Mathematics—MTH

992 Special Topics in Analysis
Fall, Spring. 3 to 6 credits. A student may earn a maximum of 18 credits in all enrollments for this course. R: Approval of department.
Advanced topics in analysis.

993 Special Topics in Geometry
Fall, Spring. 3 to 6 credits. A student may earn a maximum of 18 credits in all enrollments for this course. R: Approval of department.
Advanced topics in geometry.

994 Special Topics in Applied Mathematics
Fall, Spring. 3 to 6 credits. A student may earn a maximum of 24 credits in all enrollments for this course. R: Approval of department.
Advanced topics in applied mathematics.

995 Special Topics in Numerical Analysis and Operations Research
Fall, Spring. 3 to 6 credits. A student may earn a maximum of 18 credits in all enrollments for this course. R: Approval of department.
Advanced topics in numerical analysis or operations research.

996 Special Topics in Topology
Fall, Spring. 3 to 6 credits. A student may earn a maximum of 18 credits in all enrollments for this course. R: Approval of department.
Advanced topics in topology.

997 Special Topics in Mathematics Education
Fall, Spring, Summer. 3 to 6 credits. A student may earn a maximum of 18 credits in all enrollments for this course. RB: (MTH 903 or TE 950 or CEP 913)
Advanced topics in mathematics education.

998 Special Topics in Combinatorics and Graph Theory
Fall, Spring. 3 to 6 credits. A student may earn a maximum of 18 credits in all enrollments for this course. R: Approval of department.
Advanced topics in combinatorics and graph theory.

999 Doctoral Dissertation Research
Fall, Spring. Summer. 1 to 24 credits. A student may earn a maximum of 120 credits in all enrollments for this course. R: Approval of department.
Doctoral dissertation research.

MECHANICAL ENGINEERING

Department of Mechanical Engineering
College of Engineering

180 Engineering Graphic Communications
Fall, Spring. 3(1-4) P: (MTH 116 or concurrently or LBS 117 or concurrently or MTH 132 or concurrently or MTH 152H or concurrently) or (MTH 103 and MTH 114 or concurrently) SA: MSM 160

201 Thermodynamics
Fall, Spring. 3(3-0) P: (CEM 141 or CEM 151 or CEM 181H or LBS 171) and (MTH 234 or concurrently or MTH 254H or concurrently or LBS 220 or concurrently) and (PHY 183) Not open to students with credit in CHE 321 or BE 351 or MSE 351.

220 Introduction to Solid Mechanics
Spring. 4(4-0) P: (MTH 133 or MTH 153H or LBS 119) R: Not open to students in the Civil Engineering or Engineering Arts or Engineering Mechanics or Manufacturing Engineering or Materials Science and Engineering or Mechanical Engineering major. SA: MSM 206 Not open to students with credit in ME 221 or ME 222.

221 Statics
Fall, Spring. 3(3-0) P: (PHY 183) and (MTH 234 or concurrently or LBS 220 or concurrently or MTH 254H or concurrently) SA: MSM 205
Vector description of forces and moments. Two and three dimensional equilibrium of particles and rigid bodies. Analysis of trusses, frames and machines. Coulomb friction.

222 Mechanics of Deformable Solids
Fall, Spring. 4(3-2) P: (ME 221) SA: MSM 211

285 Computer Aided Design Tools
Fall. 3(0-6) P: (ME 180) R: Open only to students in Mechanical Engineering and Engineering Arts-Product Design cognate. SA: MSM 260
Advanced 3-D solid modeling, CNC programming, and rapid prototyping.

332 Fluid Mechanics
Fall, Spring. 4(3-3) P: (ME 361) and (CHE 311 or ME 201) and (ME 391 or concurrently) and completion of Tier I writing requirement. R: Open only to juniors or seniors in Mechanical Engineering or Engineering Mechanics major.
Statics, control volume equations, similitude, and exact fluid solutions. Turbulence, pipe flow, boundary layer flow, compressible flow, and Navier-Stokes equations.

361 Dynamics
Fall, Spring. 3(3-0) P: (ME 221) and (MTH 235 or MTH 255H or LBS 220) R: Open only to students in the College of Engineering. SA: MSM 306

371 Mechanical Design I
Fall, Spring. 3(3-0) P: (ME 361 or concurrently) R: Open only to juniors or seniors in the Mechanical Engineering or Manufacturing Engineering major.
Analysis of displacement, velocity and acceleration in mechanical linkages. Kinematics and dynamics of machines.

372 Machine Tool Laboratory
Fall, Spring. 1(0-2)
Principles and practice of machine tools. Safety, terminology, measurement, and working procedures for hand and machine tools.

385 Introduction to Product Design
Spring. 3(0-6) R: Open only to students in Mechanical Engineering and Engineering Arts-Product Design cognate. SA: MSM 360
Idea generation methods, design methodology, 3-D model building, small-scale group and individual projects. Project presentations.

386 Computer Aided Product Design
Spring. 3(1-4) P: (ME 285 or concurrently and ME 385) R: Open only to students in Manufacturing Engineering and Engineering Arts-Product Design cognate. SA: MSM 361
Freeform modeling techniques. Top down product design. Use of computer tools to assist in the development of products.

391 Mechanical Engineering Analysis
Fall, Spring. 3(3-0) P: (MTH 235 or MTH 255H or LBS 220) R: Open only to juniors or seniors in the Mechanical Engineering or Bionics Engineering or Engineering Mechanics major.
Analytical and numerical methods for the modeling and analysis of mechanical engineering systems. Applications to vibrating elements, heat transfer, linear springs, and coupled spring-mass systems.

410 Heat Transfer
Fall, Spring. 3(3-0) P: (ME 332 or CE 321 or CHE 311) and (ME 391) and completion of Tier I writing requirement. R: Open only to juniors or seniors in the Mechanical Engineering or Engineering Mechanics major.
412 Heat Transfer Laboratory
Fall, Spring. 2(1-2) P: (ME 410) and completion of Tier I writing requirement. R: Open only to juniors or seniors in the Mechanical Engineering or Engineering Mechanics major.
Practices and measurement techniques for heat transfer and thermal systems. Experimental problem solving applied to heat transfer.

414 Vehicle Thermal System Design
Spring. 3(2-2). P: (ME 410) R: Open only to seniors in the Mechanical Engineering major.
Analysis and design of general heat exchange systems applied to automotive vehicle systems including heaters, air conditioning, electronic, and cabin systems. Students will work in teams to design, build, and test heat exchanger systems. A global engineering experience via the internet may be included.

416 Computer Assisted Design of Thermal Systems
Fall. 3(4-0) P: (ME 410 or concurrently) R: Open only to juniors or seniors in the Mechanical Engineering major.
Classifying, cataloging and processing design information, Modeling of thermal equipment. Simulation and optimization of thermal systems. Computer based design projects.

422 Introduction to Combustion
Fall. 3(3-0). P: (ME 332 or concurrently) R: Open only to juniors or seniors in the Mechanical Engineering major.
Thermodynamics, chemistry, fluid mechanics, and heat transfer principles applied to combustion.

423 Intermediate Mechanics of Deformable Solids
Spring. 3(3-0) P: (ME 222) R: Open only to students in the College of Engineering, SA: MSM 401

424 Computational Mechanics
Spring. 3(3-0) P: (ME 423 or ME 471) R: Open only to students in the College of Engineering, SA: MSM 402

425 Experimental Mechanics
Fall of odd years. 3(2-3) P: (ME 222) R: Open only to students in the College of Engineering, SA: MSM 405
Measurement of stress, strain, vibration, and motion using strain gauges, accelerometers, photoelasticity, holography, Moire patterns, laser speckle and electronic imaging. Transducer design.

426 Introduction to Composite Materials
Spring. 3(3-0) Interdepartmental with Materials Science and Engineering. Administered by Department of Chemical Engineering and Materials Science. P: (ME 222) R: Open only to juniors or seniors in the College of Engineering, SA: MSM 444

432 Intermediate Fluid Mechanics
Spring. 3(3-0) P: (ME 332) R: Open only to juniors or seniors in the Mechanical Engineering or Engineering Mechanics major.
Deformable control volumes, Navier-Stokes equations, vorticity and circulation. Exact solutions. Turbulence, boundary layer flows, compressible flows.

440 Aerospace Engineering Fundamentals
Fall. 3(3-0) P: (ME 332 or concurrently) R: Open only to juniors or seniors in the Mechanical Engineering or Engineering Mechanics major.
Aerodynamics, propulsion and flight mechanics. Vehicle and propulsion engine performance and design characteristics.

442 Turbomachinery
Spring. 3(3-0) P: (ME 332) R: Open only to juniors or seniors in the Mechanical Engineering major.
Applying energy, momentum, and continuity equations of thermo-fluids to turbomachinery. Blade geometry and aerodynamics. Performance and design parameters. Turbomachinery design.

444 Automotive Engines
Fall. 3(3-0) P: (ME 410 or concurrently) R: Open only to juniors or seniors in the Mechanical Engineering major.
Design and development of internal and external combustion engines for vehicular propulsion.

445 Automotive Powertrain Design
Spring. 3(3-0) P: (ME 444) R: Open only to juniors or seniors in the Mechanical Engineering major.
Design of powertrain systems including piston ring assembly, combustion and induction systems, and transmissions. Performance emission tradeoffs with emphasis on emission control. Detailed design study required.

451 Control Systems
Fall, Spring. 4(3-3) P: (ME 361 and ECE 345) and completion of Tier I writing requirement. R: Open only to juniors or seniors in the Mechanical Engineering or Engineering Mechanics major.

456 Mechatronic System Design
Fall. 3(2-3) P: (ECE 345 and ME 451 or concurrently) R: Open only to juniors or seniors in the Mechanical Engineering major.
Application of integrated microcontrollers to the design of mechatronic systems. Design of software and hardware for systems with mechanical, electrical and fluid components plus embedded control systems. Laboratory exercises and design projects. Application to automotive, consumer and commercial systems.

457 Mechatronic System Modeling and Simulation
Spring. 3(3-0) P: (ECE 345 and MSM 306) R: Open only to juniors or seniors in the Mechanical Engineering major and to students in the Master of Science degree in Industrial Mathematics.
Modeling and simulation of mechatronic systems, including mechanical, electrical, fluid, power, and other effects. Transducer modeling, including pumps, motors, and valves. Application to automotive systems.

ME—Mechanical Engineering

461 Mechanical Vibrations
Fall, Spring. 4(3-3) P: (ME 451) and completion of Tier I writing requirement. R: Open only to juniors or seniors in the Mechanical Engineering or Engineering Mechanics major.
Modeling and analysis of oscillatory phenomena found in linear discrete and continuous mechanical systems.

464 Intermediate Dynamics
Fall of even years. 3(3-0) P: (ME 361) R: Open only to students in the College of Engineering, SA: MSM 403

465 Computer Aided Optimal Design
Fall. 3(3-0) P: (ME 471 or concurrently) R: Open only to juniors or seniors in the Mechanical Engineering major.

471 Mechanical Design II
Fall. 3(3-0) P: (ME 371) and (ME 391) and (MSM 211) R: Open only to juniors or seniors in the Mechanical Engineering major.
Engineering design of machine elements and mechanical systems. Computer based analysis in support of design. Design for static and fatigue strength, deflection and reliability.

475 Computer Aided Design of Structures
Spring. 3(2-2) P: (ME 471 or concurrently) R: Open only to seniors in the Mechanical Engineering major.
Computational methods for analysis, design, and optimization of structural components. Basic concepts in geometric modeling, finite element analysis, and structural optimization.

477 Manufacturing Processes
Fall. 3(3-0) Interdepartmental with Materials Science and Engineering. P: (ME 222 and MSE 250) and completion of Tier I writing requirement. R: Open only to students in the Engineering Arts, Engineering Mechanics, Manufacturing Engineering and Materials Science and Engineering majors. SA: MSM 481
Fundamentals of manufacturing processes such as casting, heat treating, plastic processing, forming, machining, joining and surface processing. Selection of manufacturing processes based on design and materials.

478 Product Development
Spring. 3(3-0) P: (ME 361 and ME 477) and completion of Tier I writing requirement. SA: MSM 482
Simulation of industrial environment for product development. Product concept, design and manufacturing.

481 Mechanical Engineering Design Projects
Fall, Spring. 3(1-6) P: (ME 410) and (ME 471) and completion of Tier I writing requirement. R: Open only to juniors or seniors in the Mechanical Engineering major.
Mechanical Engineering—ME

490 Independent Study in Mechanical Engineering
Fall, Spring. Summer. 1 to 4 credits. A student may earn a maximum of 6 credits in all enrollments for this course. R: Open only to juniors or seniors in the Department of Mechanical Engineering. Approval of department.

491 Selected Topics in Mechanical Engineering
Fall, Spring. 1 to 4 credits. A student may earn a maximum of 8 credits in all enrollments for this course. R: Open only to juniors or seniors in the Department of Mechanical Engineering. Approval of department.

492 Senior Research and Design Project (W)
Fall, Spring. Summer. 2 to 4 credits. A student may earn a maximum of 6 credits in all enrollments for this course. R: Completion of Tier I writing requirement. R: Open only to seniors in the Engineering Mechanics or Engineering Arts major. Approval of department.

495 Tissue Mechanics
Spring. 3(2-2) Interdepartmental with Biomedical Engineering. P: (ME 361) R: Open only to students in the Engineering Mechanics major.

496 Biodynamics
Fall. 3(2-2) Interdepartmental with Biomedical Engineering. P: (ME 361) R: Open only to juniors or seniors in the College of Engineering. Fundamentals of motion analysis of human movement and its application to the study of function and dysfunction of the musculoskeletal system. Solution methods of the inverse dynamics problem.

497 Biomechanical Design
Spring. 3(3-0) Interdepartmental with Biomedical Engineering. R: Open only to juniors or seniors in the College of Engineering. Biomechanical product design with application to people or animals. Synthesis, prototyping, and analysis of designs. Project management. Market research.

800 Engineering Analysis
Fall. 3(3-0)

801 Advanced Classical Thermodynamics
Fall. 3(3-0) R: (ME 391 and ME 411) Postbaccalaureate treatment of the laws of thermodynamics. Equilibrium and maximum entropy postulates. Principles for general systems.

804 Micro-Scale Fluid Mechanics and Heat Transfer
Spring of odd years. 3(3-0) RB: (ME 332 and ME 410)

820 Continuum Mechanics
Fall. 3(3-0) SA: MSM 810 Mathematical theory of continuum mechanics, stress principles, kinematics of deformation and motion, fundamental laws and equations. Applications in linear elasticity and classical fluids.

841 Turbulence Modeling and Simulation
Fall of odd years. 3(3-0) R: (ME 410) and (ME 830 or ME 814) Spring of even years. 3(3-0) RB: (ME 821) and (ME 830 or ME 814) Numerical simulation. Reynolds-averaged simulation. Direct calculations of turbulent flows. Current status of modeling and simulation of turbulent flows. Direct numerical simulation. Reynolds-averaged simulations. Large eddy simulation. Probability density function methods in turbulence.

832 Fluid Mechanics II
Fall of odd years. 3(3-0) R: (ME 410) and (ME 830 or ME 814) Spring of even years. 3(3-0) R: Open only to graduate students in the College of Engineering or approval of department. SA: MSM 810 Basic turbulence theory. Transport equations for calculations of turbulent flows. Current status of modeling and simulation of turbulent flows. Direct numerical simulation. Reynolds-averaged simulations. Large eddy simulation. Probability density function methods in turbulence.

835 Turbulence Modeling and Simulation
Fall of even years. 3(3-0) R: (ME 830) Familiarity with graduate-level fluid mechanics and mathematics.

836 Experimental Methods in Fluid Mechanics
Fall of even years. 3(1-4)

840 Computational Fluid Dynamics and Heat Transfer
Spring. 3(3-0) RB: (ME 410) and (ME 830 or ME 814) Programming experience. Theory and application of finite difference and finite volume methods to selected fluid mechanics and heat transfer models including the full potential flow model, the systems of Euler and Navier-Stokes equations, and turbulence. Grid generation techniques.
842 Advanced Turbomachinery
Spring of even years. 3(3-0) RB: (ME 442)
R: Open only to seniors and graduate students in Mechanical Engineering and Chemical Engineering.
Application of energy, momentum, continuity and heat transfer equations to energy transfer and transformation in turbomachinery.

852 Intermediate Control Systems
Spring. 3(3-0) RB: (ME 451)

855 Digital Data Acquisition and Control
Spring of odd years. 3(2-3) RB: (ME 451)
Real-time digital measurement and control programming for mechanical engineering systems. Analog-to-digital and digital-to-analog converters, timer/counters, and instrument interfaces. Open-loop and closed-loop control. Laboratory projects.

859 Nonlinear Control
Spring. 3(3-0) Interdepartmental with Electrical and Computer Engineering. Administered by Department of Electrical and Computer Engineering. RB: (ECE 826 and ME 857) SA: ECE 827

860 Theory of Vibrations
Fall. 3(3-0)

861 Advanced Dynamics
Fall. 3(3-0) SA: MSM 801
Dynamics of systems of particles and rigid bodies. Energy and momentum principles. Lagrangian and Hamiltonian methods. Euler angles. Applications in system dynamics and vibrations.

863 Nonlinear Vibrations
Spring of even years. 3(3-0) RB: (ME 461)

872 Finite Element Method
Fall. Spring. 3(3-0) Interdepartmental with Civil Engineering, SA: AE 809, MSM 809
Theory and application of the finite element method to the solution of continuum type problems in heat transfer, fluid mechanics, and stress analysis.

874 Analysis of Metal Forming and Manufacturing Processes
Fall of odd years. 3(3-0) RB: (ME 471 and MSM 809 and MSM 817 and MSM 810)
Review of fundamental knowledge in mechanics, materials and numerical analysis. Modeling, simulation and analysis of metal forming and manufacturing processes.

875 Optimal Design of Mechanical Systems
Spring of odd years. 3(3-0) RB: (ME 461)

891 Selected Topics in Mechanical Engineering
Fall. Spring, 1 to 4 credits. A student may earn a maximum of 6 credits in all enrollments for this course. R: Approval of department.
Special topics in mechanical engineering of current importance.

898 Master’s Project Research
Fall. Spring, Summer. 1 to 3 credits. A student may earn a maximum of 7 credits in all enrollments for this course. R: Open only to master's students in the Mechanical Engineering major. Approval of department.
Master's degree Plan B individual student project: original research, research replication, or survey and reporting on a topic such as system design and development, or system conversion of installation.

899 Master's Thesis Research
Fall. Spring, Summer. 1 to 8 credits. A student may earn a maximum of 24 credits in all enrollments for this course.
Master's thesis research.

921 Nonlinear Elasticity
Fall of odd years. 3(3-0) RB: (ME 821) SA: MSM 915

922 Thermoelasticity and Viscoelasticity
Spring of even years. 3(3-0) RB: (ME 820 and MTH 443) SA: MSM 918

925 Optical Methods of Measurement
Fall of even years. 3(2-3) R: Approval of department. SA: MSM 905
Measurement of dimension, position, motion, strain, using optical methods including holography, speckle interferometry, Moire, photoelasticity, laser Doppler, electronic imaging, model analysis. Relevant optics theory.

940 Selected Topics in Thermal Science
Spring, 1 to 3 credits. A student may earn a maximum of 12 credits in all enrollments for this course. RB: (ME 812 and ME 814 and ME 816): R: Open only to Mechanical Engineering majors.

941 Advanced Computational Fluid Dynamics and Heat Transfer
Fall of even years. 3(3-0) P: (ME 840)
High-resolution methods such as total variation diminishing and essentially non-oscillatory, for hyperbolic conservation laws. Unstructured grid generation methods and finite element methods on these grids. Convergence acceleration methods for steady problems and basic concepts in parallel computing.

960 Selected Topics in Vibrations
Fall. 1 to 3 credits. A student may earn a maximum of 6 credits in all enrollments for this course. RB: (ME 860)
Current topics of interest to the student and faculty.

961 Nonlinear Dynamics and Chaos
Fall of even years. 3(3-0) RB: (ME 857 or ME 860 or EDE 826 or MTH 441)
Qualitative theory of dynamical systems applied to physical system models. Bifurcation theory for continuous and discrete-time systems, chaos, the Smale horseshoe, Melnikov's method, and nonlinear data analysis.

990 Independent Study in Mechanical Engineering
Fall, Spring, Summer. 1 to 3 credits. A student may earn a maximum of 6 credits in all enrollments for this course.
Individualized study of a current problem in mechanical engineering.

999 Doctoral Dissertation Research
Fall, Spring, Summer. 1 to 24 credits. A student may earn a maximum of 72 credits in all enrollments for this course.
Doctoral dissertation research.

MT—Medical Technology

Medical Technology Program
College of Natural Science

120 Learning in the Biomedical Sciences
Fall. 1 credit. Not open to students with credit in NSC 201 or NSC 202.

150 Preview of Biomedical Research
Spring. 1(1-0) Interdepartmental with Natural Science.
Exploration of biomedical research careers. Biomedical research in the United States: funding, safety, regulatory agencies, ethics, experimental design, trouble-shooting, and data interpretation.

204 Mechanisms of Disease
Spring, 3(3-0) P: (BS 111 or LBS 145)
Pathophysiological mechanisms of diseases. Selected applications to organ system pathology.