Mathematics—MTH

999 Doctoral Dissertation Research
Fall, Spring, Summer. 1 to 24 credits. A student may earn a maximum of 120 credits in all enrollments for this course. R: Approval of department.
Doctoral dissertation research.

MECHANICAL ENGINEERING—ME

Department of Mechanical Engineering
College of Engineering

180 Engineering Graphic Communications
Fall, Spring. 3(4-0) P:M: (MTH 116 or concurrently or LBS 117 or concurrently or MTH 132 or concurrently or MTH 152H or concurrently) or (MTH 103 and MTH 114 or concurrently) SA: MSM 180

210 Thermodynamics
Fall, Spring. 3(3-0) P:M: (CEM 141 or CEM 151 or CEM 181H or LBS 165) and (MTH 234 or concurrently or MTH 254H or concurrently or LBS 220 or concurrently) Not open to students with credit in CHE 321 or LBS 351 or BE 351.

220 Introduction to Solid Mechanics
Spring. 4(4-0) P:M: (MTH 133 or MTH 152H or LBS 119) R: Not open to students in the Civil Engineering or Engineering Arts or Engineering Mechanics or Manufacturing Engineering or Materials Science and Engineering or Mechanical Engineering major. SA: MSM 205
Statics: moment and force resultants, equilibrium. Mechanics of deformable bodies: stress and strain, classification of material behavior, generalized Hooke’s law. Engineering applications: axial loads, torsion of circular rods and tubes, bending and shear stresses in beams, deflection of beams, combined stresses, stress and strain transformation.

221 Statics
Fall, Spring. 3(3-0) P:M: (MTH 132 or MTH 152H or LBS 118) SA: MSM 205
Vector description of forces and moments. Two and three dimensional equilibrium of particles and rigid bodies. Analysis of trusses, frames and machines. Coulomb friction.

222 Mechanics of Deformable Solids
Fall, Spring. 3(3-2) P:M: (MTH 221) and (MTH 133 or concurrently or MTH 152H or concurrently or LBS 119 or concurrently) SA: MSM 211

285 Computer Aided Design Tools
Spring. 3(1-4) P:M: (ME 180) R: Open only to students in Manufacturing Engineering and Engineering Arts-Product Design cognate. SA: MSM 260
Advanced 3-D solid modeling, CNC programming, and rapid prototyping.

332 Fluid Mechanics
Fall, Spring. 4(3-3) P:M: (MSM 306) and (CHE 311 and ME 201 and MSM 351) and (ME 391 or concurrently) R: Open only to juniors or seniors in the Mechanical Engineering or Engineering Mechanics major.
Statics, control volume equations, similitude, exact fluid solutions. Turbulence, pipe flow, boundary layer flow, compressible flow, and Navier-Stokes equations.

361 Dynamics
Fall, Spring. 3(3-0) P:M: (ME 221) and (MTH 235 or MTH 255H or LBS 220) R: Open only to students in the College of Engineering or Engineering Arts-Product Design cognate. SA: MSM 360

371 Mechanical Design I
Fall, Spring. 3(3-0) P:M: (MSM 306 or concurrently) R: Open only to juniors or seniors in the Mechanical Engineering or Manufacturing Engineering major.
Analysis of displacement, velocity and acceleration in mechanical linkages. Kinematics and dynamics of machines.

385 Introduction to Product Design
Fall. 3(1-4) P:M: (STA 110) R: Open only to students in Manufacturing Engineering and Engineering Arts-Product Design cognate. SA: MSM 380
Idea method, design methodology, 3-D model building, small-scale group and individual projects. Project presentations.

386 Computer Aided Product Design
Spring. 3(1-4) P:M: (ME 285 or concurrently and ME 385) R: Open only to students in Manufacturing Engineering and Engineering Arts-Product Design cognate. SA: MSM 386
Freeform modeling techniques. Top down product design. Use of computer tools to assist in the development of products.

391 Mechanical Engineering Analysis
Fall, Spring. 3(3-0) P:M: (MTH 235 or MTH 255H or LBS 220) R: Open only to juniors or seniors in the Mechanical Engineering or Biosystems Engineering or Engineering Mechanics major.
Analytical and numerical methods for the modeling and analysis of mechanical engineering systems. Applications to vibrating elements, heat transfer, linear springs, and coupled spring-mass systems.

410 Heat Transfer
Fall, Spring. 3(3-0) P:M: (ME 332 or CE 321 or CHE 311) and (ME 391) and completion of Tier I writing requirement. R: Open only to juniors or seniors in the Mechanical Engineering or Engineering Mechanics major.

412 Heat Transfer Laboratory
Fall, Spring. 2(1-2) P:M: (ME 410) and completion of Tier I writing requirement. R: Open only to juniors or seniors in the Mechanical Engineering or Engineering Mechanics major.
Practices and measurement techniques for heat transfer and thermal systems. Experimental problem solving applied to heat transfer.

414 Vehicle Thermal System Design
Spring. 3(2-2) P:M: (ME 410) R: Open only to seniors in the Mechanical Engineering major.
Analysis and design of general heat exchange systems applied to automotive vehicle systems including heaters, air conditioning, electronic, and cabin systems. Students will work in teams to design, build, and test heat exchanger systems. A global engineering experience via the internet may be included.

416 Computer Assisted Design of Thermal Systems
Fall. 3(4-0) P:M: (ME 410 or concurrently) R: Open only to seniors in the Mechanical Engineering major.
Classifying, cataloging and processing design information. Modeling of thermal equipment. Simulation and optimization of thermal systems. Computer based design projects.

422 Introduction to Combustion
Fall. 3(3-0) P:M: (ME 332 or concurrently) R: Open only to juniors or seniors in the Mechanical Engineering major.
Thermodynamics, chemistry, fluid mechanics, and heat transfer principles applied to combustion.

423 Intermediate Mechanics of Deformable Solids
Fall. 3(3-0) P:M: (ME 222) R: Open only to students in the College of Engineering. SA: MSM 401

424 Computational Mechanics
Spring. 3(3-0) P:M: (ME 423 or ME 471) R: Open only to students in the College of Engineering. SA: MSM 402

425 Experimental Mechanics
Fall of odd years. 3(2-3) P:M: (ME 222) R: Open only to students in the College of Engineering. SA: MSM 405
Measurement of stress, strain, vibration, and motion using strain gauges, accelerometers, photoelasticity, holography, Moiré patterns, laser speckle and electronic imaging. Transducer design.

426 Introduction to Composite Materials
Spring. 3(3-0) Interdepartmental with Materials Science and Engineering. Administered by Department of Chemical Engineering and Materials Science. P:M: (ME 222) R: Open only to students in the Department of Chemical Engineering and Materials Science. SA: MSM 444
432 Intermediate Fluid Mechanics
Spring. 3(3-0) P:M: (ME 332) R: Open only to juniors or seniors in the Mechanical Engineering or Engineering Mechanics major. Deformable control volumes, Navier-Stokes equations, vorticity and circulation. Exact solutions. Turbulence, boundary layer flows, compressible flows.

440 Aerospace Engineering Fundamentals
Fall. 3(3-0) P:M: (ME 332 or concurrently) R: Open only to juniors or seniors in the Mechanical Engineering or Engineering Mechanics major. Aerodynamics, propulsion and flight mechanics. Vehicle and propulsion engine performance and design characteristics.

442 Turbomachinery
Spring. 3(3-0) P:M: (ME 332) R: Open only to juniors or seniors in the Mechanical Engineering major. Applying energy, momentum, and continuity equations of thermo-fluids to turbomachinery. Blade geometry and aerodynamics. Performance and design parameters. Turbomachine design.

444 Automotive Engines
Fall. 3(3-0) P:M: (ME 410 or concurrently) R: Open only to juniors or seniors in the Mechanical Engineering major. Design and development of internal and external combustion engines for vehicular propulsion.

445 Automotive Powertrain Design
Spring. 3(3-0) P:M: (ME 444) R: Open only to juniors or seniors in the Mechanical Engineering major. Design of powertrain systems including piston ring assembly, combustion and induction systems, and transmissions. Performance emission tradeoffs with emphasis on emission control. Detailed design study required.

451 Control Systems
Fall, Spring. 4(3-3) P:M: (MSM 306 and ECE 345) and completion of Tier I writing requirement. R: Open only to juniors or seniors in the Mechanical Engineering or Engineering Mechanics major. Mathematical modeling of dynamic systems. Standard feedback control formulation. Transient and sinusoidal steady state analysis. Time and frequency domain controller synthesis.

456 Mechatronic System Design
Fall. 3(2-3) P:M: (ECE 345 and ME 451 or concurrently) R: Open only to juniors or seniors in the Mechanical Engineering major. Application of imbedded microcontrollers to the design of mechatronic systems. Design of software and hardware for systems with mechanical, electrical and fluid components plus imbedded control systems. Laboratory exercises and design projects. Application to automotive, consumer and commercial systems.

457 Mechatronic System Modeling and Simulation
Spring. 3(3-0) P:M: (ECE 345 and MSM 306) R: Open only to juniors or seniors in the Mechanical Engineering major and to students in the Master of Science degree in Industrial Mathematics. Modeling and simulation of mechatronic systems, including mechanical, electrical, fluid, power, and other effects. Transducer modeling, including pumps, motors, and valves. Application to automotive systems.

461 Mechanical Vibrations
Fall, Spring. 4(3-3) P:M: (ME 451) and completion of Tier I writing requirement. R: Open only to juniors or seniors in the Mechanical Engineering or Engineering Mechanics major. Modeling and analysis of oscillatory phenomena found in linear discrete and continuous mechanical systems.

464 Intermediate Dynamics
Fall of even years. 3(3-0) P:M: (ME 361) R: Open only to students in the College of Engineering. SA: MSM 403 Kinematics and kinetics of particle and rigid body systems. Virtual work, Lagrangian method, and Euler equations. Basic vibrations of discrete and continuous systems. Elementary wave propagation.

465 Computer Aided Optimal Design
Fall. 3(3-0) P:M: (ME 471 or concurrently) R: Open only to juniors or seniors in the Mechanical Engineering major. Modeling for mechanical design optimization. Algorithms for constrained and unconstrained optimization. Optimality criteria. Optimization using finite element models. Design projects.

471 Mechanical Design II
Fall, Spring. 3(3-0) P:M: (ME 371) and (ME 391) and (MSM 211) R: Open only to juniors or seniors in the Mechanical Engineering major. Design of machine elements and mechanical systems. Computer based analysis in support of design. Design for static and fatigue strength, deflection and reliability.

475 Computer Aided Design of Automotive Structures
Spring. 3(2-2) P:M: (ME 471 or concurrently) R: Open only to seniors in the Mechanical Engineering major. Computational methods for analysis, design, and optimization of automotive structural components. Basic concepts in geometric modeling, finite element analysis, and structural optimization.

477 Manufacturing Processes
Fall. 3(3-0) Interdepartmental with Materials Science and Engineering. P:M: (ME 222 and MSE 250) and completion of Tier I writing requirement. R: Open only to students in the Engineering Arts, Engineering Mechanics, Manufacturing Engineering and Materials Science and Engineering majors. SA: MSM 481 Fundamentals of manufacturing processes such as casting, heat treating, particulate processing, forming, machining, joining and surface processing. Selection of manufacturing processes based on design and materials.

478 Product Development
Spring. 3(3-0) P:M: (ME 361 and ME 477) and completion of Tier I writing requirement. SA: MSM 482 Simulation of industrial environment for product development. Product concept, design and manufacturing.

481 Mechanical Engineering Design Projects
Fall. Spring. 3(1-6) P:M: (ME 410) and (ME 471) and completion of Tier I writing requirement. R: Open only to juniors or seniors in the Mechanical Engineering major. Application of design concepts in mechanical engineering. Problem definition, design specifications. Modeling and analysis methods. Design optimization, economics, reliability. Manufacturing considerations in design. Capstone design projects.

490 Independent Study in Mechanical Engineering
Fall, Spring. 1 to 4 credits. A student may earn a maximum of 6 credits in all enrollments for this course. R: Open only to juniors or seniors in the Department of Mechanical Engineering. Approval of department.

491 Selected Topics in Mechanical Engineering
Fall, Spring. 1 to 4 credits. A student may earn a maximum of 8 credits in all enrollments for this course. R: Open only to seniors in the Department of Mechanical Engineering. Approval of department. Topics selected to supplement and enrich existing courses.

492 Senior Research and Design Project (W)
Fall, Spring. Summer. 2 to 4 credits. A student may earn a maximum of 6 credits in all enrollments for this course. P:M: Completion of Tier I writing requirement. R: Open only to juniors or seniors in the Engineering Mechanics or Engineering Arts major. Approval of department. Design and analysis to solve mechanics related problem. Preparation of written report, oral presentation, and defense of the project.

495 Tissue Mechanics
Spring, 3(3-0) Interdepartmental with Biomedical Engineering. P:M: (ME 222) SA: MSM 441 Application of solid mechanics to understanding mechanical responses of biological tissues. Microstructure and biological function for soft and hard connective tissues and muscle.

496 Biodynamics
Fall. 3(2-2) Interdepartmental with Biomedical Engineering. P:M: (ME 361) R: Open only to students in the Engineering Mechanics major. Fundamentals of motion analysis of human movement and its application to the study of function and dysfunction of the musculoskeletal system. Solution methods of the inverse dynamics problem.
Mechanical Engineering—ME

497 Biomechanical Design
Spring, 3(3-0) Interdepartmental with Biomedical Engineering. R: Open only to juniors or seniors in the College of Engineering. SA: BME 491A, MSM 445
Biomechanical product design with application to people or animals. Synthesis, prototyping, and analysis of designs. Project management. Market research.

802 Advanced Classical Thermodynamics
Fall, 3(3-0) RB: (ME 391 and ME 411)

804 Micro-Scale Fluid Mechanics and Heat Transfer
Spring of odd years, 3(3-0) RB: (ME361 and ME332 and ME410)

812 Conductive Heat Transfer
Fall, 3(3-0) RB: (ME 391 and ME 411)

814 Convective Heat Transfer
Spring, 3(3-0)
Analysis of convective transfer of heat, mass and momentum in boundary layers and ducts. Thermal instability. Free convection.

820 Continuum Mechanics
Fall, 3(3-0) SA: MSM 810
Mathematical tools of continuum mechanics, stress principles, kinematics of deformation and motion, fundamental laws and equations. Applications in linear elasticity and classical fluids.

821 Linear Elasticity
Spring, 3(3-0) RB: (ME 820) SA: MSM 813

822 Combustion
Spring, 3(3-1) RB: (ME 490 and ME 802)
Thermodynamics and chemical kinetics. Multicomponent systems. Premixed and diffusion flames, flame radiation.

823 Fracture Mechanics and Fatigue
Spring of even years, 3(3-0) RB: (ME 821) SA: MSM 816

824 Plasticity
Spring, 3(3-0) RB: (ME 821) SA: MSM 817
Yield conditions, stress-strain relations, plastic potential, hardening theories, torsion, bending. Thick walled shells under internal pressure. Limit analysis. Slip line theory.

825 Experimental Mechanics
Spring, 3(2-3) R: Approval of department. SA: MSM 805

826 Laminated Composite Materials
Fall of even years. 3(3-0) A student may earn a maximum of 6 credits in all enrollments for this course. P.M. (ME 820) SA: MSM 814
Fundamentals of anisotropic elasticity and their application to laminated composite plates. Unique states of deformation, stress, and failure not encountered in isotropic, homogeneous materials.

827 Energy Methods in Mechanics
Spring of even years. 3(3-0) RB: (ME 821) SA: MSM 820

828 Advanced Strength of Materials
Spring of odd years. 3(3-0) SA: MSM 815
General theory of torsion, nonsymmetric bending, transverse shear, thin-walled beams, beams on elastic foundations, thick-walled cylinders. Basic contact mechanics. Failure criteria for solids.

829 Micromechanics of Materials
Fall of odd years. 3(3-0) P-M: (MSE 870) SA: MSM 818
Micropotential analysis of cellular solids, polycrystals and composite materials. Homogenization techniques for finding effective properties of inhomogeneous materials.

830 Fluid Mechanics I
Fall, 3(3-0)
Integral and differential conservation laws, Navier-Stokes’ equations, and exact solutions. Laminar boundary layer theory, similarity solutions, and approximate methods. Thermal effects and instability phenomena.

832 Fluid Mechanics II
Spring of even years. 3(3-0) RB: (ME 830 and MTH 425)

834 Fundamentals of Turbulence
Fall of odd years. 3(3-0)

836 Experimental Methods in Fluid Mechanics
Fall of even years. 3(1-4)
Modern techniques of fluid mechanics measurement and data analysis. Pressure, temperature and velocity measurement techniques. Optical diagnostics.

840 Computational Fluid Dynamics and Heat Transfer
Spring, 3(3-0) RB: (ME 410) and (ME 830 or ME 814) and programming experience.
Theory and application of finite difference and finite volume methods to selected fluid mechanics and heat transfer models including the full potential flow model, the systems of Euler and Navier-Stokes equations, and turbulence. Grid generation techniques.

842 Advanced Turbomachinery
Spring of even years. 3(3-0) RB: (ME 442) R: Open only to seniors and graduate students in Mechanical Engineering and Chemical Engineering.
Application of energy, momentum, continuity and heat transfer equations to energy transfer and transformation in turbomachinery.

852 Intermediate Control Systems
Spring, 3(3-0) RB: (ME 451)

855 Digital Data Acquisition and Control
Spring of odd years. 3(2-3) RB: (ME 451)
Real-time digital measurement and control programming for mechanical engineering systems. Analog-to-digital and digital-to-analog converters, timer/counters, and instrument interfaces. Open-loop and closed-loop control. Laboratory projects.

857 Modeling and Simulation of Dynamic Systems
Fall, 3(3-0) RB: (ME 451)

860 Theory of Vibrations
Fall, 3(3-0)

861 Advanced Dynamics
Fall, 3(3-0) SA: MSM 801
Dynamics of systems of particles and rigid bodies. Energy and momentum principles. Lagrangian and Hamiltonian methods. Euler angles. Applications in system dynamics and vibrations.

863 Nonlinear Vibrations
Spring of even years. 3(3-0) RB: (ME 461) Perturbation methods. Weakly nonlinear partial and ordinary differential equations. Modal interactions, internal tuning, saturation, sub/super/combination resonances, jump phenomenon. Nonlinear normal modes.

872 Finite Element Method
Fall, Spring, 3(3-0) Interdepartmental with Civil Engineering. SA: AE 809, MSM 809
Theory and application of the finite element method to the solution of continuum type problems in heat transfer, fluid mechanics, and stress analysis.