990D. Economic Development Workshop
Fall, Winter, Spring, Summer. 3 to 6 credits. EC 830, EC 851, EC 852 or approval of department.
Critical evaluation of research reports by staff and students. Students write doctoral dissertations in Development and are encouraged to participate in the workshop and may do so while registered for EC 850.

999. Doctoral Dissertation Research
Fall, Winter, Spring, Summer. Variable credit. Approval of department.

EDUCATION
See Administration and Curriculum, Counseling, Educational Psychology and Special Education, and Teacher Education.

ELECTRICAL ENGINEERING AND SYSTEMS SCIENCE

College of Engineering

Electrical Engineering

230. Digital Logic Fundamentals
Fall, Winter, Spring. 4(4-0)
CPS 120 or CPS 251.
Boolean algebra; combinational and sequential system fundamentals and components; arithmetic operations and devices; memory devices and assemblers; data conversion principles; digital integrated circuits; practical engineering design problems.

231. Computer Organization and Usage
Fall, Winter, Spring. 4(4-0) E E 230.
Computer structure and machine language; memory; addressing techniques; computer bus; program segmentation and linkage; microcomputer case study; survey of applications in science and engineering.

275. Consumer Electronics
Fall, Winter, Spring. 3(3-0)
Electronic circuit components and devices; their operation in transmitters, receivers, stereophonies, etc.; Electronic measurements, magnetic recording, speaker systems, and other topics will be considered.

300. Electric Circuits I
Fall, Winter. 4(4-0) MTH 113.

301. Electric Circuits II
Winter. Spring. 4(4-0) E E 300, MTH 214.

302. Basic Electronic Circuits
Spring, Summer. 4(4-0) E E 301, MTH 215.
Volt-ampere characteristics of diodes and transistors. Voltage, current and power amplification. Stability, transient and high-frequency effects. Feedback, oscillators and operational amplifiers.

303. Electronics Laboratory I
Winter, Spring. 10(0-3) E E 300, E E 301 concurrently.
Electronic test equipment and measurement fundamentals. Experimental verification of topics covered in E E 300 and E E 301. Computer-aided circuit analysis and design.

304. Electronics Laboratory II
Fall. 4(0-3) E E 302.

305. Electromagnetic Fields and Waves I
Fall, Winter. 3(3-0) MTH 310, PHY 288.
Vector analysis, Electrostatic fields, EM sources, scalar potential. Poisson's and Laplace's equations, dielectric media, capacitance, and energy storage. Boundary value problems for electrostatic fields.

306. Electromagnetic Fields and Waves II
Winter, Spring. 4(4-0) E E 305.

307. Electromagnetic Fields and Waves III
Spring, Summer. 3(3-0) E E 306; E E 308 concurrently.

308. Fields and Waves Laboratory
Spring, Summer. 1(0-3) E E 306. E E 307 concurrently.
Experimental investigation of: charged particle motion in EM fields, dielectric and magnetic properties and materials, probing of currents and charges, and propagation of transient and steady-state waves. Digital computer solutions for EM field and wave problems.

345. Introduction to Electronic Instrumentation Systems
Fall, Winter, Spring. 4(3-3) PHY 289.
Basic electronic concepts; passive and active components; operational amplifiers, switching devices, equivalent circuits; transducers; signal conditioning, recording, data management, basic elements of control.

355. Deterministic Communication Systems
(455.) Fall, Spring. 3(3-0) E E 301, MTH 214. Interdepartmental with Systems Science.
Communication systems. Representation of signals in time and frequency domain. Processing of signals by linear, simple nonlinear and time-variant systems. Linear and nonlinear, analog and digital modulation and demodulation: for example, AM, FM, PCM.

413. Analysis of Control Systems
(313.) Fall. 4(4-0) E E 301, E E 355 or SYS 312. Interdepartmental with and administered by Systems Science.
Control system characteristics, performance criteria, transient and steady-state responses, error analysis, stability, root locus and frequency response techniques. System design using root locus and frequency response methods.

414. Control Systems Laboratory
(464.) Winter. 10(0-3) E E 304, E E 413. Interdepartmental with Systems Science.
Experimental investigations of feedback systems. Study of solid state controllers. Properties and applications of phase lock loops. Introduction to digital control.

415. Digital Control Systems
Winter. 3(3-0) E E 351, SYS 311, SYS 413. Interdepartmental with Systems Science.
Organization of digital control systems, classical and modern techniques for the design of digital control systems. Hardware and software considerations with emphasis on microprocessor implementation.

418. Introduction to Computer-Aided Circuit Design
Spring. 3(3-0) CPS 120, E E 302.
Introduces the techniques used for automatic formulation, analysis and optimization of linear and nonlinear electronic circuits. Students will write a modest but useful analysis program package.

419. Physical Phenomena and Electronic Instrumentation I
Winter. 4(3-3) PHY 289, PHY 286 with approval of department; MTH 215. Interdepartmental with and administered by Physics.
Concepts of electronics relative to uses in investigations of physical phenomena and their subsequent applications to provide reliable instrumentation. Nuclear radiation detectors, photometers and magnetometers are examples of specific topics covered.

420. Electromechanical Energy Conversion
Spring. 3(3-0) E E 301, E E 306.
Review of electromagnetics; design, specification, and use of d.c. machines in industrial and servo-control applications; synchronous generators and transformers for power systems; three phase power, per unit notation.

421. Power System Analysis
Fall. 3(3-0) E E 307, E E 420.
Model of power system components; analysis and planning techniques including load flow, short circuit, transient stability, voltage and frequency control, economic operation of power systems.

430. Digital Electronics I
Fall. Spring. 3(3-3) E E 350. E E 302.
Diodes and transistors as switching elements; logic families, data conversion circuits; memory circuits; digital subsystem design.

431. Digital Electronics II
Fall, Winter. Summer. 3(3-3) E E 351, E E 430.
Case study of a small computer system; I/O controller design; bus interface requirements, interrupt structure, and data transfer. Digital system design.
433. Digital Electronics Laboratory
Winter, Spring. I(0-3) May reenroll for a maximum of 2 credits. E E 431 or concurrently.

435. Microwave Circuits and Systems
Fall. 3(3-0) E E 307.

436. Radiation and Reception of Electromagnetic Waves
Winter. 3(3-0) E E 307.
Radiation, propagation, scattering and reception of electromagnetic waves; circuit and radiation characteristics of wire and microwave and antenna; radiation fields, self and mutual impedances of antennas and arrays; microwave aperture antennas.

438. Transmission and Radiation Laboratory
Winter. I(0-3) E E 433; E E 436 concurrently.
Microwave transmission and radiation laboratory. Measurement of frequency, wavelength, standing waves, impedance, and power. Experiments on transmission lines, waveguides, cavity resonators, microwave circuits, and circuit and radiation properties of antennas.

456. Applied Probability in Communication Theory
Fall, Winter. 3(3-0) E E 355.

457. Statistical Communication Systems
Spring. 3(3-0) E E 455; E E 467 concurrently.
Representation, processing and filtering of random signals. Performance of digital systems with noise. Optimal digital communications systems. Signal detection, information concepts, coding. Communication systems such as radar, television, PCM, and telephony.

467. Communications Laboratory
Spring. I(0-3) E E 456; E E 457 concurrently.
Experimental investigations on communication theory and information transmission topics from E E 455, E E 456, and E E 457.

474. Physical Principles of Electronic Devices
Fall. 4+4 E E 302; E E 305.
Energy levels in atoms and crystals; density of states; Fermi-Dirac and Maxwell-Boltzmann statistics; transport properties of bulk materials; metal-semiconductor contacts; the p-n junction and BJT.

475. Electronic Devices and Circuits
Winter. 3(3-0) E E 474.
Fabrication technology; models and characteristics of BJT's, JFET's, and MOS devices; application to linear and digital circuits.

476. Applications of Electronic Devices
Spring. 3(3-0) E E 474.
Power devices and applications; transistors, diodes, triacs, and SCR's; high frequency devices and applications; transistors; impulse; Gunn and vacuum devices; photo-devices; solar cells and LED's.

477. Electro-optic Devices
Spring. 3(3-0) E E 306.
Atomic origin and the operational characteristics of light sources and detectors. Basic design considerations for gas and solid state lasers. Methods of optical detection, applications.

478. Integrated Circuit Fabrication Laboratory
Winter, Spring, Summer. 2(1-3) E E 474.
Integrated circuit design and fabrication. Laboratory fabrication of diffused resistors, diodes, capacitors, and simple MOS or bipolar integrated circuits. Yields, testing, and economic considerations.

479. Integrated Circuits: Operational Amplifiers
Spring. 3(3-0) E E 302.

484. Electronic Devices Laboratory
Winter. I(0-3) E E 474.
Measurement of semiconductor bulk properties; device fabrication; experimental study of selected electronic devices and design application based on principles discussed in E E 474.

490. Special Topics in Electrical Engineering
Fall, Winter, Spring. Summer. 1 to 4 credits. May reenroll for a maximum of 12 credits. Approval of department.
Exposition of special topics in electrical engineering.

495. Independent Study
Fall, Winter, Spring. 1 to 3 credits.
Independent study of a topic in electrical engineering of particular interest to the student.

499. Undergraduate Research
Fall, Winter, Spring. 1 to 3 credits.
Independent undergraduate research in contemporary areas of electrical engineering such as: alternative energy, monitoring and control, bioengineering, power systems, integrated electronics, electromagnetic systems.

801. Special Problems
Fall, Winter, Spring. 1 to 4 credits. Approval of department.
Investigation of a topic in electrical engineering compatible with the student's prerequisites, interest, and ability.

809. Computer Arithmetic Algorithm Design
Fall. 4+4 E E 431 or E E 432. Interdepartmental with the Department of Computer Science.
Number systems; fast two-operand and multiprecision addition/saturation; standard, reordered and cellular array multipliers; high-performance dividers; floating-point arithmetic; error control; pipelining.

811. Noise and Fluctuation Phenomena
Spring, of even-numbered years. 3(3-0) Approval of department.
Nyquist formulation of thermal noise; noise phenomena associated with electron tubes, transistors, beam and parametric devices, amplifiers, mixers, and detectors; techniques and equipment for noise measurements.

815. Architecture of Computational Systems
Winter. 3(3-0) CPS 423. Interdepartmental with and administered by the Department of Computer Science.
Overview of computer system organization; theoretical constructs of computer systems; processors, control units, memory, interconnection networks.

822. Analysis of Faulted Power Systems
Winter. 4+4 E E 826.
Symmetrical components; models of generators, transformers, transmission lines; calculation of short circuits for symmetrical and unsymmetrical faults, system protection devices and practice.

823. Power System Stability and Control
Fall of even-numbered years. 3(3-0) SY S 826.
Analysis and simulation of small and large disturbances stability of power systems; generator, exciter, voltage regulator models; design of excitation systems and power system stabilizers.

826. Advanced Linear Systems Analysis
Fall. 3+4 E E 826.
Unified analysis of linear continuous-time and discrete-time systems for both time-invariant and time-varying models; mathematical descriptions, transforms, state models; transition matrices, solution techniques, controllability, observability, stability.

831. Active Network Synthesis
Fall. 3+4 E E 334. Interdepartmental with and administered by Systems Science.

835. Electromagnetic Theory
Fall. 3(3-0) Approval of department.
836. Electromagnetic Waves I
Winter. 3(3-0) E E 835.

837. Electromagnetic Waves II
Spring. 3(3-0) E E 836.

841. Fourier Optics
Spring of even-numbered years. 3(3-0) E E 455 or E E 886. E E 307 or E E 835.
Electromagnetic (Fourier) optics and optical information processing. Spatial linear systems. EM optics and scalar diffraction; lenses; optical imaging systems; optical information processing; holography.

847. Communication Engineering
Fall. 4(4-0) E E 456 or approval of instructor. Interdepartmental with Systems Science.

848. Communication Theory
Spring. 3(3-0) E E 487, E E 886, E E 863. Interdepartmental with Systems Science.
Hypothesis testing, decision theory and parameter estimation in communications and signal processing. Optimal filtering techniques. Communication in non-Gaussian noise. Quantum detection theory.

849. Microwave Electronics
Spring of odd-numbered years. 3(3-0) E E 835, E E 875.
Microwave gaseous, solid-state and vacuum devices, active microwave integrated circuits and systems, waves in solid-state plasmas and their applications, parametric amplifiers. Design of microwave amplifiers, oscillators and communication systems.

850. Electrodynamics of Plasmas I
Fall. 3(3-0) E E 835 or PHY 448. E E 874. Interdepartmental with the Department of Physics and Astronomy.
Boltzmann equation; moment equations; two-fluid theory of plasma, waves in cold, warm and anisotropic infinite plasma; waves in bounded plasma structures, energy flow in anisotropic plasmas.

863. Analysis of Stochastic Systems
Winter. 3(3-0) E E 415, E E 456. Interdepartmental with and administered by Systems Science.
Analysis and modeling of stochastic signals and systems. Topics include stochastic models, description, identification, stationarity, ergodicity, correlation and power spectrum, linear stochastic systems, harmonic analysis, Markov processes, Poisson processes.

871. Integrated Circuit Engineering
Spring. 3(3-0) E E 475.

874. Physical Electronics
Fall. 4(4-0) Approval of department. Application of quantum mechanics to solids, band theory of semi-conductors, electrical transport phenomena, induced current concept, charged particle dynamics, electron optics.

875. High Speed Solid State Devices
Winter. 3(3-0) E E 474.
Formulation of operating properties and appropriate models of devices formed with semiconductors and solid state materials. Emphasis is on performance limitations of high speed integrated circuit unipolar and bipolar devices.

876. Semiconductor Power Devices
Spring of even-numbered years. 3(3-0) E E 474.
Formulation of operating properties and appropriate models of devices formed with semiconductors and related materials. Performance limitations of semiconductor power devices due to voltage, temperature and power considerations.

890. Signal Analysis
Winter. 3(3-0) Approval of department. Interdepartmental with Systems Science.

899. Advanced Topics in Electromagnetics
Fall. Winter, Spring. Summer. 2 to 4 credits. May be repeated for a maximum of 4 credits. E E 835 and approval of department.
Topics will be drawn from contemporary research areas such as transient electromagnetics (SEM solutions), open-boundary waveguides, solid-state lasers, and microwave plasmas.

911. General Automata Theory I
Fall of odd-numbered years. 3(3-0) CPS 423 or SYS 827 or approval of department. Interdepartmental with and administered by the Department of Computer Science.
Characterization of machines and programs as automata; mathematical decomposition of finite automata.

912. General Automata Theory II
Winter of even-numbered years. 3(3-0) CPS 911. Interdepartmental with and administered by the Department of Computer Science.

913. General Automata Theory III
Spring of even-numbered years. 3(3-0) CPS 912. Interdepartmental with and administered by the Department of Computer Science.

921. Advanced Computer Systems I
Fall of odd-numbered years. 3(2-3) CPS 827, graduate course in operating systems. Interdepartmental with and administered by the Department of Computer Science.
Models of single and multiple processors, their computational power, and measures of performance. Interconnection networks, data driven machines, and pipelines.

922. Advanced Computer Systems II
Winter of even-numbered years. 3(2-3) CPS 921. Interdepartmental with and administered by the Department of Computer Science.
Design and characterization of parallel algorithms. Matching of algorithms with appropriate hardware configurations. Programming languages which support parallel computation.

926. Antenna Theory I
Winter of even-numbered years. 3(3-0) E E 835.
Wire antennas as radiating, receiving and scattering elements; analytical and numerical integral equation methods; coupled antennas and arrays; transient phenomena.

927. Antenna Theory II
Spring of even-numbered years. 3(3-0) E E 926.
Radiation by equivalent aperture fields, aperture antennas, slot antennas, horn and reflector antennas, frequency independent antennas; pattern theory; scattering from various objects.

929. Advanced Topics in Electromagnetics
Fall. Winter, Spring, Summer. 2 to 4 credits. May be repeated for a maximum of 4 credits. E E 835 and approval of department.
Topics will be drawn from contemporary research areas such as transient electromagnetics (SEM solutions), open-boundary waveguides, solid-state lasers, and microwave plasmas.

931. Electronic Properties of Semiconductors
Winter of odd-numbered years. 3(3-0) E E 874.
Advanced treatment of phenomena basic to semiconductor materials and devices. Electronic transport, high field effects, recombination theory, electro-optical phenomena, experimental characterization techniques.

932. Topics in Solid State Device Research
(930.) Spring of odd-numbered years. 3(3-0) E E 874.
Relationship of solid state theory and material properties to device performance. Topics selected from current device research areas and vary with year. Examples are photovoltaic, amorphous semiconductor, and piezoelectric devices.

947. Topics in Communications
Fall of odd-numbered years. 3(3-0) May be repeated for a maximum of 6 credits. E E 848. Interdepartmental with Systems Science.
Advanced treatment of a topic or group of topics of current research interest in the field of communications, information theory and signal processing.

975. Quantum Electromagnetics
Winter of odd-numbered years. 3(3-0) E E 874.
Emission, absorption and amplification of radiation; energy levels for optically active materials; kinetic modeling of plasma and chemically reacting plasmas; rate equation modeling and empty cavity modes of lasers and masers.

976. Lasers and Masers
Spring of odd-numbered years. 3(3-0) E E 975.
Advanced modeling of lasers and masers, quantization of wave fields, line width, multimode phenomena, mode locking, ring and Zeman lasers, recent developments and applications.
999. Electrodynamics of Plasmas II
Winter of odd-numbered years. (3-0-0)
E E 850. Interdepartmental with the Department of Physics and Astronomy.
One fluid plasma model, magnetohydrodynamics, Maxwell's stress tensor, low frequency waves, transport phenomena, Landau damping, collision and rate coefficients. Distributions in a magnetic field; investigation of dc, rf and microwave discharges.

999. Doctoral Dissertation Research
Fall, Winter, Spring, Summer. Variable credit. Approval of department.

Systems Science

311. Discrete-Time Systems
Fall, Winter. (3-0) MTH 215.
Discrete-time modeling, discrete-time signals, difference equations, convolution summations, z-transform, transfer functions, stability analysis, digital filters.

312. Linear Systems Modeling and Analysis
Winter. (3-0) SYS 311, MTH 310.
Continuous-time system models, signal representation, convolution, transform techniques, stability, transients, steady-state, state-space modeling and analysis procedures, transition matrix computations, continuous and discrete-time examples.

355. Deterministic Communication Systems
(455.) Fall, Spring. (3-0) E E 301, MTH 214. Interdepartmental with and administered by Electrical Engineering.
Communication systems. Representation of signals in time and frequency domain. Processing of signals by linear, simple nonlinear and time-variant systems. Linear and nonlinear, analog and digital modulation and demodulation; for example, AM, FM, PCM.

404. Biological and Ecological Concepts for Engineers and Mathematicians
Winter. (3-0) Approval of department. Interdepartmental with and administered by the Department of Zoology.
Biological and ecological concepts important to formal analysis of living systems, vital properties, processes, and limitations; population dynamics, selection competition, and predation; ecological community structure and function; industrialized ecosystems.

410. Systems Methodology
Winter. (3-0) MTH 113, CPS 110 or CPS 120.
The systems approach in multidisciplinary large scale problem solving. The development of useful systems analysis tools; systems design; feasibility study; computer simulation for feasibility evaluation.

411. Systems Project
Spring. (3-0) SYS 410.
Completion of a systems study initiated in SYS 410. The project may involve the design of hardware, simulation of a solution to an interdisciplinary problem, or development of a solution concept.

413. Analysis of Control Systems
(313.) Fall. (4-0) E E 301, E E 355 or SYS 315. Interdepartmental with Electrical Engineering.
Control system characteristics, performance criteria, transient and steady-state responses, noise analysis, stability, root locus and frequency response techniques. Controller design using root locus and frequency response methods.

414. Controls Systems Laboratory
(404.) Winter. (1-0-3) E E 231, E E 304, E E 413. Interdepartmental with and administered by Electrical Engineering.
Experimental investigations of feedback systems. Study of solid state controllers. Properties and applications of phase lock loops. Introduction to digital control.

415. Digital Control Systems
Winter, (3-0) E E 231, SYS 311, SYS 313.
Interdepartmental with and administered by Electrical Engineering.
Organization of digital control systems, classical and modern techniques for the design of digital control systems. Hardware and software considerations with emphasis on microprocessor implementation.

416. Systems Concepts for Biologists
Winter. (3-0) Approval of department.
Basic concepts of systems science important to formal analysis and control of biological communities, with emphasis on modeling and an analysis of behavior through numerical solutions.

422. Process Optimization Methods
Fall. (3-0) MTH 310. Interdepartmental with and administered by the Department of Chemical Engineering.
Methods for determining optimum design and operating policies of systems of varying complexity. Includes classical methods, mathematical programming and modern methods.

495. Independent Study
Fall, Winter, Spring, Summer. 1 to 3 credits. May reenroll for a maximum of 3 credits in SYS 495 and E E 495 combined. Approval of department.
Independent study of a topic in systems science of particular interest to the student.

499. Undergraduate Research
Fall, Winter, Spring. 1 to 3 credits. May reenroll for a maximum of 6 credits in SYS 499 and E E 499 combined. Approval of department.
Independent undergraduate research in contemporary areas of systems science.

801. Special Problems
Fall, Winter, Spring. 1 to 4 credits. May reenroll for a maximum of 8 credits. Approval of department.

810. Introduction to Linear System Theory
Fall. (3-0) MTH 214. Interdepartmental with Social Science (College of).
A first course in system theory for students from a variety of disciplines. Mathematical representation of system variables, transform and state space methods of analysis, introduction to control theory, applications to physical, economic and social systems.

811. System Methodology and Simulation
Winter. (3-0) SYS 810, STT 441. Interdepartmental with the College of Social Science.
Problem definition, design of abstract models for system design and control, simulation of systems described by differential and difference equations, generation of random variables, simulation of discrete object stochastic systems, simulation languages, applications to physical, economic and social systems.

813. System Project
Spring. (3-0-1) SYS 811. Interdepartmental with Social Science (College of).
Individual or team application of simulation methods to system design and/or management.

824. Modern Control Systems
Winter. (4-0) MTH 310. MTH 334. Interdepartmental with Electrical Engineering.
Unified analysis of linear continuous-time and discrete-time systems for both time-invariant and time-varying models; emphasis on computer implementation and emphasis on system analysis and design techniques; applications to economic, social and biological systems; other topics of current interest.

826. Modern Linear Systems Analysis
Fall. (4-0) MTH 310. MTH 334. Interdepartmental with Electrical Engineering.
Unified analysis of linear continuous-time and discrete-time systems for both time-invariant and time-varying models; emphasis on computer implementation and emphasis on system analysis and design techniques; applications to economic, social and biological systems; other topics of current interest.

827. Nonlinear Concepts in Systems Science
Fall. (4-0) SYS 826.
Existence, uniqueness and stability in nonlinear systems; autonomous systems and the phase space; linearization, perturbation, describing functions and harmonic balance procedures; numerical solutions.

829. Modern Control Systems
Spring. (4-0) STT 441, SYS 826.
Stochastic processes and white noise; analysis of linear continuous-time control systems; state feedback design; optimal linear and Kalman filter design; linear discrete-time control systems.

835. Nonlinear Optimization Models
Winter, Summer. (4-0) Students may not receive credit for both SYS 835 and MGT 835. MTH 215 or MTH 228, MGT 834 or CHE 465. Interdepartmental and jointly administered with the Department of Management. Interdepartmental with the Department of Chemical Engineering.
Nonlinear optimization-examples and applications, Kuhn-Tucker Theory, saddle point optimality conditions, algorithms for problems with constraints. Unconstrained optimization; introduction to search methods.

838. Feasibility Analysis of Energy Systems
Spring. (3-0) STT 441.
Methods for selecting energy conversion and transmission facilities with emphasis on electric utilities. Demand forecasting system reliability, selection of size, type and location of conversion facilities, cost analysis.
Descriptions – Electrical Engineering and Systems Science

Courses

841. Optimization of Urban Traffic Flows
Fall of odd-numbered years. 3(3-0)
Approval of department. Interdepartmental with Civil Engineering.
Traffic flow models used in design of computerized traffic control systems. Optimal freeway ramp metering algorithms. Offline and online optimization of traffic signal timing.

843. Ecosystem Analysis, Design and Management
Spring. 3(3-0)SYS 442 or ZOL 404.
Interdepartmental with the Department of Zoology.

848. Communication Theory
Spring. 3(3-0)EE 847, EE 880, EE 863.
Interdepartmental with and administered by Electrical Engineering.

851. Modeling of Engineering Systems I
Fall. 3(3-0)ME 458 or EE 415.
Interdepartmental with and administered by the Department of Mechanical Engineering.
Modeling of engineering components and dynamic systems, mechanical, electrical, fluid, thermal, and transducer effects. Linear state space responses, impedance methods. Simulation of linear models. Design project.

852. Modeling of Engineering Systems II
Winter. 3(3-0)ME 851.
Interdepartmental with and administered by the Department of Mechanical Engineering.

853. Analysis of Stochastic Systems
Winter. 3(3-0)EE 415, EE 458.
Interdepartmental with Electrical Engineering.
Analysis and modeling of stochastic signals and systems. Topics include stochastic models, description of processes, stationarity, ergodicity, correlation and power spectrum, linear stochastic systems, harmonic analysis, Markov processes, Poisson processes.

880. Signal Analysis
Winter. 3(3-0)Approval of department. Interdepartmental with and administered by Electrical Engineering.

899. Master’s Thesis Research
Fall, Winter, Spring, Summer. Variable credit. Approval of department.

947. Topics in Communications
Fall of odd-numbered years. 3(3-0)
May reenroll for a minimum of 6 credits. EE 845. Interdepartmental with and administered by Electrical Engineering.
Advanced treatment of a topic or group of topics of current research interest in the field of communications, information theory and signal processing.

961. Optimal Control Theory
Fall. 3(3-0)SYS 827, MTH 420.
Optimal control, performance measures, principle of optimality, dynamic programming. Hamilton-Jacobi-Bellman equation, variational approach, constrained extrema, Pontryagin principle, necessary conditions, solution techniques, singular cases.

962. Computational Techniques for Optimal Control
Winter of odd-numbered years. 3(3-0)
SYS 861.
Computational methods of optimal controls, deepest descent, variation of extremals, quasilinearization, gradient projection, dynamic programming, convexity techniques, support functions for reachable sets, current literature.

963. Dynamic System Identification and Control
Spring of odd-numbered years. 3(3-0)
SYS 863, SYS 829.
System identification; dynamic programming; stochastic and adaptive control. Topics under identification include review of statistics background, dynamic system models, identification methods, recursive algorithms, input design, and structure discrimination.

964. Large Scale Dynamic Systems
Winter of even-numbered years. 3(3-0)
SYS 861.
Model simplification; stability of large scale systems; decentralized control; optimization by decompositions and coordination, multilevel hierarchical control, applications.

999. Doctoral Dissertation Research
Fall, Winter, Spring, Summer. Variable credit. Approval of department.

ENGLISH

College of Arts and Letters

091. English for Foreign Students-Structured
Fall, Winter, Spring, Summer. Zero credits. (3.0-0) See page A-1 item 3. English language proficiency examination. Explanation and intensive practice of basic grammatical structures of English. Students are tested and then placed in small groups, from beginning to advanced, depending on their need.

092. English for Foreign Students-Speaking and Listening

093. English for Foreign Students-Language Laboratory
Fall, Winter, Spring, Summer. Zero credits. (3.0-0) See page A-1 item 3. English language proficiency examination. Language laboratory practice in small groups (determined by proficiency). Beginnings review and supplement ENG 091. ENG 092. Advanced groups use carefully prepared lectures, speeches, and presentations to practice structures and vocabulary.