, ceramics and polymers. Phase diagrams, thermomechanical treatments, physical and mechanical properties, diffusion, microstructure studies, environmental effects.

260 Electronic, Magnetic, Thermal, and Optical Properties of Materials
Spring. 3(3-0) P: MSE 250 and (PHY 184 or concurrently) Not open to students with credit in MSE 350.
Processing, structures, and properties of ceramics, polymers, and composites. Electrical, thermal, magnetic and optical properties of materials. Materials selection and design.

310 Phase Equilibria in Materials
Fall. 3(3-0) P: (MSE 250 or concurrently) and ((MTH 234 or concurrently) or (MTH 254H or concurrently) or (LB 220 or concurrently)) R: Open to juniors or seniors in the College of Engineering. SA: MSE 351
Enthalpy. Entropy. Free energy. Phase changes in metal, ceramic, and polymer materials systems. Application to alloying, phase diagram determination, and electrochemistry.

320 Mechanical Properties of Materials
Fall. 3(3-0) P: (ME 222 or concurrently) and MSE 250 R: Open to juniors or seniors in the Materials Science and Engineering major or approval of department. SA: MSE 355

331 Materials Characterization Methods I
Fall. 2(1-3) R: Open to juniors or seniors in the Materials Science and Engineering major. SA: MSE 375 C: MSE 310 concurrently.
Thermal analysis. Optical and Scanning Electron Microscopy Laboratory for characterizing microstructure-property relationships. Effects of processing on microstructures, properties, and fracture surfaces in metal, ceramic and polymer systems.

360 Fundamentals of Microstructural Design
Spring. 3(3-0) P: ME 291 or MSE 310 or CHE 321 or PHY 215 RB: ((MTH 235 or concurrently) or (MTH 340 or concurrently) or (MTH 347H or concurrently) or (MTH 265H or concurrently)) and (MSE 260 or concurrently) R: Open to juniors or seniors in the Department of Chemical Engineering and Materials Science or approval of department. SA: MSE 392
Fick’s laws of diffusion. Models of solid state diffusion. Arrhenius plots. Use of non-equilibrium energy storage from solidification, phase changes, and deformation to predict and control microstructural changes and stability during processing in metal, ceramic, and polymer systems.

370 Synthesis and Processing of Materials
Spring. 3(3-0) P: (ME 201 or PHY 215 or MSE 310 or CHE 321) and MSE 250 RB: MSE 260 or concurrently R: Open to students in the Department of Chemical Engineering and Materials Science or approval of department; application required. SA: MSE 365, MSE 380
Chemical composition of materials. Powder synthesis and processing, consolidation, casting, microdevice fabrication and surface treatments, corrosion mitigation.

381 Materials Characterization Methods II
Spring. 2(1-3) P: MSE 331 and (MSE 260 or concurrently) R: Open to juniors or seniors in the Materials Science and Engineering major. SA: MSE 376 C: MSE 360 concurrently and MSE 370 concurrently.
X-ray and infrared spectroscopic analysis laboratory for the characterization of microstructure-property relationships. Effects of processing on microstructures, properties, and fracture surfaces in metal, ceramic, and polymer systems.

410 Materials Foundations for Energy Applications
Fall. 3(3-0) RB: MSE 310 or ME 201 or CHE 321 R: Open to seniors in the Department of Chemical Engineering and Materials Science. Survey of materials that enable new energy generation, storage, and distribution technologies: thermoelectric materials, electrochemistry of batteries, semiconductors for solar cells, radiation tolerant materials, processing of biobased fuels, greenhouse gas mitigation approaches

425 Biomaterials and Biocompatibility
Spring. 3(3-0) Interdepartmental with Bio-medical Engineering. Administered by Materials Science and Engineering. P: MSE 250 RB: PSL 250 R: Open to juniors or seniors in the College of Engineering. SA: BME 424, MSE 324
Materials science of human implants. Design requirements imposed by the human body, and need for bodily protection.

426 Introduction to Composite Materials
Spring. 3(3-0) Interdepartmental with Mechanical Engineering. Administered by Mechanical Engineering. P: ME 222 R: Open to seniors in the College of Engineering. SA: MSM 444

451 Spectroscopic and Diffraction Analysis of Materials
Spring. 3(2-3) P: PHY 184 or PHY 184B or PHY 234B RB: MSE 260 and MSE 381 R: Open to juniors or seniors or graduate students in the College of Engineering or in the College of Natural Science. SA: MSM 451

454 Ceramic and Refractory Materials
Fall. 3(3-0) P: MSE 260 or approval of department RB: MSE 370 and MSE 381 R: Open to seniors in the College of Engineering. SA: MSM 454
Ceramic and glassy materials. High temperature processes. Mechanical and physical properties of technical ceramics.

460 Electronic Structure and Bonding in Materials and Devices
Spring. 3(3-0) P: MSE 260 R: Open to seniors in the Department of Chemical Engineering and Materials Science or approval of department; application required. Relationship between quantum mechanics and material properties. Free electron theory. Energy bands, semiconductors. Dielectrics and ferroelectrics. Dia-, para-, ferro- and antiferro-magnetism. Superconductivity. Thermal properties.

465 Design and Application of Engineering Materials
Spring. 3(3-0) P: MSE 250 R: Open to seniors or graduate students in the College of Engineering. SA: MSM 455
Fundamental principles of strengthening: toughening, specific strength, and stiffness. Material development based on environmental, temperature, wear, damping, fatigue, and economic considerations.

466 Design and Failure Analysis (W)
Spring. 3(2-3) P: (MSE 320 and MSE 381) or approval of department) and completion of Tier I writing requirement R: Open to seniors in the College of Engineering. SA: MSM 466
Modes and causes of failure in mechanical components and role of design. Non-destructive evaluation. Legal and economic aspects of materials failure. Student projects.

476 Physical Metallurgy of Ferrous and Aluminum Alloys
Fall. 3(3-0) P: MSE 250 RB: MSE 310 R: Open only to seniors in the College of Engineering. SA: MSM 476
Heat treatment and properties of ferrous and aluminium alloys. Casting and solidification. Effects of alloying elements, high strength low alloy steels, hardenability, and case hardening. Joining of materials, such as welding.

477 Manufacturing Processes
Fall, Spring. 3(3-0) Interdepartmental with Mechanical Engineering. Administered by Mechanical Engineering. P: (ME 222 and MSE 250) and completion of Tier I writing requirement R: Open only to students in the Applied Engineering Sciences, Materials Science and Engineering, and Mechanical Engineering majors. SA: MSM 481
Fundamentals of manufacturing processes such as casting, heat treating, particulate processing, forging, machining, joining, and surface processing. Selection of manufacturing processes based on design and materials.
490 Independent Study
Fall, Spring, Summer. 1 to 3 credits. A student may earn a maximum of 6 credits in all enrollments for this course. R: Open only to juniors or seniors in the College of Engineering. Approval of department. SA: MSM 490
Individualized reading and research.

491 Selected Topics
Fall, Spring, Summer. 1 to 3 credits. A student may earn a maximum of 6 credits in all enrollments for this course. R: Open only to students in the Department of Chemical Engineering and Materials Science. SA: MSM 491
Topics of current interest in materials science or engineering.

499 Senior Research and Design Project (W)
Fall, Spring, Summer. 2 to 4 credits. A student may earn a maximum of 6 credits in all enrollments for this course. P: Completion of Tier I writing requirement. R: Open only to seniors in the Materials Science and Engineering or Applied Engineering Sciences major. Approval of department. SA: MSM 499
Design and analysis to solve materials and/or mechanics related problem. Preparation of written report, oral presentation, and defense of the project.

802 Research Methods
Fall. 3(3-0) Interdepartmental with Chemical Engineering. Administered by Chemical Engineering.
Skills required for graduate research. Critically reviewing the literature, defining a fundamental research problem, effective oral and written technical presentations, ethics, and statistics.

810 Materials for Energy Applications
Fall. 3(3-0) ME 802 or MSE 851 or CHE 821 R: Open to graduate students in the Department of Chemical Engineering and Materials Science. Not open to students with credit in MSE 410.
Enabling science and technology for new energy generation materials, storage, and distribution technologies; thermoelectric materials, electrochemistry of batteries, semiconductors for solar cells, radiation tolerant materials, processing of biobased fuels, greenhouse gas mitigation approaches

841 Advanced Spectroscopy and Diffraction Analysis of Materials
Spring. 3(2-3) RB: PHY 184 or PHY 184B or PHY 234B R: Open to graduate students in the College of Engineering. Not open to students with credit in MSE 451.

851 Thermodynamics of Solids
Fall. 3(3-0) SA: MSM 851

855 Advanced Rate Theory and Diffusion
Spring. 3(3-0) RB: MSE 851 SA: MSM 855

862 Dislocation Theory
Fall. 3(3-0) SA: MSM 862
Advanced theory of dislocations and other crystal defects in metals, ceramics, aggregates and ordered compounds. Elasticity theory of straight dislocations, dislocation strain energy, mobility, obstacle interactions, reactions, and core effects.

865 Advanced Theory of Solids
Spring. 3(3-0) SA: MSM 865

870 Electron Microscopy in Materials Science
Fall. 3(2-3) R: Open to graduate students in the Materials Science and Engineering major or approval of department. SA: MSM 870

871 Material Surfaces and Interfaces
Fall of odd years. 3(3-0) Interdepartmental with Chemical Engineering. Administered by Materials Science and Engineering. RB: CEM 392 or CEM 434 or MSE 351 R: Open only to graduate students in the Department of Chemical Engineering and Materials Science or Department of Chemistry or School of Packaging. SA: MSM 871
Physical and chemical nature of solid surfaces and their interaction with gases, liquids, and other solids. Characterization of surfaces and solid-solid interfaces. Relation of surface and interfacial structure to engineering phenomena.

875 Engineering Ceramics
Fall of odd years. 3(3-0) RB: MSE 851 SA: MSM 875
Physical properties of engineering ceramics. Transport properties of ceramics, especially in ferries and garnets. Optical ceramic materials.

876 Advanced Polymeric Materials
Fall of even years. 3(3-0) SA: MSM 876
Advanced topics in polymer structure and properties. Thermoplastics, thermosets, polyblend and elastomers. Processing techniques. Deformation and mechanical properties. Thermal, optical and chemical properties. Composites.

890 Independent Study
Fall, Spring, Summer. 1 to 3 credits. A student may earn a maximum of 6 credits in all enrollments for this course. R: Approval of department. SA: MSM 890
Individualized reading and research of student’s interest.

891 Selected Topics
Fall, Spring, Summer. 1 to 3 credits. A student may earn a maximum of 6 credits in all enrollments for this course. R: Approval of department. SA: MSM 891
Special topics of current importance in materials science or engineering.

892 Seminar
Fall, Spring. 1(0-2) A student may earn a maximum of 4 credits in all enrollments for this course. Interdepartmental with Chemical Engineering. Administered by Chemical Engineering. R: Open only to Chemical Engineering majors.
Presentations of detailed studies of one or more specialized aspects of chemical engineering and materials science.

899 Master’s Thesis Research
Fall, Spring, Summer. 1 to 8 credits. A student may earn a maximum of 24 credits in all enrollments for this course. SA: MSM 899
Master’s thesis research.

964A Anisotropic Crystalline Properties
Fall of even years. 3(3-0) RB: MSE 851

990 Independent Study
Fall, Spring, Summer. 1 to 3 credits. A student may earn a maximum of 6 credits in all enrollments for this course. R: Approval of department. SA: MSM 990
Individualized reading and research.

991 Selected Topics
Fall, Spring, Summer. 1 to 3 credits. A student may earn a maximum of 6 credits in all enrollments for this course. R: Approval of department. SA: MSM 991
Special advanced topics in materials science and engineering, and mechanics.

999 Doctoral Dissertation Research
Fall, Spring. 1 to 24 credits. A student may earn a maximum of 36 credits in all enrollments for this course. R: Open to graduate students in the Department of Chemical Engineering and Materials Science. SA: MSM 999
Doctoral dissertation research.