893. Special Problems
Fall, Winter, Spring, Summer. 3(3-0)
May enroll for a maximum of 9 credits. Approval of department.

899. Master's Thesis Research
Fall, Winter, Spring, Summer. Variable credit. Approval of department.

912. Advanced Chemical Engineering Thermodynamics II
Spring of even-numbered years. 3(3-0)
Approval of department.
Relation of thermodynamics to quantum theory and statistical mechanics. Computation of chemical engineering thermodynamic data from spectrometric measurements. Irreversible thermodynamics.

918. Advanced Chemical Reaction Engineering II
Fall of odd-numbered years. 3(3-0)
Approval of department.
Quantitative treatment of current literature in chemical kinetics and reaction engineering.

999. Doctoral Dissertation Research
Fall, Winter, Spring, Summer. Variable credit. Approval of department.

CHEMISTRY

College of Natural Science

Chemical Engineering CEM

111. Advanced Chemical Engineering Thermodynamics I
Fall, 3(3-0) CHE 311, CHE 411. CEM 361
Advanced treatment of the laws of thermodynamics. Cryogenic processes. Corresponding state and higher parameters in computing properties of chemical compounds and solutions.

117. Advanced Chemical Reaction Engineering I
Spring, 3(3-0) CHE 428.

826. Flow of Heat I
Spring, 3(3-0) CHE 343.
Steady and unsteady state heat transfer. Conduction and convection in flow and non-flow systems.

831. Advanced Distillation
Winter, 3(3-0) CHE 343.

832. Advanced Absorption and Extraction
Spring, 3(3-0) CHE 343.

850. Fluid Flow and Rheology
Fall, 3(3-0) CHE 451 or approval of department.
Application of fluid dynamics to chemical engineering systems. Balance principles for fluids; Navier-Stokes and non-Newtonian behavior; theory and practice of laminar and turbulent flows; stability.

851. Mass Transfer
Winter, 3(3-0) CHE 550.
Formulation of component material balances; Fick's first and second laws; convective mass transfer; multicomponent flows; boundary layer theory and interfacial mass transfer for laminar and turbulent flows.

851. Seminar
Fall, Winter, Spring. 1(0-2) May enroll for a maximum of 6 credits.
Detailed library investigation of one or more specialized aspects of chemical engineering, such as recent theoretical developments in one of the unit operations; presentations of these studies to a seminar group. Participation generally required each term of residence.

856. Selected Topics in Chemical Engineering
Fall, Winter, Spring, Summer. 3(3-0)
May enroll for a maximum of 9 credits if a different topic is taken. A newly developing area of chemical engineering selected by the department for offering each term. Information on the specific topic to be covered should be obtained from the department office before registration.

114B. Chemical Principles
Fall, Winter, Spring, Summer. Fall 4(4-0); Winter, Spring, Summer. 4 credits. Self-scheduled instruction only. MTH 108 or MTH 111 or concurrently; CEM 140 or satisfactory chemistry placement test score.
Chemical principles for students in biological, health-related, and agricultural disciplines.

142. Descriptive Inorganic Chemistry
Fall, Winter, Spring, Summer. 3(3-0) CEM 141A or CEM 141B or CEM 152.
Reactions and behavior of inorganic compounds illustrated in part by industrial and environmental applications.

143. Introductory Organic Chemistry
Fall, Winter, Spring. 4(3-3) CEM 141A or CEM 141B or CEM 152.
Chemistry of carbon compounds. The chemistry of the main organic functional groups is described and illustrated with applications to everyday life, industry and environmental applications. Students with credit in an honors chemistry placement test score.

151. Principles of Chemistry I
Fall, Winter, Spring, Summer. 4(4-0) MTH 108 or MTH 111 or concurrently; CEM 151 or CEM 141A or CEM 141B or CEM 152.
Continuation of CEM 151. Chemical thermodynamics; kinetics; acids, bases, and aqueous equilibria; electrochemistry.

152. Principles of Chemistry II
Fall, Winter, Spring, Summer. 3(3-0) MTH 112 or concurrently; CEM 152 or CEM 141A or CEM 141B or CEM 152.
Continuation of CEM 152. Descriptive inorganic chemistry with further discussion of bonding.

161. Introductory Chemistry Laboratory
Fall, Winter, Spring, Summer. 1(0-3) CEM 140 or CEM 141A or CEM 141B or concurrently. Laboratory work in chemistry, including quantitative physical and analytical experiments and chemical synthesis.

162. Quantitative Analysis
Fall, Winter, Spring, Summer. 3(3-0) CEM 141A or CEM 141B or CEM 151 or CEM 152 or CEM 181H; CEM 151 or CEM 181H.
Laboratory work in quantitative chemistry.

163. Introductory Inorganic Laboratory
Spring, 2(0-4) CEM 142 or CEM 153 or concurrently; CEM 151.
Qualitative analysis and inorganic preparations.

151H. Honors Chemistry I—Principles
Fall, 4(4-0) An average in high school chemistry, physics and mathematics; MTH 112 or MTH 125 concurrently. Results of examination during orientation; approval of department.
Subatomic, atomic and molecular structure; quantum theory and bonding; experimental methods of structural determination; states of matter; nuclear chemistry.
182H. Honors Chemistry II—Principles
Winter. 4(4-0) CEM 181H with grade of 3.0 or better and/or approval of department. MTH 113 or MTH 123 concurrently.
Kinetic theory of gases, thermodynamics, chemical equilibrium, electrochemistry, chemical kinetics, properties of solutions, macromolecular chemistry.

183H. Honors Chemistry III—Inorganic Chemistry
Spring. 3(3-0) CEM 182I with grade of 3.0 or better and an approval of department.
Descriptive inorganic chemistry by periodic groups of elements. Nomenclature, bonding, stereochemistry, and properties of compounds of the representative and transition elements.

184H. Honors Chemistry Laboratory I
Fall. 1(0-3) CEM 181H concurrently; approval of department.
Techniques of measurement; errors and significant figures; experiments related to atomic and molecular structure.

185H. Honors Chemistry Laboratory II
Winter. 2(0-6) CEM 184H; CEM 182I concurrently; approval of department.
Experiments related to gas behavior, thermodynamics, electrochemistry, chemical kinetics and properties of solutions.

186H. Honors Chemistry Laboratory III
Spring. 2(0-6) Approval of department.
Introductory independent laboratory work in chemistry.

241. Organic Chemistry
Fall, Winter, Summer. 4(4-0) CEM 141A or CEM 141B or CEM 152 or CEM 181H; CEM 161 or CEM 184H.
Common classes of organic compounds with emphasis on nomenclature, structural principles, reactions and reaction mechanisms.

242. Organic Chemistry
Winter, Spring. 4(4-0) CEM 241.
Continuation of CEM 241 with emphasis on polyfunctional compounds, particularly groups of compounds having biological significance.

243. Organic Chemistry Laboratory
Fall, Winter; 1(0-3) Summer; 1(0-2); CEM 241 or concurrently.
Introduction to standard organic laboratory techniques.

244. Organic Chemistry Laboratory
Winter, Spring. 3(3-0) CEM 241, CEM 243, CEM 242 concurrently.
Organic preparations and qualitative analysis.

245. Organic Chemistry
Fall, Spring. 4(4-0) CEM 242.
Selected topics of organic chemistry, especially compounds of biological interest, discussed with emphasis on mechanisms and stereochemistry. Topics include polymers, amino acids, proteins, sugars, terpenes, steroids, and alkaloids.

333. Instrumental Methods
Spring. 4(2-6) CEM 143 or CEM 241 or CEM 351; CEM 162.
Principles, applications of separation and instrumental analysis. Atomic emission, absorption, fluorescence spectrometry; UV, visible, IR spectroscopy; molecular fluorescence; gas and other chromatography; electroanalytical chemistry; electrophoresis; radiochemistry.

351. Organic Chemistry
Fall. 3(4-0) CEM 152 or CEM 182I.
A comprehensive introduction to the fundamentals of organic chemistry designed for chemistry majors but open to others who desire a rigorous, modern treatment of the subject.

352. Organic Chemistry
Winter. 3(4-0) CEM 351.
Continuation of CEM 351.

353. Organic Chemistry
Spring. 3(4-0) CEM 352.
Continuation of CEM 352.

354. Organic Chemistry Laboratory
Winter. 2(0-6) CEM 183 or CEM 185I; CEM 241 or CEM 351.
Introduction to modern organic laboratory techniques.

355. Organic Chemistry Laboratory
Spring. 3(6-0) CEM 352, CEM 354.
Application of modern organic laboratory techniques to organic synthesis and analysis.

356. Organic Chemistry Laboratory
Fall. 2(0-6) CEM 355.
Advanced organic syntheses, qualitative organic analysis, and practical literature searching.

361. Chemical Thermodynamics
Fall. 3(4-0) One year general chemistry; one year general physics; MTH 215.

382. Analytical-Physical Chemistry I
Winter. 3(4-0) CEM 361.
Applications of thermodynamics. Activity coefficients, ionic solutions. cell potentials, ionic equilibria in acid-base, complexation, solubility and redox equilibrium. phase equilibrium, distillation, extraction, chromatography.

363. Analytical-Physical Chemistry II
Spring. 3(4-0) CEM 362.
Chemical kinetics. Homogeneous kinetics, reaction mechanisms, temperature dependence of reaction rates, transport process, heterogeneous kinetics, electrode kinetics, X-ray diffraction, crystal structure.

372. Analytical-Physical Chemistry Laboratory I
Winter. 2(1-3) CEM 162; CEM 353, or CEM 361.
Electrodes and chemical instrumentation; spectroscopy, optical methods and lasers.

373. Analytical-Physical Chemistry Laboratory II
Spring. 2(1-3) CEM 372.
Instrumental measurements. Electrode potentials, chromatography, spectrophotometry, electrolytic conductance, solution kinetics.

383. Physical Chemistry: Introductory
Fall, Summer. 3(4-0) CEM 143 or CEM 241 or CEM 343 or CEM 351.
Classical and chemical thermodynamics. Introduction to the laws and their applications in treating chemical reactions, pure substances, ideal and non-ideal mixtures, and colligative properties.

384. Physical Chemistry: Introductory
Spring. 3(4-0) CEM 363.
Atomic and molecular structure. Atomic and molecular orbitals and chemical bonding. Rotational, vibrational and electronic spectra, nuclear magnetic resonance and electron spin resonance.

400H. Honors Work
Fall, Winter, Spring. 1 to 3 credits. May enroll for a maximum of 18 credits. Satisfactory performance in an honors course is required.
Assigned reading and investigation in chemistry under the supervision of the staff. The program will include some creative work.

411. Inorganic Chemistry
Fall. 3(6-0) CEM 385 or CEM 383.
Principles of structure and bonding in inorganic chemistry, crystal symmetry, coordination chemistry, solvent systems, hydrogen bonding, bonding and selected examples from the chemistry of various elements.

412. Inorganic Chemistry II
Winter. 3(3-0) CEM 411.
Inorganic chemistry viewed in a variety of examples of reactions, structure, mechanisms, etc., from representative main group elements and transition elements.

413. Problems and Reports
Fall, Winter, Spring. 1 to 8 credits. May enroll for a maximum of 8 credits.
Approval of department.

430. Introduction to Radioactivity and Radiotisotope Techniques
Spring. 3(0-3) One year each of general college chemistry and physics. Interdepartmental with and administered by Physics.
Elementary nuclear processes and properties with emphasis on radioactivity, its measurement, and its interaction with matter. Effects of radiation on chemical and biological systems. Applications of nuclear technology, safety and environmental factors. Fundamentals of nuclear models, reactions and decay mechanisms. Basic principles of nuclear reactors and accelerators.

431. Laboratory for Radioactivity and Radiotisotope Techniques
Spring. 1(0-3) CEM 161, PHY 430, concurrently. CEM 162 recommended. Interdepartmental with and administered by Physics.
Introduction to nuclear instrumentation. Experimental techniques for application of radioisotopes to problems in chemistry, the life sciences, and industry.

461. Theoretical Chemistry I
Fall. 3(4-0) One year general chemistry; one year general physics; MTH 215.
Quantum chemistry, Wave properties, postulates of quantum mechanics, molecular orbitals, electronic spectra, molecular orbitals, nuclear structure, molecules, valence bond and molecular-orbital theories, molecular structures, complex molecules.

462. Theoretical Chemistry II
Winter. 3(4-0) CEM 381, CEM 481.
Spectroscopy and molecular structure. Electronic, infrared, Raman, and microwave spectroscopy, magnetic susceptibility and magnetic resonance, statistical mechanics, statistical thermodynamics, kinetic theory of gases, absolute rate theory.
835. Spectroscopic Analysis
Fall, Winter, Spring. 3(3-0) Approval of department.
Principles and applications of atomic absorption, emission, fluorescence, and spark emission spectroscopy; UV, visible, IR, and NMR spectroscopy; molecular spectroscopy; reaction rate methods; molecular fluorescence; phosphorescence spectroscopy; other optical spectrometric methods.

836. Separations
Spring. 3(3-0) Approval of department.
Physical and chemical methods of separation.

838. Selected Topics in Inorganic Chemistry
Fall, Winter, Spring. 3(3-0) May reenroll for a maximum of 9 credits if different topic is taken.
Rare earth elements, recent advances in the chemistry of metals or nonmetals, high-temperature chemistry. Coordination chemistry and nonaqueous solvents.

918. Seminar in Inorganic Chemistry
Fall, Winter, Spring. 1(2-0) May reenroll for a maximum of 3 credits. Discussions of recent advances and reports by graduate students on research problems.

924. Selected Topics in Analytical Chemistry
Fall, Winter. 3(3-0) May reenroll for a maximum of 9 credits if different topic is taken.
Among topics which may be discussed are: advances in electroanalytical chemistry or spectroscopy; nonaqueous solvents; complexation equilibria; surface chemistry; analytical chemistry of polymers.

956. Selected Topics in Organic Chemistry
Fall, Winter. 3(3-0) May reenroll for a maximum of 12 credits if different topic is taken. Approval of department.
Topics may be selected from heterocyclic chemistry, natural products, free radicals, coordination chemistry, organic sulfur or nitrogen compounds, acidity functions, isotope effects, photochemistry and others.

958. Seminar in Organic Chemistry
Fall, Winter. 1(2-0) May reenroll for a maximum of 6 credits.
Discussions of recent advances and reports by graduate students on research problems.

985. Statistical Thermodynamics
Fall, Winter. 3(3-0) May reenroll for a maximum of 9 credits if different topic is taken. Approval of department.

986. Selected Topics in Physical Chemistry
Fall, Winter. 3(3-0) May reenroll for a maximum of 9 credits if different topic is taken. Approval of department.
Mathematical preparation for quantum chemistry. Selected topics as: kinetics and photochemistry, macromolecular and surface chemistry, molecular spectroscopy, electro and magnetic properties of matter, application of statistical mechanics to chemical problems.

995. Seminar in Physical Chemistry
Fall, Winter. 3(3-0) May reenroll for a maximum of 9 credits if different topic is taken. Approval of department.
Topics may be selected from the interpretation of the spectra of molecules, advanced molecular structure, magnetic resonance, spectroscopy, X-rays, and crystal structure, statistical mechanics.
991. Selected Topics in Quantum Chemistry
Fall, Winter. 3(3-0) May enroll for a maximum of 6 credits if different topic is taken. Approval of department.
Principles of quantum mechanics and applications to chemical problems. Selected topics from spectroscopy, properties of atoms and molecules in electric and magnetic fields, and theories of molecular electronic structure.

998. Seminar in Physical Chemistry
Fall, Winter, Spring. 1(1-0) May enroll for a maximum of 5 credits. Discussions of recent advances and reports by graduate students on research problems.

999. Doctoral Dissertation Research
Fall, Winter, Spring, Summer. Variable credit. Approval of department.
Research in analytical, inorganic, organic, and physical chemistry.

CHINESE
See Linguistics and Germanic, Slavic, Asian and African Languages.

CIVIL AND ENVIRONMENTAL ENGINEERING

(Name change effective July 1, 1985. Formerly the Department of Civil and Sanitary Engineering.)

College of Engineering

Civil Engineering

C E

251. Elementary Surveying
Fall, Spring. 4(3-3) Not open to majors.
Use of the tape, compass, level, and transit with simple maps; traverse closure and area computations. Profile, cross section and stadia surveys. U.S. land system.

252. Surveying I
Fall, Spring. 5(4-3) Engineering majors or approval of department.
Instruments, theory of measurements, error analysis, stadia, horizontal and vertical curves, U.S. Public Land System, observation for meridian.

259. Introduction to Environmental Engineering
Fall, Winter, Spring. 4(4-0) CEM 141A, or CEN 151; MTH 112, CPS 119 or CPS 251.
Hydrology; ground water and surface water supply systems; wastewater treatment, methods of pollution control for solid wastes, air, and noise.

305. Structural Analysis I
Fall, Winter. 3(3-0) MMB 211.
Stability and determinacy; linearity, Plane trusses; shear and bending in beams and frames. Virtual work calculation of forces and displacements in statically-determinate plane structures.

306. Structural Analysis II
Winter, Spring. 3(3-0) C E 305.

308. Engineering Materials I
Fall, Winter, Spring. 4(3-3) MMB 211 or concurrently.
Structure; composition; physical, mechanical and rheological properties of non-metallic construction materials. Emphasis on aggregates, asphalt, inorganic cements, concrete, and wood.

312. Soil Mechanics
Winter, Spring, Summer. 4(3-3) MMB 211.
Engineering properties of soils and their measurement. Effective stress concept; permeability; fluid flow in soils; stress-strain behavior; soil strength; composition and consolidation of soils; field exploration and design problems.

321. Introductory Fluid Mechanics
Fall, Winter. 4(3-3) MTH 300.
Fluid properties; hydrostatics; control volume approach to conservation of mass, momentum and energy; dimensional analysis and dynamic similitude; fluid resistance, pipe and open channel flows; boundary layer concepts.

346. Transportation
Winter, Spring, Summer. 4(4-0) MTH 113.
Planning, design, and evaluation of transportation systems; highway, street, and intersection capacity; basic elements of geometric design.

347. Geometric Design of Highways
Fall, Winter. 4(3-3) C E 346 or concurrently.
Geometric design of streets and highways as related to capacity, construction costs, and safety. State and national design standards and practice.

370. Cost and Optimization Engineering
Fall, Winter. 3(3-0) MTH 113.
Formulation of engineering decisions governed by current and future costs and returns. Comparison and optimization of alternative engineering projects, products and processes.

372. Construction Estimating
Fall, Spring. 3(3-0) Juniors.
Cost studies of construction activities with emphasis on labor productivity and operating characteristics of equipment under various site conditions. Interpretation of drawings and specifications.

374. Legal Aspects of Engineering
Spring. 3(3-0) Juniors.
The professional engineer's relationship with the legal aspects of engineering. Special emphasis on contract documents.

380. Civil Engineering Analysis
Fall, Spring. 3(3-0) MTH 310, CPS 112.
Analysis of civil engineering problems by numerical methods. Use of microcomputers to analyze problems. Technical reports to present methods and computed results.

392. Civil Engineering Fundamentals for Planners
Winter. 4(4-0) Junior Urban Planning and Landscape Architecture majors.
Site planning; utility systems; subdivision review including street design, grading, density, and costs; transportation planning; and project evaluation.

400. Structural Mechanics I
Fall. 4(4-0) C E 306, C E 390.
Miscellaneous topics in displacement calculation by virtual work. Matrix formulation of the general principles of framed structural analysis. Exhaustive study of the flexibility and stiffness methods.

405. Structural Design in Steel
Fall, Winter. 4(4-0) C E 306 or concurrently, C E 390.
Beams, columns, tension and compression members, connections. Elastic, plastic and ultimate strength concepts.

406. Structural Design in Concrete
Winter, Spring. 4(4-0) C E 306, C E 308, C E 390.

407. Structural Design Concepts
Spring. 3(3-0) C E 405, C E 406.
Develop and expand design concepts through study, investigation and project design of various structural systems. Criteria for material selection and creative design of unusual structural systems pursued.

410. Structural Mechanics II
Winter. 4(4-0) C E 400, CPS 112.
Continuation of C E 400. Matrix analysis of framed structures with extensive use of computer programs.

418. Foundation Engineering
Fall, Spring. 3(3-0) C E 312, C E 390.
Bearing capacity and settlement of shallow foundations; analysis and design of single piles and pile groups; stress distribution in soil mass; site investigation, data evaluation for field and laboratory tests.

419. Stability of Soil Masses
Winter. 3(3-0) C E 312, C E 390.
Stability of natural and cut slopes; design of embankments and fills; soil placement and compaction; seepage through soil masses; slope stabilization techniques; lateral earth pressures, retaining walls, and braced excavations.

421. Hydrology I
Fall. 4(3-2) C E 280, C E 321, C E 380.
Engineering hydrology; frequency and precipitation analysis; streamflow analysis and the unit hydrograph; flood prediction; rainfall-runoff correlations; urban hydrology.

422. Open Channel Flow I
Winter. 3(3-2) C E 321 or M E 333, C E 390 or M E 351.
Fundamentals of free surface flow; steady uniform and nonuniform concepts; energy and momentum principles, subcritical and supercritical regimes; gradually and rapidly varied flows; design applications; laboratory assignments.