Foundations of Mathematics II
Winter of odd-numbered years. 3(3-0)

MTH 571.

- Continuation of MTH 571.

Foundations of Mathematics III
Spring of odd-numbered years. 3(3-0)

MTH 571.

- Continuation of MTH 571.

Foundations of Applied Mathematics I
Fall. 3(3-0) MTH 426 or MTH 423

- Introduction to the mathematical theory of classical applied mathematics; properties and postulates of various theories such as ideal fluids and linear elasticity; derivation of field equations; formulation of initial and boundary value problems.

Foundations of Applied Mathematics II
Winter. 3(3-0) MTH 881

- Continuation of MTH 881.

Foundations of Applied Mathematics III
Spring. 3(3-0) MTH 882

- Continuation of MTH 882.

Fluid Dynamics I
Fall of even-numbered years. 3(3-0)

MTH 426 or MTH 425 or approval of department.

- Derivation of the equations of fluid mechanics. Comparison of formulations, techniques and results in the basic disciplines of potential, viscous and gas dynamic flows.

Fluid Dynamics II
Winter of odd-numbered years. 3(3-0)

MTH 884.

- Continuation of MTH 884.

Partial Differential Equations I
Fall. 3(3-0) MTH 334, MTH 423, MTH 426.

- Cauchy-Kowalewski theorem; classification, characteristics, normal forms; general theory of first order equations; potential theory.

Partial Differential Equations II
Winter. 3(3-0) MTH 886.

- Elliptic type equations; Green's Neumann's and Kernel functions; boundary value problems and integral equations; hyperbolic equations, geometry of characteristics, Riemann's functions.

Partial Differential Equations III
Spring. 3(3-0) MTH 887.

- Continuation of hyperbolic equations; application of functional analysis to existence theorems, theory of Leray and Schauder.

Reading in Mathematics
Fall, Winter, Spring, Summer. 1 to 6 credits. May reenroll for a maximum of 36 credits. Approval of department.

Master's Thesis Research
Fall, Winter, Spring, Summer. Variable credit. Approval of department.

Approximation Theory I
Fall of odd-numbered years. 3(3-0)

MTH 820 or approval of department.

- The technique of approximating functions, polynomials, rational functions and general linear families; the Unicity problem; degree of approximation; Bernstein Polynomials; Remez algorithm, uniform approximation with constraints.

Approximation Theory II
Winter of even-numbered years. 3(3-0)

MTH 821.

- Continuation of MTH 821. Generalized methods of measuring error: Approximation in Lp and Lq norms, least-square approximation and orthogonal functions; spline functions; approximation in normed linear spaces.

Approximation Theory III
Spring of even-numbered years. 3(3-0)

MTH 822.

- Continuation of MTH 822.

Algebraic Topology I
Fall. 3(3-0) MTH 834, MTH 862.

- Simplicial and singular homotopy theory, Eilenberg-Steenrod axioms, chain complexes, cell complexes, applications to Euclidean spaces.

Algebraic Topology II
Winter. 3(3-0) MTH 964.

- Continuation of MTH 964 including category and functor theory, general coefficient and cohomology theory.

Algebraic Topology III
Spring. 3(3-0) MTH 865.

- Continuation of MTH 965 including homology groups of products, Eilenberg-Zilber theorems, cohomology products, differential topology.

Advanced Topics in Geometry
Fall, Winter, Spring, Summer. 1 to 6 credits. May reenroll for a maximum of 36 credits. Approval of department.

Advanced Topics in Analysis
Fall, Winter, Spring, Summer. 1 to 6 credits. May reenroll for a maximum of 36 credits. Approval of department.

Advanced Topics in Algebra
Fall, Winter, Spring, Summer. 1 to 6 credits. May reenroll for a maximum of 36 credits. Approval of department.

Advanced Topics in Applied Mathematics
Fall, Winter, Spring, Summer. 1 to 6 credits. May reenroll for a maximum of 36 credits. Approval of department.

Mechanical Engineering

College of Engineering

201. **The Science of Sound I: Rock, Bach and Oscillators (N)**

- Winter. 4(4-0) Interdepartmental with and administered by Physics.

202. The Science of Sound II
Spring. 3(3-0) or 4(4-0) PHY 201.
Interdepartmental with Physics.
Nature, generation, and propagation of sound.
Acoustical phenomenon and measurements.
Storage and manipulation of sound in numerical form.
Music programming.

303. Thermal-Fluid Phenomena
Winter. 3(3-0) MMM 301, MTH 113.
Concepts and principles used to describe, predict, or explain thermal and fluid-flow phenomena.
Constraints, approximations, engineering problem solving. Application to socio-technical questions.

304. Technology and Utilization of Energy
(306.) Spring. 3(3-0) M E 306.
Problems of energy technology and its impact: energy sources, conversions, waste and environmental effects, future outlook.

311. Thermodynamics I
Fall, Winter, Spring. 3(3-0) MTH 215 or concurrently.
Zeros, first and second laws of thermodynamics, general energy equations. Process relations. Concepts of equilibrium, reversibility, and irreversibility. Applications of these to systems describable by two independent properties.

312. Thermodynamics II
Winter. Spring. 3(3-0) M E 311.
Continuation of M E 311. Gas and vapor relations, reactive and non-reactive mixtures. Thermodynamic principle as applied to gas and vapor power and refrigeration cycles for reciprocating and turbo machinery.

320. Kinematics of Machines I
Fall, Spring, Summer. 4(3-3) MMM 306 or concurrently.
Analysis of displacement, velocity, and acceleration in mechanical linkages, cam analysis and design, analysis of spur, helical, bevel, and worm gears, including planetary systems.

332. Fluid Mechanics I
Winter. Spring. 4(3-0) M E 311; M E 351 or concurrently; MMM 206.
Fluid states; Bernoulli equation; nondeformable control volume applied to conservation of mass, momentum and energy; derivation of differential equations of continuity and momentum; similarity.

333. Fluid Mechanics II
Fall, Spring, Summer. 4(3-3) M E 332.
Fluid flow phenomena; laminar flow, turbulent flow, pipe flow, inviscid flows; boundary layers; external flow; an introduction to compressible flow.

347. Thermosciences and Energy Systems Laboratory
Winter, Spring. 10(1-0) M E 312 or concurrently.
Properties of pure substances; first law energy balances and second law analyses applied to a pump, turbine, refrigeration and combustion process.

351. Mechanical Engineering Analysis
Fall, Winter, Spring. Summer. 4(4-0) CPS 120 or concurrently, MTH 310.
Application of analytical and numerical methods to the solution of problems encountered in mechanical engineering.

352. Introduction to Systems and Control
Winter, Spring. 4(4-0) MMM 306, E E 345.
Modeling of a variety of physical systems, using state-variable concepts. Time and frequency response of low-order linear systems. Primary applications to mechanics and hydraulics.

406. Automotive Engines
Spring. 3(2-3) M E 312.
Analysis of internal combustion engines for vehicular propulsion.

407. Automotive Vehicles
Fall. 3(3-0) MMM 306.
Analysis of the propulsion, braking, steering, and suspension requirements.

410. Thermomechanical Continua
Fall. 3(3-0) MMM 311.
Reexamination of the continuum concept in the modeling of the deformation of solids and the flow of fluids. Cartesian tensor formulation of the basic physical laws involving stress and strain.

411. Heat Transfer I
Fall, Summer. 3(3-0) M E 311.
Analysis of steady state and transient heat conduction; numerical solutions. Radiative transfer; principles and applications including radiation networks. Gaseous radiation exchange.

412. Heat Transfer II
Winter, Spring. 3(3-0) M E 333.
Natural and forced convection based on boundary layer theory. Heat transfer in fluids with phase change. Heat exchangers, mass transfer.

414. Energy Conversion
Fall. 3(3-0) M E 312.
Fundamental principles of energy conversion systems. Direct energy conversion. Thermoelectric, thermionic, nuclear, fuel cells, magnetohydrodynamic, and other methods of power generation.

415. Solar Energy Conversion
Fall, 4(4-0) M E 311 or approval of department.

416. Statistical Thermodynamics
(313.) Spring. 3(3-0) M E 311.

421. Mechanical Design
Fall, Winter. 3(3-0) MMM 211.
Introduction to design, the design process, design considerations and design procedures. Application of design principles to mechanical elements.

422. Mechanical Design Projects
Winter, Spring. 3(3-0) M E 421.
Application of design concepts, such as optimization, economics and reliability, through several projects drawn from the basic areas of mechanical engineering (thermodynamics, heat transfer, fluid and solid mechanics).

424. Dynamics of Machines
Winter. 3(3-0) M E 330.
Analysis of static and dynamic forces in mechanical linkages; balancing of rotating and reciprocating machinery; flywheel requirements, gyroscopic forces, critical speeds.

432. Aerospace Engineering I
Fall. 3(3-0) M E 333.
Fundamentals of fluid mechanics, potential flows about bodies and airfoils, compressible flow, perturbation methods, viscous flow, boundary layers on airfoils, transition, turbulence, separation, aerodynamics of wings and bodies.

433. Aerospace Engineering II
(417.) Winter. 3(3-0) M E 333.
Thermodynamics and fluid mechanics will be used to study rockets, turbojets, reciprocating engines, propellers, turboprops, and turbosfans; a specific propulsion system will be designed.

434. Aerospace Engineering III
(471.) Spring. 3(3-0) MMM 306.
Particle and rigid body dynamics; orbit theory; aerodynamic forces; propulsion; longitudinal, directional, and lateral stability and control; range; payload; a specific vehicle will be designed.

436. Cooling Processes
Winter. 3(3-0) M E 312.
Thermodynamic principles applied to the design of cooling systems in range of normal temperatures to ultra-low cryogenic temperature conditions. Psychrometric principles as applied to air conditioning and evaporating systems.

446. Mechanical Engineering Measurements Laboratory
(346.) Fall, Winter. 2(1-3) E E 345, M E 332, M E 333, M E 411 or concurrently.
Mechanical engineering experiments including accuracy, data reduction, and the measurement of pressure, velocity, temperature, heat flow and vibration.

455. Mechanical Vibrations
Fall, Winter. 4(4-0) MMM 306.
Oscillatory phenomena for linear systems with one and two degrees of freedom, nonlinear systems, time varying systems with determinate excitation and time invariant systems with non-deterministic excitations.

458. Control Theory
Winter, Spring. 4(4-0) M E 352.
Closed-loop control systems; application of transfer function analysis; design for a definite degree of stability; on-and-off controllers.

463. Computer-Aided Design I
Winter. 3(2-2) CPS 120, MTH 334.
Three-dimensional transformations, perspectives, contour surface layout for design and manufacturing, an introduction to finite element applications.

464. Computer-Aided Design II
Spring. 3(2-0) M E 455, M E 463 and approval of department.
Modal analysis of dynamic systems; identification of modal characteristics from input-output data; computer techniques including graphics, eigenvalue and Fourier transform computations.
Descriptions — Mechanical Engineering

490. Special Topics
Fall, Winter, Spring, Summer. 1 to 4 credits. May reenroll for a maximum of 8 credits. Approval of department.
Special topics in mechanical engineering of current interest and importance.

499. Independent Study
Fall, Winter, Spring, Summer. 1 to 6 credits. May reenroll for a maximum of 8 credits. Approval of department.

810. Intermediate Heat/Mass Transfer
Fall. 4(4-0) Approval of department.

813. Convective Heat Transfer
Winter. 3(3-0) M E 412; MTH 431.
Analysis of convective transfer of heat and momentum in boundary layers and induced flows. Heat transfer with phase change of fluids.

814. Radiative Heat Transfer
Spring. 3(3-0) Approval of department.

815. Advanced Classical Thermodynamics
Winter. 3(3-0) M E 312; MTH 422 or MTH 424.

817. Conductive Heat Transfer
Fall. 3(3-0) M E 411, M E 351.

823. Theory of Vibrations I
Fall. 4(4-0) M E 455. Interdepartmental with the Department of Metallurgy, Mechanics, and Materials Science.
Discrete and continuous parameter systems with linear and nonlinear characteristics. Variational principles; equations of motion. Matrices, quadratic forms; self-adjoint operators; eigenvalues. Transient and random excitations. Theory developed through physical problems.

826. Kinematics of Machines II
Fall. 3(3-0) M E 320.

827. Machine Design III
Spring. 3(3-0) M E 421.
Strain energy method for analyzing statically indeterminate machine members. Theories of failure, fatigue, use of statistics in selection of tolerances for parts in mass production. Optimun design.

828. Machine Design IV
Winter. 3(3-0) M E 421.
Application of design theory to the synthesis of complete mechanical and hydraulic systems. Stress waves due to impact loading. Critical speed.

829. Fluid Transients
Spring. of odd numbered years. 4(4-0) C E 825 or approval of department. Interdepartmental with and administered by Civil Engineering.
Application of unsteady flow concepts and wave mechanics to hydraulic engineering; method of characteristics; surges and waterhammer in piping systems; unsteady open channel flow; oscillatory waves; similitude and models.

830. Intermediate Fluid Mechanics
Fall. 3(3-0) M E 332 or E 331.
Interdepartmental with Civil Engineering. Deformable control volumes, Navier-Stokes equations, dimensionless variables, vorticity and circulation, turbulent flow, inviscid flow, and boundary layer theory.

832. Refrigeration
Spring. 3(3-0) M E 436.
Characteristics of refrigerants; application details pertaining to comfort cooling, food refrigeration, and ultra-low temperature units; refrigeration controls, and control systems.

841. Advanced Gas Dynamics
Fall. 3(3-0) M E 433; MTH 422 or MTH 431.
Interdepartmental with Civil Engineering. Compressible subsonic and supersonic flow, shock waves, boundary layers, similarity solutions, maximum entropy, perturbation theory, similarity rules, methods of measurement, method of characteristics, hodograph methods.

842. Inviscid Fluids
Fall. 3(3-0) MMM 810; MTH 322 or MTH 433.
Numerical methods. Applications to aeronautics, aerospace and underwater technology.

843. Turbulence
Winter, Summer. 4(4-0) MTH 810. May reenroll for a maximum of 8 credits. Approval of department.
Basic equations of turbulent motions including momentum, kinetic energy, scalar contaminants, correlation and spectrum functions. Basic elements of statistical descriptions, isotropic and shear flows, phenomenological theories and hot-wire anemometry.

851. Modeling of Engineering Systems I
Fall. 3(3-0) M E 458 or E 415. Interdepartmental with Systems Science.
Modeling of engineering components and dynamic systems; mechanical, electrical, fluid, thermal, and transducer effects; Linear state-space responses, impedance methods. Simulation of linear models. Design project.

852. Modeling of Engineering Systems II
Winter. 3(3-0) M E 851. Interdepartmental with Systems Science.

853. Finite Dimensional Dynamical Systems
Spring. 3(3-0) M E 853 or SYS 828 or approval of department.
Transition matrices and matrix exponentials, periodicity and reducibility; controllability and observability, weighting patterns, realizations and minimal realizations, least squares theory, free and fixed endpoint problems, canonical equations, conjugate and focal points.

854. Optimization Theory and Applications
Fall. 4(4-0) MTH 424 or approval of department.
Formulation of optimization problems; projection methods and least squares theory; elementary fundamentals of calculus of variations; techniques applied to problems in dynamics, optimization of airoil shapes, and fuel consumption.

870. Wave Motion in Continuous Media I
Winter. of odd numbered years. 4(4-0) MTH 422, MMM 810 or approval of department.

890. Special Topics
Fall, Winter, Spring. 2 to 4 credits. May reenroll for a maximum of 9 credits. Approval of department.
Special topics in mechanical engineering of current interest and importance.

899. Master’s Thesis Research
Fall, Winter, Spring. Variable credit. Approval of department.

917. Advanced Heat Conduction
Winter. 3(3-0) M E 817 or CHE 826 or MTH 841.
Exact analytical techniques including use of Green’s function and integral transforms; approximate numerical methods; phase change problems; ablation; inverse heat conduction problems.

920. Theory of Vibrations II
Winter of odd-numbered years. 4(4-0) MTH 422; M E 823 or approval of department. Interdepartmental with and administered by the Department of Metallurgy, Mechanics, and Materials Science.

925. Mechanical Engineering Problems
Fall, Winter, Spring. 3(3-0) M E 851 or approval of department.
Analysis of advanced engineering problems involving design, thermodynamics, fluid dynamics, gas dynamics, space.
970. Wave Motion in Continuous Media II
Spring of even-numbered years. 4(4-0) M E 870 or approval of instructor. Continuation of M E 870.

999. Doctoral Dissertation Research
Fall, Winter, Spring, Summer. Variable credit. Approval of department.

MEDICAL TECHNOLOGY M T

College of Natural Science

110. Clinical Laboratory Science and Health Care Delivery
Fall. 2(2-0)
The history and definition of medical technology, its diagnostic and therapeutic role in healthcare delivery, and its relationship to other allied health professions.

210. Exploration of the Disciplines of the Clinical Laboratory Sciences
Spring. 2(2-0) Sophomores in medical technology. Clinical laboratory disciplines including hematology, immunohematology, chemistry, microbiology, cytology, and histology through an examination of laboratory testing and its roles in the assessment, prevention, monitoring of health state.

410. General Pathology
Spring. 3(3-0) ANT 316; PSL 432 or concurrently. Interdepartmental with the Department of Pathology. The history and definition of medical technology, its diagnostic and therapeutic role in healthcare delivery, and its relationship to other allied health professions.

411. Basic Histopathology
Spring. 2(2-1) ANT 320, PSL 432; M T 410 or concurrently. Interdepartmental with the Department of Pathology. Microscopic examination of cell injury and death, inflammation and tissue repair. Pathologic tissue changes in diseases resulting from degenerative changes, abnormal metabolism, neoplasia, immunologic processes, infection, mechanical trauma and malnutrition.

420. Hematology
Winter, Summer. 3(3-0) BCH 401, PSL 432. Physiology, pathophysiology and laboratory assessment of hematological states.

421. Hematology Laboratory
Winter, Summer. 3(0-4) M T 420 or concurrently. Laboratory techniques in hematology. Normal and abnormal blood cell morphology.

430. Immunohematology
Fall, Spring. 3(3-0) MPH 462. Genetics and immunology pertinent to blood group systems, antibody identification, and compatibility testing. Common practices of transfusion centers. Clinical correlations related to transfusion reactions and to hemolytic disease of the newborn.

431. Immunohematology Laboratory
Fall, Spring. 2(0-4) M T 430 or concurrently. Techniques relevant to practice of immunohematology. Special emphasis on blood typing, antibody screening and identification, compatibility testing, prenatal and postnatal testing, quality assurance and problem solving.

440. Clinical Microscopy and Hemostasis
Winter, Summer. 2(2-0) FSL 432, BCH 401. Renal physiology pertinent to the physical, chemical, and microscopic analysis of urine. The coagulation and fibrinolytic mechanisms including inherited and acquired diseases, laboratory testing and anticoagulant therapy.

441. Clinical Microscopy and Hemostasis Laboratory
Winter, Summer. 1(0-2) M T 440 concurrently. Routine urinalysis including the physical, chemical and microscopic examination. Semi-automated procedures for routine coagulation testing including prothrombin times, partial thromboplastin times, and factor assays.

461. Medical Immunology and Microbiology
Winter. 3(3-0) MPH 301, MPH 302. Interdepartmental with and administered by the Department of Microbiology and Public Health. The immune system, cellular interaction of the in vitro and in vivo reaction, and associated immunopathology. Characterization of infectious agents and their pathogenic processes.

495. Independent Study
Fall, Winter, Spring. Summer. 1 to 5 credits. May reenroll for a maximum of 10 credits. Approval of department. Independent study including assigned reading and reviews of appropriate scientific periodicals.

MEDICINE MED

College of Human Medicine

512. Infectious Diseases
Spring. 4(3-3) MPH 311, or approval of department. Interdepartmental with and administered by the Department of Microbiology and Public Health. Infectious diseases of humans, including biology of the causative microorganism, epidemiology, pathogenesis, host-parasite relationships, clinical and laboratory diagnosis, and clinical management.

590. Special Problems in Medicine
Fall, Winter, Spring. Summer. 1 to 6 credits. May reenroll for a maximum of 12 credits. Human Medicine students or approval of department. Each student will work under direction of a staff member on an experimental, theoretical or applied problem.

607. Ambulatory Care Clerkship
Fall, Winter, Spring, Summer. 1 to 3 credits. May reenroll for a maximum of 9 credits. H M 602. Interdepartmental with the departments of Community Health Science, Family Practice, and Pediatrics and Human Development. Administered by the Department of Family Practice. Outpatient experience, lasting an equivalent of 34 half-days and extending over a minimum of 26 weeks. Continuous and comprehensive patient care under supervision of appropriate physicians.

609. Hematology Clerkship
Fall, Winter, Spring. Summer. 1 to 17 credits. May reenroll for a maximum of 34 credits. MED 608. Development of skills in data collection, problem solving and management related to common hematologic disorders of children and adults.

610. Oncology Clerkship
Fall, Winter, Spring. Summer. 1 to 17 credits. May reenroll for a maximum of 34 credits. MED 608. Development of skills in data collection, problem solving and management of the more prevalent cancers in children and adults.

611. Cardiology Clerkship
Fall, Winter, Spring. Summer. 1 to 17 credits. May reenroll for a maximum of 34 credits. H M 602. A clinical clerkship in which students evaluate in depth patients with cardiac disease. This includes experiences with special diagnostic procedures including cardiac catheterization, phonocardiography, echocardiography and electroeocardiography.

612. Nephrology/Urology Clerkship
Fall, Winter, Spring, Summer. 1 to 17 credits. May reenroll for a maximum of 34 credits. H M 602. Integrated concepts of renal physiology and pathophysiology of renal disease. Clinical experience.

613. Dermatology Clerkship
Fall, Winter, Spring. Summer. 1 to 17 credits. May reenroll for a maximum of 34 credits. H M 602. Office based experience with a dermatologist to develop interviewing skills, history, physical examination, and problem solving and therapy, and care of the whole patient leading to independence in patient management.

614. Medical Chest Clerkship
Fall, Winter, Spring, Summer, 1 to 17 credits. May reenroll for a maximum of 34 credits. H M 602. A clerkship covering four areas of chest diseases: tuberculosis, diagnosis, pulmonary function, and physiology. The student works with medical residents, utilizing outpatient and hospital facilities.