PHYSICAL SCIENCE

College of Natural Science

The content of 405, as well as the problems course, 880, may vary from term to term. Brochures giving detailed information about individual courses are available in the College of Natural Science and the Office of the Assistant Dean for Lifelong Education. These courses are primarily designed for in-service teachers and interested adults and are offered in off-campus locations.

203. Foundations of Physical Sciences

Fall, Winter, Spring, Summer. 4(3-3) credits of Natural Science.

An introduction to physical science for non-science majors. Emphasis on basic concepts relating to human interaction with the physical environment. Topics selected from physics, chemistry, and the earth and space sciences.

405. Topics in Physical Science

Fall, Winter, Spring, Summer. 1 to 3 credits. May reenroll for a maximum of 6 credits if different topic is taken. Approval of department.

Presentation of single topics from the physical sciences by senior faculty and guest lecturers. Topics are selected to facilitate development of strong physical science programs in schools.

431. Problems in Planetarium Education

Fall, Winter, Spring, Summer. 1 to 3 credits. May reenroll for a maximum of 5 credits. Approval of department.

Individual study, training, or project under the direction of a faculty member. The training will be in the area of actual delivery of planetarium presentations.

890. Problems in Physical Science

Fall, Winter, Spring, Summer. 1 to 12 credits. May reenroll for a maximum of 15 credits. Bachelor's degree in a physical science.

PHYSICS AND ASTRONOMY

(Name change effective September 1, 1981. Formerly the Department of Physics and the Department of Astronomy and Astrophysics.)

College of Natural Science

Physics

PHY

Introductory physics courses are offered in both the lecture-recitation and the Competency-Based-Instructional (CBI) format. In the latter format the students are carefully guided through each course via written materials with ample consulting time available. Both content and pace of course are flexible to suit student needs and interests, final grades being based on total amount of material for which student's mastery is certified. The introductory courses may be grouped by the application of two criteria: The interests of the students the courses are designed to serve and the method of instruction employed.

Lecture-Recitation Format

237, 238, 239, three credits each, designed primarily for students with interests in the life and earth sciences. The mathematics prerequisite is credit for or concurrent enrollment in calculus III with vectors (MTH 214).

287, 288, 289, four credits each, designed primarily for students with interest in the physical sciences, mathematics and engineering. The mathematics prerequisite is credit for or concurrent enrollment in college algebra and trigonometry (MTH 109 or 111).

291H, 292H, 293H, four credits each, designed primarily for Physics majors and others with a special interest in Physics. The mathematics prerequisite is credit for or concurrent enrollment in calculus III with vectors (MTH 214), the Honors section recommended.

Competency Based Instructional Format

237B, an alternate way to earn credit in 237, 281, 282, 283, three credits each, designed for students with interest in the natural sciences, including the life and earth sciences. The mathematics prerequisite is calculus I with analytic geometry (MTH 112).

287A, 288A, 289A, one credit each, to follow 281, 282, 283 to give a four credit per term introductory series. However, 287A may not be taken concurrently with 281, 288A may not be taken concurrently with 282, and 289A may not be taken concurrently with 283.

257B, 258B, 259B, in which the four credit introductory series is covered in one term for each course.

291A, 292A, 293A, one credit each to follow 281, 287A; 282, 288A; 283, 289A or 287, 288, 289 or 257B, 258B, 259B to give a five credit introductory series.

291B, 292B, 293B in which the five credit introductory series is covered in one term for each course.

The courses taught via the two formats may be grouped to give a wide variety of introductory physics courses. The following equivalences exist:

237, 238, 239 may be taken as 237B, 238, 239.

287, 288, 289 may be taken as 281, 287A; 282, 288A; 283, 289A or 287, 288, 289 or 257B, 258B, 259B.

A student may change from one group of introductory courses to another, but may not earn credit for more than one complete sequence. This statement applies to the Physics sequence Lyman Briggs School 161, 162, and 163.

Credit may not be earned for more than one of the courses 294, 357, or 354.

201, 202, 203, 301, 357, 430, and 431 cannot be used to meet the requirements for a major in Physics.

Prerequisites to nearly all the first courses in the 300-400 level course sequences are stated in terms of the Introductory Physics courses. The course selected for prerequisite is that which requires the least number of credits and the least mathematical background, but the department considers adequate. The corresponding term of any introductory sequence that requires a mathematical background equal to or greater than that of the stated prerequisite may be substituted for the stated prerequisite.

All 400 level physics courses (except 430 and 431) require 285 or 285H.

201. The Science of Sound I: Rock, Bach and Oscillators (N)

Winter, 4(4-0) interdepartmental with the Department of Mechanical Engineering. Production, propagation, detection of sounds. Voice, hearing, scales, timbre, musical instruments. Room acoustics. Electronic reproduction and synthesis of music. Demonstrations emphasized.

202. The Science of Sound II

Spring, 3(3-0) or 4(4-0) PHY 201. Interdepartmental with and administered by the Department of Mechanical Engineering. Nature, generation, and propagation of sound. Acoustical phenomenon and measurements. Storage and manipulation of sound in numerical form. Music programming.

203. Science of Light and Color for NonScientists

Spring, 4(4-0)

Properties of light with applications to mirrors, lenses, eyes, cameras, lasers, holography. Light spectra, color TV, color vision, filters, pigments. Black and white and color photography.

227. Physics for Audiology and Speech Sciences

Fall, Winter, Spring, 4(4-0) MTH 109. Not open to students with credit in PHY 237. Interdepartmental with the Department of Audiology and Speech Sciences.

Introductory physics for Audiology and Speech Sciences majors: kinematics, Newton's Law of Motion, conservation of energy and momentum, waves and vibrations, sound propagation, resonance, speech production.

237. Introductory Physics

Fall, Winter, Spring, 3(4-0) PHY 237. Heat, electricity and magnetism.

238B. Introductory Physics II, CBI

Fall, Winter, Spring, 3 credits. PHY 109 or PHY 111 or concurrently. Mechanics including Newton's Law, momentum, energy, and conservation laws.

237B. Introductory Physics I, CBI

Fall, Winter, Spring, 3 credits. PHY 109 or PHY 111 or concurrently. Mechanics including Newton's Law, momentum, energy, and conservation laws.

238. Introductory Physics

Fall, Winter, Spring, 3(4-0) PHY 237. Heat, electricity and magnetism.

239. Introductory Physics

Fall, Winter, Spring, 3(4-0) PHY 238. Wave motion, sound, light, and modern developments.

238B. Introductory Physics III, CBI

Fall, Winter, Spring, 3 credits. PHY 238B or PHY 239.

Wave motion, sound, light and modern developments.
256. Energy Consumption and Environmental Quality (N).
(1DC 256.) Spring, 3(0-0) Interdepartmental and Lyman Briggs School.
The role of energy as a fundamental pollutant will be discussed along with the availability of fossil energy sources. Limitations on the safe utilization of both fossil and nuclear energy will also be considered.

257. Introductory Physics Laboratory
Fall, Winter, Summer. 1(0-2) PHY 237 or PHY 281 or concurrently.
Mechanics and heat.

258. Introductory Physics Laboratory
Winter, Spring. 1(0-2) PHY 238 or PHY 262 or concurrently.
Heat, electricity and magnetism.

259. Introductory Physics Laboratory
Fall, Spring. 1(0-2) PHY 239 or PHY 283 or concurrently.
Wave motion, sound, light and modern developments.

281. Basic Physics I, CBI
Fall, Winter, Spring. 3 credits. MTH 112.
Static equilibrium, Newton’s laws, power, harmonic motion, rotational motion.

282. Basic Physics II, CBI
Fall, Winter, Spring. 3 credits. PHY 281.
Microscopic origin of heat flow and first law of thermodynamics, electric and magnetic forces and sources, direct currents.

283. Basic Physics III, CBI
Fall, Winter, Spring. 3 credits. PHY 282.
Physics of sound, light, and optical instruments, wave-particle duality, radioactivity, fission and fusion, elementary particles, fundamental forces of nature.

284. Calculus Concepts in Physics I, CBI
Fall, Winter, Spring. 2 credits. PHY 287 and MTH 113.

285. Calculus Concepts in Physics II, CBI
Fall, Winter, Spring. 2 credits. PHY 285, PHY 284, and MTH 214.
Extension of PHY 285 involving calculus concepts. PHY 238 plus PHY 286 equals PHY 289. Electrostatic interactions, magnetic fields: forces and sources, magnetostatics, and electrical circuits.

286. Calculus Concepts in Physics III, CBI
Fall, Winter, Spring. 2 credits. PHY 239, PHY 285 and MTH 214.
Extension of PHY 239 involving calculus concepts. PHY 239 plus PHY 286 equals PHY 289. Wave Phenomena, photons, atomic states and transitions, quantum mechanics, subatomic phenomena.

287. Principles of Physics
Fall, Winter, Spring. 4(5-0) MTH 113.
Mechanics.

287A. Physics IA, CBI
Fall, Winter, Spring. 1 credit. MTH 113; PHY 291. May not be taken concurrently with PHY 281.
Extensions of PHY 281, plus topics from: frames of reference, special relativity, rocket equation, forced oscillations, resonances, fluid motion, numerical (computer) solutions, moments of inertia, gyroscopic motion.

287B. Principles of Physics I, CBI
Fall, Winter, Spring, Summer. 4 credits. MTH 113
The CBI version of PHY 287. Course content is identical to content of PHY 281 plus PHY 287A.

288. Principles of Physics
Fall, Winter, Spring, 4(5-0) PHY 287; MTH 214 or approval of department.
Heat and thermodynamics, electricity and magnetism.

288A. Physics IIA, CBI
Fall, Winter, Spring. 1 credit. PHY 292, MTH 214 or approval of department. May not be taken concurrently with PHY 282.
Extensions of topics from PHY 282, plus topics from: entropy, transport phenomena, general relativity, electrons, atoms, molecules, solids, electromagnetic fields, energy, alternating currents, numerical (computer) solutions.

288B. Principles of Physics II, CBI
Fall, Winter, Spring. 4 credits. PHY 287, PHY 287A or PHY 287B; MTH 214 or approval of department.
The CBI version of PHY 288. Course content is identical to content of PHY 282 plus PHY 288A.

289. Principles of Physics
Fall, Winter, Spring. 4(5-0) PHY 288; MTH 214 or approval of department.
Wave motion, sound, light, and modern developments.

289A. Physics IIIA, CBI
Fall, Winter, Spring. 1 credit. PHY 283, MTH 214 or approval of department. May not be taken concurrently with PHY 283.
Extensions of the PHY 283 material plus topics from: spectral origins and analysis, optics, standing wave phenomena, diffraction, quantum mechanics, numerical (computer) solutions, radioactivity, elementary particles.

289B. Principles of Physics III, CBI
Fall, Winter, Spring. 4 credits. PHY 286, PHY 286A, or PHY 288B, MTH 214 or approval of department.
The CBI version of PHY 289. Course content is identical to content of PHY 283 plus PHY 289A.

291A. Honors Physics IA, CBI
Fall, Winter, Spring. 1 credit. PHY 287A, MTH 113.
Subjects and topics as in PHY 281 and PHY 287A, generally on a more advanced level.

291B. Honors Physics IB, CBI
Fall, Winter, Spring. 5 credits. MTH 113.
Combined material of PHY 281 plus PHY 287A plus PHY 291A are taken in one term.

291H. Physics I
Spring, 4(5-0) MTH 214 (honors section recommended) or concurrently.
First of a five-term course sequence in elementary physics consisting of PHY 291, PHY 292, PHY 293, PHY 294 and PHY 395. In this sequence the principles of physics are presented in a unified manner that emphasizes modern concepts. Mechanics, including special relativity.

292A. Honors Physics IIA, CBI
Fall, Winter, Spring. 1 credit. PHY 288A, MTH 214.
Subjects and topics as in PHY 282 and PHY 288A, generally on a more advanced level.

292B. Honors Physics IIB, CBI
Fall, Winter, Spring. 5 credits. PHY 292B, MTH 214.
Combined material of PHY 282 plus PHY 288A plus PHY 293A is covered in one term.

292H. Physics II
Fall. 4(5-0) PHY 291H, MTH 215 or concurrently.
Continuation of PHY 291H. Electricity and magnetism with some special relativity.

293A. Honors Physics IIIA, CBI
Fall, Winter, Spring. 1 credit. PHY 289A, MTH 215.
Subjects and topics as in PHY 283 and PHY 289A, generally on a more advanced level.

293B. Honors Physics IIIB, CBI
Fall, Winter, Spring. 5 credits. PHY 293B, MTH 215.
Combined material of PHY 283 plus PHY 289A plus PHY 293A is covered in one term.

293H. Physics III
Winter. 4(5-0) PHY 292H.
Continuation of PHY 292H. Wave physics including optics.

294. Physics IV
Spring, 4(5-0) PHY 293H or PHY 289.
Continuation of PHY 293H. Introduction to quantum physics.

297. Principles of Physics Laboratory
Fall, Winter, Summer. 1(0-2) PHY 281 or concurrently.
Mechanics.

298. Principles of Physics Laboratory
Fall, Winter, Summer. 1(0-2) PHY 282 or concurrently.
Heat and thermodynamics, electricity and magnetism.

299. Principles of Physics Laboratory
Spring, 1(0-2) PHY 283 or concurrently.
Wave motion, sound, light and modern developments.

301. Bohr and Einstein: The Concept of Nature in Our Day (N)
Fall, 3(3-0) Juniors.
Basic contemporary ideas about the natural world and their significance presented through study of the lives of Niels Bohr (quantum theory) and Albert Einstein (relativity theory).

304. Special Problems
Fall, Winter, Spring, Summer. 1 to 5 credits. May reenroll for a maximum of 5 credits. Approval of department.
310. **Calculus Concepts in Physics, CBI**
Fall, Winter, Spring; Summer. 5 credits. PHY 237, PHY 238, PHY 239; MTH 214.
A transition course to prepare students who had non-calculus introductory physics for upper division courses. Discussions and problems in mechanics, electricity and magnetism, wave motion and modern physics. Familiarity with non-calculus introductory physics is assumed.

357. **Topics in Contemporary Physics, CBI**
Fall, Winter, Spring; Summer. 4 credits. One year of general college physics.

Atomic and nuclear physics, cosmic rays and elementary particles, nuclear energy, new theoretical concepts. Recommended for prospective high school teachers.

364. **Introduction to Modern Physics I**
Winter. 3(3-0) PHY 285; MTH 215.
Atomic structure; wave and particle aspects of radiant energy; optical and X-ray spectra.

364B. **Introduction to Modern Physics II, CBI**
Fall, Winter, Spring, Summer. 3 credits. PHY 285, MTH 215.
The CBI version of PHY 364.

365. **Introduction to Modern Physics II**
Spring. 3(3-0) PHY 364 or PHY 294.
Nuclear, molecular, solid state and elementary particle physics. Special emphasis is given to applications such as reactors, superconductors, semiconductors, fusion reactions, particle accelerators, etc.

365B. **Introduction to Modern Physics II, CBI**
Fall, Winter, Spring, Summer. 3 credits. PHY 364 or PHY 364B or PHY 294.
The CBI version of PHY 365.

395. **Physics V**
Fall. 3(3-0) PHY 293B, or PHY 294, or PHY 364.
Continuation of PHY 294. Thermodynamics and statistical physics.

400H. **Honors Work**
Fall, Winter, Spring. 1 to 3 credits.
May reenroll for a maximum of 10 credits.

404. **Special Problems**
Fall, Winter, Spring; Summer. 1 to 5 credits. PHY 289 or PHY 293H; approval of department.

419. **Physical Phenomena and Electronic Instrumentation I**
Winter. 4(3-3) PHY 289; PHY 298 or approval of department. MTH 215. Interdepartmental with Electrical Engineering.

Concepts of electronics relative to use in investigations of physical phenomena and their subsequent applications to provide reliable instrumentation. Nuclear radiation detectors, photometers and magnetometers are examples of specific topics covered.

420. **Physical Phenomena and Electronic Instrumentation II**
Spring. 3(2-3) PHY 419.
Noise and its characterization. Typical electronics instruments are analyzed in detail. A reliable instrument that uses a physical effect is developed by the student.

427. **Intermediate Mechanics**
Fall. 3(3-0) PHY 289; MTH 310 or concurrently.
Statics and dynamics of a particle and of rigid bodies; linear and non-linear oscillations; gravitation from a field point of view; transformation properties of physical quantities; introduction to mathematical techniques of theoretical physics.

428. **Intermediate Mechanics**
Winter. 3(3-0) PHY 427.
Continuation of PHY 427.

429. **Advanced Mechanics**
Spring. 3(3-0) or PHY 429.
Advanced methods of theoretical mechanics; generalized coordinates; Lagrange's and Hamilton's equations; the wave equation, theory of vibrations.

430. **Introduction to Radioactivity and Radioisotope Techniques**
Spring, Summer. 2(3-0) or 3(3-0) One year each of general college chemistry and physics. Interdepartmental with the Department of Chemistry. First 7 weeks. Elementary nuclear processes and properties with emphasis on radioactivity, its measurement, and its interaction with matter. Effects of radiation on chemical and biological systems. Applications of nuclear technology, safety and environmental factors. Last 3 weeks. Fundamentals of nuclear models, reactions and decay mechanisms. Basic principles of nuclear reactors and accelerators.

431. **Laboratory for Radioactivity and Radioisotope Techniques**
Summer. 1(0-3) CEM 161, CEM 430 concurrently. CEM 162 recommended. Interdepartmental with the Department of Chemistry. Introduction to nuclear instrumentation. Experimental techniques for application of radioisotopes to problems in chemistry, the life sciences, and industry.

438. **Geometrical Optics**
Fall. 4(3-3) PHY 289, PHY 299 or approval of department, MTH 215.
Geometrical optics including Fermat's Principle, reflection, refraction, mirrors, thin lenses, thick lenses, aberrations, and the effects of apertures and stops.

439. **Physical Optics**
Winter. 4(3-3) PHY 289, PHY 299 or approval of department. MTH 215.
Physical optics including Huygens-Fresnel Principles, interference, diffraction, and coherence. Additional topics will be selected from Fourier transforms of wave forms, convolution, diffraction and image formation, spatial filtering, holography and polarization.

447. **Electricity and Magnetism I**
Fall. 3(3-0) 18 credits in Physics, 281 and above.
Foundations of electrostatics, electrostatic problems in two and three dimensions, dielectrics, electrostatic energy, magnetic fields of steady currents.

448. **Electricity and Magnetism II**
Winter. 3(3-0) PHY 447.
Magnetic properties of matter, Faraday Law of Induction, magnetic energy, Maxwell's equations, scalar and vector potentials, plane wave propagation, reflection and refraction.

449. **Electricity and Magnetism III**
Spring. 3(3-0) PHY 448.
Radiation emission, antennas, electrodynamics, special theory of relativity.

457G. **Advanced Physics Laboratory (General)**
Fall. 3(1-6) 15 credits in PHY 291 and above including PHY 298 and PHY 299.
Experiments in modern physics of historical interest and in general physics research techniques. Emphasizes experimental methods and proper treatment of data. Independent work encouraged.

457N. **Advanced Physics Laboratory (Nuclear)**
Winter. 3(1-6) 15 credits in PHY 281 and above including PHY 298 and PHY 299.
Experiments in nuclear physics. Detection of nuclear radiation and determination of nuclear properties. Emphasizes research methods and proper treatment and interpretation of data. Independent work encouraged.

457S. **Advanced Physics Laboratory (Solid State)**
Spring. 3(1-6) 15 credits in PHY 281 and above including PHY 298 and PHY 299.
Experiments in low temperature and solid state physics. Emphasizes research methods and proper treatment and interpretation of data. Independent work encouraged.

491. **Introduction to Quantum Mechanics I**
Fall. 3(3-0) PHY 294 or PHY 364; MTH 310 or concurrently.
Schrödinger wave equation and its applications; angular momentum; one electron atoms; moments and spin; perturbation methods; absorption and emission of radiation; atomic and molecular structure.

492. **Introduction to Quantum Mechanics II**
Winter. 3(3-0) PHY 491.
Continuation of PHY 491.

493. **Introduction to Quantum Mechanics III**
Spring. 3(3-0) PHY 492.
Continuation of PHY 492.

496. **Introduction to Solid State Physics**
Winter. 3(3-0) PHY 364 or PHY 294.
Crystal structure and binding, lattice dynamics, thermal properties, free-electron and band models of metals and semiconductors, magnetism, optical properties, superconductivity, lattice defects.

497. **Introduction to Elementary Particle Physics**
Fall. 3(3-0) or PHY 364 or PHY 491.
Relativistic kinematics, invariance principles. Phenomenological analysis of elementary particle interactions with matter. Weak, electromagnetic and strong interactions. High energy accelerators and techniques in experimental high energy physics.

498. **Introduction to Nuclear Physics**
Spring. 3(3-0) PHY 294 or PHY 364 or PHY 491.
Interactions of nuclear radiations with matter; properties of nucleus; alpha, beta, gamma decay; nuclear models; nuclear reactions and elementary applications of scattering theory; reactions accelerators; introduction to high-energy physics.
680. Research Methods
Fall, Winter, Spring, Summer. 3(0-6)
May reenroll for a maximum of 6 credits. Beginning graduate students. Interdepartmental with Astronomy and Astrophysics. Problems and techniques of current research by taking part in the design and setup of experiments, data taking and reduction, study and practice of theoretical methods. Areas of study: solid state and molecular structure, nuclear, elementary particles, astronomy, astrophysics.

817. Techniques of Theoretical Physics
Fall. 3(3-0) Graduate students; or approval of department. Application of contour integration to physical problem; basic concepts in theoretical formulation of quantum mechanical systems; solution of physical problem using Green's Functions, the delta function, series, integral transforms.

827. Theoretical Physics I
Summer of odd-numbered years. 3(3-0) PHY 428 or approval of department. Vector analysis, mechanics of a particle and of systems of particles. Lagrange's equations, Hamiltonian methods, rotational motion.

828. Theoretical Physics II
Summer of even-numbered years. 3(3-0) PHY 448 or approval of department. Special relativity, Maxwell's equations, electrodynamics and electromagnetic waves.

829. Thermal and Statistical Physics
Winter. 3(3-0) Approval of department. Principles of thermodynamics; topics in kinetic theory, introduction to statistical mechanics.

837. Quantum Mechanics I
Fall. 3(3-0) PHY 428, PHY 491. The formulation of quantum mechanics, superposition principle, state vector and representation, uncertainty principle, Schrödinger equation and its solution for physical systems.

838. Quantum Mechanics II
Winter. 3(3-0) PHY 837. Approximation methods, perturbation theory, applications to atomic transitions, angular momentum.

839. Quantum Mechanics III
Spring. 3(3-0) PHY 838. Collision processes and scattering theory, applications; many-particle systems.

840. Symmetry in Solid State Physics
Spring of odd-numbered years. 3(3-0) Graduates or approval of department. Translational symmetry and Bloch's Theorem, reciprocal lattice, Brillouin zones; point groups, representations, character tables, molecular vibrations, group of the wave vectors and band theory of solids, crystal fields.

847. Electromagnetic Theory I
Fall. 3(3-0) PHY 428, PHY 448. Electrodynamics; Laplace's equation, Poisson's equation, Green's theorem, solution of problems by method of images; inversion; boundary-value problems in Cartesian, spherical and cylindrical coordinates; spherical harmonics; Bessel functions.

848. Electromagnetic Theory II
Winter. 3(3-0) PHY 847. Multipole and multiple expansions; electrodynamics of macroscopic materials, dielectrics, magnetostatics, vector potential, magnetic moments, Maxwell's equations for time-varying fields, energy and momentum conservation. Plane electromagnetic waves and polarization.

849. Electromagnetic Theory III

850. Electrodynamics of Plasmas I
Fall. 3(3-0) E E 835 or PHY 448, E E 874. Interdepartmental with Astronomy and Astrophysics, and Electrical Engineering. Administered by Electrical Engineering. Boltzmann equation; moment equations; two-fluid theory of plasma, waves in cold, warm and anisotropic infinite plasma; waves in bounded plasma structures, energy flow in anisotropic plasmas.

857. Theoretical Mechanics I
Winter. 3(3-0) Two-body central force problems, rigid body motion, small oscillations, Hamilton's principle, Lagrangian and Hamiltonian formalism for particles and fields, canonical transformations, relativity.

858. Theoretical Mechanics II
Spring. 3(3-0) Approval of department. Hamiltonian formalism for particles and fields, variational methods, canonical transformations, small oscillations, classical fields, relativity.

860. General Relativity and Cosmology I
Fall of even-numbered years. 3(3-0) PHY 853 or approval of department. Interdepartmental with Astronomy and Astrophysics. Conceptual foundations of general relativity theory; elements of tensor calculus; Riemann-Christoffel curvature tensor, the field equations; experimental tests; special solutions; the extension to cosmology.

861. General Relativity and Cosmology II
Winter of odd-numbered years. 3(3-0) PHY 860. Interdepartmental with Astronomy and Astrophysics. Relativistic cosmology; the model universe, steady-state theory, observational evidence and possibilities for decision among models; current problems.

867. Quantum Mechanics IV
Fall. 3(3-0) PHY 839. Transformation theory and invariance principles; the rotation group and theory of angular momentum; Wigner-Eckart theorem and applications.

868. Relativistic Quantum Mechanics
Winter. 3(3-0) PHY 867. Relativistic equations of motion; Dirac Equation, free particle solutions and Lorentz transformation properties; interaction with electromagnetic fields; quantization of scalar, electromagnetic and Dirac fields.

869. Quantized Fields
Spring. 3(3-0) PHY 868. Heisenberg representation, S-matrix reduction formulae, Feynman rules, quantum electrodynamics, topics from many-body theory.

877. Statistical Mechanics I
Fall. 3(3-0) Approval of department. Necessity of statistical considerations, ensembles, probability distributions and density matrices, Liouville's equation, equilibrium distributions, microscopic basis of thermodynamics, applications to thermodynamics of spin systems.

878. Statistical Mechanics II
Winter. 3(3-0) PHY 877. Applications to thermodynamic properties of ideal classical and quantum gases, and to imperfect gases and interacting spin systems. Nonequilibrium distributions and transport theory, the Boltzmann equation, Kubo's linear response theory, Onsager's relations.

879. Statistical Mechanics III
Spring. 3(3-0) PHY 878. Special topics chosen at discretion of instructor. Topics may include phase transitions, critical phenomena and renormalization group techniques; Green's function and diagrammatic techniques for interacting systems.

899. Master's Thesis Research
Fall, Winter, Spring, Summer. Variable credit. Approval of department.

927. Elementary Particle Physics I
Fall of even-numbered years. 3(3-0) PHY 869. Review of field theory for spins 0, 1/2, 1; Abelian gauge theory - QED; weak interaction phenomenology; gauge theories of weak interactions - leptons; non-Abelian gauge theories; spontaneous symmetry breaking; Higgs' mechanism; the Weinberg-Salam Model.

928. Elementary Particle Physics II
Winter of odd-numbered years. 3(3-0) PHY 927. Quarks and hadronic weak interactions; quarks in Weinberg-Salam model; strong interactions of quarks; SU(3) color model; quark spectroscopy in electron-positron annihilation; leptonic decays of heavy vector mesons; gluonic decays of heavy mesons.

939. Elementary Particle Physics III
Spring of odd-numbered years. 3(3-0) PHY 928. The quark-parton model; deep inelastic lepton scattering; hadron-hadron high transverse momentum scattering.

937. Molecular Structure and Spectra I
Fall of even-numbered years. 3(3-0) PHY 837 or concurrently. Structure and spectra of diatomic molecules.

938. Molecular Structure and Spectra II
Winter of odd-numbered years. 3(3-0) PHY 837. Structure and spectra of polyatomic molecules.

947. Solid State Physics I
Fall of odd-numbered years. 3(3-0) PHY 839 and PHY 840. Crystal symmetry, crystal binding, lattice vibrations and specific heat, one-electron theory; Hartree-Fock equation, Brillouin zones.
948. Solid State Physics II
 Winter of even-numbered years. 3(3-0)
 PHY 947.

949. Solid State Physics III
 Spring of even-numbered years. 3(3-0)
 PHY 948.

 Ionic crystals. Imperfections in crystals, plastic deformations, color centers. Optical properties. Rectification, transistors, selected topics.

957. Nuclear Physics I
 Fall of odd-numbered years. 3(3-0)
 PHY 857.

 Nucleon-nucleon scattering; the nucleon-nucleon interaction; the deuteron; meson theory of the NN interaction; Racah algebra.

958. Nuclear Physics II
 Winter of even-numbered years. 3(3-0)
 PHY 957.

 Bulk properties of nuclei: sizes and magnetic moments; the shell model; effective interactions; second quantization; Hartree-Fock theory.

959. Nuclear Physics III
 Spring of even-numbered years. 3(3-0)
 PHY 958.

 Bethe-Goldstone Theory; Random-phase approximation; BCS theory; quasi-particles; deformations; nuclear reactions.

984. Advanced Readings in Physics or Astronomy
 Fall, Winter, Spring, Summer. 3(3-0) or 4(4-0)

 May be required in department seminar. Seminars to be presented by both faculty and students to review papers in the current astronomical research literature.

987. Advanced Topics in Physics
 Fall, Winter, Spring. 3(3-0) or 4(4-0)

 In any one term this course will be devoted to a single topic, such as advanced quantum theory, quantum electrodynamics, specialized topics in solid state physics, statistical mechanics, relativistic theory and cosmology.

989. Electrodynamics of Plasmas II
 Winter of odd-numbered years. 3(3-0)

 One fluid plasma model, magnetohydrodynamics, Maxwell's stress tensor, low frequency waves, transport phenomena, Landau damping, collision and rate coefficients. Diffusions in a magnetic field, investigation of de, rf and microwave discharges.

999. Doctoral Dissertation Research
 Fall, Winter, Spring, Summer. Variable credit. Approval of department.

Astronomy and Astrophysics

AST 115. Exploring Cosmology
 Spring. 2(2-0) Not open to engineering or physical science majors.

 Nonmathematical view of the origin, history, and overall structure of the universe, based on the Big Bang model of cosmology.

AST 117. Introductory Observing
 Fall, Spring. 2(1-3) AST 119, or AST 217, or AST 229 or concurrently and approval of department.

 Observations of celestial objects, constellation identification, and occasional planetarium exercises.

AST 119. General Astronomy (N)
 Fall, Winter, Spring, Summer. 4(4-0)

 Not open to engineering or physical science majors. Students may not receive credit in more than one of the following: AST 119, AST 217, AST 229.

 A qualitative presentation of the current view of the universe including birth and death of stars, cosmology, comparisons of planets, and life in the universe.

AST 120. Topics in Astronomy
 Winter, Spring. 4(4-0) AST 119.

 Detailed qualitative discussion of currently interesting topics in astronomy. May include such topics as quasars, pulsars, black holes, planetary exploration, cosmology, concepts of relativity.

AST 217. General Astronomy (N)
 Fall, Winter, Spring. 4(4-0) MTH 109 or MTH 111. Students may not receive credit in more than one of the following: AST 119, AST 217, AST 229.

 Intended primarily for physical science majors. A semi-quantitative presentation of current views of the universe including birth and death of stars, cosmology, comparisons of planets, and life in the universe.

AST 229. General Astronomy
 Fall. 4(4-0) PHY 297 or PHY 291H or concurrently; MTH 111. Students may not receive credit in more than one of the following: AST 119, AST 217, AST 229.

 Fundamental observations in astronomy and their interpretation through physical laws. Intended for physical science majors and recommended for astrophysics majors. Quantitative discussion of orbital motion, time, telescopes, solar system, stars, galaxies, and cosmology. Limited opportunity for astronomical observations.

AST 237. Introductory Observatory Laboratory
 Fall. 1(0-3) AST 217 or AST 229 or concurrently.

 Photographic and spectrophotometric telescopic observations. Darkroom processing.

AST 327. Practical Astronomy
 Winter. 3(3-0) AST 217 or AST 229, MTH 113.

AST 376. Contemporary Astronomy
 Winter. 3(3-0) AST 217 or AST 229.

 A continuation of General Astronomy with particular emphasis on modern developments. May include such topics as planetary exploration, interstellar matter, star formation, stellar evolution through final stages, supernovae, pulsars, neutron stars, black holes, galaxies, and cosmology.

AST 437. Observatory Practice
 Spring. 3(1-4) AST 327 and approval of department.

AST 451. Solar System Astrophysics
 Fall. 3(3-0) PHY 247 or concurrently and approval of department.

 Application of physical principles to the study of the planets, satellites, asteroids, comets, and interplanetary dust and gas. Mechanics of solar system objects.

452. Stellar and Interstellar Astrophysics
 Winter. 3(3-0) PHY 264 or PHY 294 and PHY 355 or approval of department.

 Emission, absorption and transfer of radiation in stars and the interstellar medium. Application of physical principles to the study of the interstellar medium and stellar interiors. Evolution of stars.

453. High-Energy Astrophysics
 Spring. 3(3-0) PHY 264 or PHY 294 and PHY 355 or approval of department.

 Application of fundamental physical laws of mechanics, gravitation, and electromagnetism to the dynamics of star systems, X-ray and radio sources such as galaxies and close binary stars, and to cosmology.

490. Special Problems
 Fall, Winter, Spring. 1 to 5 credits. May reenroll for a maximum of 10 credits. Approval of department.

 Individual study or project under the direction of a faculty member. An oral report on the work may be required in department seminar.

800. Research Methods
 Fall, Winter, Spring. 2(0-6)

 May reenroll for a maximum of 6 credits. Beginning graduate students. Interdepartmental with and administered by Physics.

 Problems and techniques of current research by taking part in the design and setup of experiments, data taking and reduction; study and practice of theoretical methods. Areas of study: solid state and molecular structure, nuclear, elementary particles, astronomy, astrophysics.

801. Seminar
 Winter. 1(0-0) May reenroll for a maximum of 2 credits. Graduate students or approval of department.

 Seminar to be presented by both faculty and students to review papers in the current astronomical research literature.

820. Advanced Topics in Astrophysics
 Winter. 3(3-0) May reenroll for a maximum of 15 credits. AST 452 or PHY 355 or PHY 459 or approval of department.

 Possible topics include dynamics of stars in galaxies, astrophysical fluid dynamics, quasar theory, stellar atmospheres, stellar interiors, stellar spectroscopy, and stellar photography.

850. Electrodynamics of Plasmas I
 Fall. 3(3-0) E.E. 853 or PHY 449, E.E. 874. Interdepartmental with Electrical Engineering and Physics. Administered by Electrical Engineering.

 Boltzmann equation; moment equations; two-fluid theory of plasma, waves in cold, warm and anisotropic infinite plasma; waves in bounded plasma structures, energy flow in anisotropic plasmas.

860. General Relativity and Cosmology I
 Fall of even-numbered years. 3(3-0)
 PHY 355 or approval of department. Interdepartmental with and administered by Physics.

 Conceptual foundations of general relativity theory; elements of tensor calculus; Riemann-Christoffel curvature tensor; the field equations; experimental tests; special solutions; the extension to cosmology.
Descriptions - Physics and Astronomy
of Courses

861. General Relativity and Cosmology II
Winter of odd-numbered years. 3(3-0) PHY 860. Interdepartmental with and administered by Physics.
Relativistic cosmology: the model universes; steady-state theory; observational evidence and possibilities for decision among models; current problems.

864. Advanced Readings in Physics or Astronomy
Fall, Winter, Spring. 1 to 3 credits. May enroll for a maximum of 6 credits. Interdepartmental with and administered by Physics.

899. Electrodynamics of Plasmas II
Winter of odd-numbered years. 3(3-0) E E 850. Interdepartmental with Electrical Engineering, and Physics. Administered by Electrical Engineering.
One fluid plasma model, magnetohydrodynamics, Maxwell's stress tensor, low frequency waves, transport phenomena, Landau damping, collision and rate coefficients. Diffusions in a magnetic field; investigation of dc, rf and microwave discharges.

PHYSIOLOGY PSL

College of Human Medicine
College of Natural Science
College of Osteopathic Medicine
College of Veterinary Medicine

240. Introductory Physiology
Fall, Spring. 4(4-0) Sophomores or approval of department.
Physiology of the cell, nerve and reflex activity, skeletal muscle, skin, and cardiovascular system emphasizing environmental influences such as disease and exercise.

241. Introductory Physiology
Winter. Summer of even-numbered years. 4(4-0) PSL 240 or approval of department.
Continuation of PLS 240. Physiology of respiration, digestion, metabolism, kidney, endocrinology, and reproduction.

323. Physiology, Anatomy, and Hygiene of the Eye
Fall. Summer of even-numbered years. 3(2-2) PSL 240. Elementary Education or Special Education major, or approval of department.
Basic course in anatomy, physiology, and hygiene of the visual system; includes discussion of normal visual functioning and abnormal visual functioning, with methods of correction and education implications.

401. Comparative Physiology I
Fall. 4(3-4) PSL 240 or B S 212, CFM 151 or CEM 141. Interdepartmental with the Department of Zoology.
A comparison of sensory, motor, endocrine and other integrative mechanisms in animals.

402. Comparative Physiology II
Winter. 4(4-0) PSL 401 or approval of department. Interdepartmental with and administered by the Department of Zoology.
A comparison of sensory, motor, endocrine and other integrative mechanisms in animals.

416. Physiology of the Cell
Fall. Summer of odd-numbered years. 3(0-0) BCH 401, CH 451, or CEM 141. Physiologic mechanisms common to all living cells with emphasis on those of the vertebrates. The functions of the cell membrane and cytoplasm are studied as the basis for the physiologic behavior of vertebrate organs and systems.

431. Human Physiology
Winter. 4(4-0) One year of biological science or AN 101, CEM 131 or CEM 141. Physiology of the digestive, endocrine, nervous, and reproductive systems.

432. Human Physiology
Spring. 4(4-0) PSL 431 or approval of department. Physiology of the autonomic nervous, cardiovascular, renal, and respiratory systems.

435. Mammary Physiology
(444.) Fall. 4(2-4) PSL 241, BCH 200 or BCH 401. Interdepartmental with and administered by the Department of Animal Science.

455. Principles of Animal Reproduction
(445.) Winter. 4(4-0) PSL 241, BCH 200 or BCH 401. Interdepartmental with and administered by the Department of Animal Science.
Processes of reproduction and endocrinology with special emphasis on anatomy of reproductive systems, folliculogenesis, gestation, and artificial regulation of these reproductive events for economic benefit.

465. Asian Physiology
(440.) Spring. 4(3-0) Approval of department. Interdepartmental with and administered by the Department of Animal Science.
Systematic physiology of birds emphasizing respiration, circulation, temperature regulation, the endocines, and reproduction.

IDC. Biological Membranes
For course description, see Interdisciplinary Courses.

480. Special Problems
Fall, Winter, Spring. 1 to 5 credits. Approval of department.

481. Honors Research Paper
Fall, Winter, Spring. Summer. 2 credits. PSL 480 and approval of department.
Oral and written presentation of undergraduate research project initiated and carried forward under PSL 480.

497. Principles of Endocrinology
Winter. 4(4-0) One year organic chemistry, ZOL 317, interdepartmental with and administered by the Department of Zoology.
Hormonal principles, illustrated by experimental observations in vertebrates and invertebrates. Emphasis on cellular endocrinology. Group discussion, background in organic chemistry and cell biology strongly recommended. Term paper required.

500A. Introductory Physiology for Medicine
Spring. 3(5-0) Admission to the professional program in a college of medicine.
Concepts and problems in physiology to be followed by supplemental physiology instruction during subsequent phases of medical training.

500B. Introductory Physiology for Medicine
Fall. 4(4-0) Admission to the professional program in a college of medicine.
Principles of systemic physiology germane to the practice of medicine with introduction to clinical physiopathology.

500C. Introductory Physiology for Medicine
Winter. 5(5-0) Admission to the professional program in a college of medicine.
Continuation of PSL 500B.

500D. Introductory Physiology for Medicine
Winter. 4(4-0) Admission to the professional program in a college of medicine.
Concepts and problems in physiology germane to the practice of medicine.

500E. Introductory Physiology for Medicine
Spring. 4(4-0) Admission to the professional program in a college of medicine.
Continuation of PSL 500D.

503. Introduction to Medical Biology
Fall. 5(5-0) Admission to the College of Human Medicine. Interdepartmental with the departments of Biochemistry, Microbiology and Public Health, and Pharmacology and Toxicology. Administered by the Department of Microbiology and Public Health.
Principles of medical biology for medical students.

501. Advanced Cell Physiology
Fall, Winter 5(4-0) PSL 431, PSL 432 or PSL 401, PSL 402, BCH 451, BCH 452, BCH 453 or concurrently, or approval of department; calculus recommended.
Concepts in advanced cellular physiology, including bioenergetics, transport, regulation of metabolic reactions, and specialized cell functions including nerve, muscle, secretory, epithelial and lymphocyte.

502. Advanced Systemic Physiology I
Winter. 5(5-0) PSL 501 or approval of department.
Physiology of the respiratory, nervous, and cardiovascular systems. Principles of physiological control systems.

503. Advanced Systemic Physiology II
Spring. 5(5-0) PSL 802 or approval of department.
Physiology of the renal, gastrointestinal, endocrine, and reproductive systems.

504A. Neuroscience Laboratory I
Winter. 4(3-4) Approval of instructor. Interdepartmental with Biophysics and the departments of Psychology, and Zoology. Administered by the Department of Psychology.
Development of skills in the methods, techniques and instrumentation necessary for research in a variety of areas concerned with neuroscience.