617. Neurology Clerkship
Fall, Winter, Spring, Summer. 1 to 17 credits. May reenroll for a maximum of 34 credits. H M 602.
A combined office and inpatient experience that will provide the student with an opportunity to learn the concepts of evaluation and management of neurological disease.

618. Infectious Disease Clerkship
Fall, Winter, Spring, Summer. 1 to 17 credits. May reenroll for a maximum of 34 credits. H M 602 and MED 608 or PHD 688. Interdepartmental with the Department of Microbiology and Public Health.
The clerkship emphasizes acquisition in depth of knowledge and skills essential in solution of clinical problems in infectious and immunologic diseases. Integrated basic science input is afforded through relevant seminars.

619. Clinical Pharmacology Clerkship
Fall, Spring, 4 credits. H M 602; MED 608 and PHD 688. Understanding and use of drugs; adverse effects; and misuse of drugs.

620. Endocrinology and Metabolism Clerkship
Fall, Winter, Spring, 4 to 8 credits. May reenroll for a maximum of 16 credits. H M 602.
Clinical and/or clinical-research clerkship to allow the student to work closely with patients having endocrine diseases, electrolyte abnormalities, endocrine hypertension or diabetes mellitus.

621. Computer Medicine Clerkship
Fall, Winter, Summer. 4 to 16 credits. May reenroll for a maximum of 16 credits. H M 602.
Learning BASIC computer language; preparing flow chart for elementary management of medical problem.

622. Diabetes and Metabolism Clerkship
Fall, Winter, Spring. 4 credits. H M 602; MED 608 and PHD 688. Clinical experience with diabetic patients and other related endocrine disorders.

624. Geriatrics Clerkship
Fall, Winter, Spring, Summer. 16 credits. H M 602; MED 608 and PHD 608.
Exposure to a wide variety of geriatric medical problems.

626. Physical Medicine and Rehabilitation Clerkship
Fall, Winter, Spring, Summer. 4 to 8 credits. May reenroll for a maximum of 6 credits. H M 602; MED 608 and PHD 688.
Experiences in prescription writing for physical medicine procedures, occupational therapy and rehabilitation skills.

627. Rheumatology Clerkship
Fall, Winter, Spring, Summer. 4 credits. H M 602; MED 608 and PHD 688.
Combined office and hospital consultative clerkship which develops diagnostic skills in areas of rheumatic diseases.

628. Internal Medicine Clerkship
Fall, Winter, Spring, Summer. 16 credits. May reenroll for a maximum of 16 credits. H M 602; MED 608 and PHD 688. Elective experiences in internal medicine.

630. Emergency Medicine Clerkship
Fall, Winter, Spring, Summer. 4 to 8 credits. May reenroll for a maximum of 8 credits. MED 608, PHD 608 or SUR 606; H M 602. Interdepartmental with the Department of Surgery.
Pathophysiology and other basic concepts will be used to explain the development of emergent conditions. Clinical diagnosis and treatment of emergencies seen in community emergency departments will be discussed.

METALLURGY, MECHANICS AND MATERIALS SCIENCE

College of Engineering

201. Introduction to Engineering Mechanics
Winter. 4(4-0) PHY 237. Interdepartmental with the Department of Engineering.
Laws of mechanics governing the behavior of rigid and deformable bodies emphasizing how these laws influence engineering design. Extensive use of demonstrations.

205. Mechanics I
Fall, Winter, Spring. 4(4-0) MTH 215.
Vector description of forces and moments. Two and three dimensional equilibrium problems. Statics of frames and machines. Friction. Shear and moments in beams and shafts.

211. Mechanics of Deformable Solids
Fall, Winter, Spring. 4(4-0) MMM 205, MTH 310 concurrently, MMM 215 concurrently.
Deformable solids, stress and strain, principal axes, material behavior (elastic, plastic, viscoelastic, temperature dependent). Boundary value problems, torsion, beams. Instability, columns.

215. Solid Mechanics Laboratory
Fall, Winter, Spring. 1(0-2) MMM 211 concurrently.
Instrumentation, physical properties of materials, comparison of experiment and theory.

230. Introduction to Materials Science
Spring. 4(4-0) Sophomores.
A qualitative survey of metals, ceramics, and polymers, and the relationship of electronic, molecular and crystal structure to the physical, mechanical, thermal, electrical and magnetic properties.

250. Manufacturing Processes
(M E 280.) Fall, Spring. 3(2-3)
An introduction to the materials and processes used in manufacturing, to convert ideas into products, machines, and structures for the use of people. Extensive use is made of audiovisual techniques. Field trips required.

306. Mechanics II
Fall, Winter, Spring. 4(4-0) MMM 205, MTH 310.
Dynamics of particles and particle systems. Energy and momentum principles. Two and three dimensional rigid body dynamics.

341. Materials Chemistry II
Winter. 4(4-0) CEM 361 or M E 311.
An integrated treatment of the physical chemistry of metals and engineering materials is presented in MMM 341 and MMM 342. Thermochimistry, solutions, phase equilibria; electrochemistry; corrosion; reaction kinetics in liquids and solids; diffusion; surface phenomena.

342. Materials Chemistry III
Spring. 4(4-0) MMM 341. Continuation of MMM 341.

360. Physical Metallurgy I
Fall. 4(4-0) CEM 153 or approval of department.
Relationship of properties to microstructure as affected by solidification transformations in heterogeneous systems, cold work, recrystallization, and grain growth. Emphasis on the important commercial metals and alloys.

371. Metals and Alloys II
Winter. 3(3-0) MMM 370 or approval of department.
Plains carbon steels, alloy steels, stainless steels, tool materials; cast irons, non-ferrous physical metallurgy with specific emphasis on copper, aluminum, titanium, magnesium, zirconium alloys.

380. Physical Metallurgy Laboratory I
Fall. 1(0-3) MMM 380 or concurrently.
First of an integrated sequence of laboratory courses designed to illustrate the parallel theory courses. Introduction to metallography, pyrometry, and testing of metals.

381. Physical Metallurgy Laboratory II
Winter. 1(0-3) MMM 380, MMM 361 concurrently.
Continuation of MMM 380.

382. Physical Metallurgy Laboratory III
Spring. 1(0-3) MMM 381. Continuation of MMM 381.

400. Special Problems
Fall, Winter, Spring, Summer. 1 to 3 credits. May reenroll for a maximum of 9 credits. Approval of department. Individualized reading and research.

404. Dynamics of Mechanical Systems
Fall. 3(3-0) MMM 366.
411. Mechanics of Deformable Solids II
Spring, 3(3-0) MMM 211.
Continuation of MMM 211. Unsymmetrical bonding, curved beams, torsion of non-circular shapes, shear center, beam columns. Introduction to energy theorems with applications to determine and indeterminate beams, and rings.

430. X-Ray Crystallography
Fall, 4(3-3) MMM 342 or approval of department.
Symmetry, elementary crystallography, general properties of X-rays, introduction to radiation safety, interaction of X-rays with matter, application of X-ray diffraction to materials problems.

440. Color and Appearance of Materials
Spring, 3(3-0) Approval of department.
Color in art and technology; light and its interaction with colored materials; light sources and illuminants; color notation and classification; colored materials.

442. Industrial Engineering (M E 442)
Spring, 3(3-0) MMM 280, ECR 392.
Theory and techniques used by industry in planning for manufacturing. Process selection and design, work methods planning, production time standards, materials handling, and plant layout planning.

450. Introduction to Theoretical Metallurgy
Fall, 3(3-0) MMM 370 or approval of department.
Mechanism of solidification, segregation, dislocation theory, deformation of metals, role of grain boundaries, failure of materials, physical properties.

455. Advanced Physical Metallurgy I
Winter, 3(3-0) PHY 364 or approval of department.

456. Advanced Physical Metallurgy II
Spring, 3(3-0) MMM 455.

461. Metallurgical Engineering I
Winter, 3(3-0) MMM 370 or approval of department.

462. Metallurgical Engineering II
Spring, 3(3-0) MMM 461, MMM 450 or approval of department.
Mechanical processing of metals, rolling, forging, welding, extrusion, machining processes, texture, material selection and equipment, quality control.

465. Mechanical Failure Analysis
Spring, 3(3-0) MMM 211, MMM 215, MMM 230 or MMM 370 or approval of department.
Modes and causes of failures of mechanical components. Analysis illustrated through student projects requiring integration of knowledge from several areas.

470. The Cast Alloys
Winter, 4(4-0) MMM 372.

471. Metals and Alloys III
(372.) Spring, 3(3-0) MMM 371 or approval of department.
Experimental methods for physical examination of metals, alloy design, special ferrous and nonferrous alloys, multicomponent eutectics and eutectoids, corrosion, metallic glasses.

475. Alloy Development and Application
Fall, 4(4-0) MMM 361, or approval of department.
Physical metallurgy, development, and applications of special steels and alloys: the high-strength structural steels, machine steels, ultra high-strength steels, maraging steels, corrosion-resistant steels and alloys, high-temperature alloys.

490. Extractive Metallurgy
(450.) Fall, 4(3-2) Approval of department.

806. Optical Strain Measurement
Winter of even-numbered years. 4(3-3) Approval of department.
Whole-field techniques such as photoelasticity, photoelastic coatings, Moiré techniques, and brittle coating. Interferometers and model analysis. Necessary theory of optics is presented.

809. Finite Element Method
Fall. 4(4-0) Approval of department. Interdepartmental with Civil Engineering and the department of Agricultural Engineering. Theory and application of the finite element method to the solution of continuum type problems in heat transfer, fluid mechanics and stress analysis.

810. Introduction to the Mechanics of a Continuous Medium
Fall, Summer, 4(4-0) MMM 211; MTH 421 concurrently or approval of department.

813. Theory of Elasticity I
Winter, 4(4-0) MMM 810; MTH 422 or approval of department.

815. Advanced Strength of Materials I
Fall, Summer, 3(3-0) MMM 211.
Elasticity, energy methods, general bending of straight bars, curved beams, shear center, torsion.

816. Advanced Strength of Materials II
Winter, 3(3-0) MMM 815, MTH 215.
Beams on elastic support, beam columns, axially symmetric stress distribution, symmetrical bending of circular plates, introduction to theory of elasticity.

817. Plasticity
Spring, 4(4-0) MMM 816; MTH 422 or approval of department.
Yield conditions, stress-strain relations, plastic potential, hardening theories; torsion, bending, thick-walled spherical and cylindrical shells under internal pressure, plane strain of perfectly plastic material.

823. Theory of Vibrations I
Fall, 4(4-0) M E 452. Interdepartmental with and administered by the Department of Mechanical Engineering. Discrete and continuous parameter systems with linear and nonlinear characteristics. Variational principles, equations of motion. Matrices, quadratic forms, self-adjoint operators, eigenvalues. Transient and random excitations. Theory developed through physical problems.

832. Electron Microscopy
Spring, 4(3-0) MMM 831 or approval of department.
Theory of image formation in electron microscopy and intensity of electron diffraction. Transmission and replica microscopy.

A-147
840. Symmetry and the Properties of Crystals
Winter. 3(3-0)
Point-group theory and symmetry in tensor properties of crystals; systematic treatment of properties, e.g., electrical polarization, magnetic induction, pyro- and piezo-electricity, elasticity, transport properties and berefringence.

850. Modern Ceramic Materials I
Fall. 3(3-0) CEM 462; PHY 580; approval of department.
Crystalline macrostructure and microstructure of ceramics and glasses; dependence of microstructure on amounts, size, shape, and distribution of phases; modification of microstructure by control of nucleation and growth; composite materials.

851. Modern Ceramic Materials II
Winter. 3(3-0) MMM 580.
Properties of ceramic materials with specific reference to mechanical, optical, electrical, magnetic and thermal properties.

852. Modern Ceramic Materials III
Spring. 3(3-0) MMM 851.
Applications of ceramic materials. Glass-ceramics, nuclear fuel elements, hot-pressed translucent oxides, pre-stressed ceramics, ceramic coating, pyrolytic materials.

860. Theoretical Metallurgy I
Fall. 3(3-0) MMM 342.
Metallurgical thermodynamics, introduction to statistical thermodynamics, kinetics of metallurgical processes.

861. Theoretical Metallurgy II
Winter. 3(3-0) MMM 860.
Introduction to quantum theory of metals, physical properties of metals and alloys.

875. Ferrous Metallurgy
Fall. 3(3-0) MMM 462.
Stoichiometric material and heat balance calculations of the blast furnace, open hearth and electric furnace processes.

876. Nonferrous Process Metallurgy
Winter. 3(3-0) MMM 462.
Stoichiometric material and heat balance calculations in nonferrous extractive metallurgy.

880. Metals and Alloys I
Fall. 3(3-0) MMM 372.
Topics in engineering properties and application of wrought steels for engineers other than metallurgical.

881. Metals and Alloys II
Winter. 3(3-0) MMM 372.
Similar to MMM 845, but with reference to nonferrous alloys.

882. Metals and Alloys III
Spring. 3(3-0) MMM 372.
Similar to MMM 845 but with reference to cast alloys.

885. Seminar
Fall, Winter, Spring. I credit. MMM 890 concurrently.

890. Selected Topics
Fall, Winter, Spring, Summer. 3(3-0)
May reenroll for a maximum of 18 credits if a different topic is taken. Approval of department.
A newly developing area in metallurgy, mechanics, or materials science selected by the department for offering each term. Information on the specific topic to be covered should be obtained from the department office before registration.

899. Master's Thesis Research
Fall, Winter, Spring, Summer. Variable credit. Approval of department.

900. Special Problems
Fall, Winter, Spring. 1 to 6 credits. May reenroll for a maximum of 6 credits. Approval of department.
Individualized reading and research compatible with the student's interest and ability.

909. Elastic Thin Shells
Spring. 4(4-0) MMM 815 or C E 904 or approval of department; MTH 422. Interdepartmental with and administered by Civil Engineering.
Elements of differential geometry, membrane theory of shells, Poiseuille's stress function, deformation and bending of shells of revolution and shallow shells.

911. Theory of Elastic Stability
Fall of odd-numbered years. 4(4-0) MMM 815 or approval of department.
Theory and methods of determining buckling strength and post-buckling behavior of bar, plate and shell elements and of elastic systems.

912. Theory of Plates
Winter. 4(4-0) MMM 815 or C E 904 or approval of department; MTH 422. Interdepartmental with Civil Engineering.
Bending of thin elastic plates with various shapes and boundary conditions; application of energy principles and approximate methods of solution; thick plates, large deflection theory, sandwich plates.

915. Theory of Elasticity II
Spring. 3(3-0) MMM 813 or approval of department.
Saint-Venant bending and torsion. Problems in three-dimensional linear elasticity using the Galerkin vector and Neuber-Papkovitch functions.

918. Theory of Viscoelasticity
Fall of even-numbered years. 3(3-0) MMM 810; MTH 422 or approval of department.

920. Theory of Vibrations II
Winter of odd-numbered years. 4(4-0) MTH 422; M E 823 or approval of department. Interdepartmental with the Department of Mechanical Engineering.
Vibrations of one, two, and three dimensional models of elastic and inelastic continua. Interaction phenomena. Stability. Variational methods. Applications to aeronautics, aerospace, and underwater technology.

921. Theory of Vibrations III
Spring of odd-numbered years. Summer. 4(4-0) MMM 920 or approval of department. Interdepartmental with the Department of Mechanical Engineering.

999. Doctoral Dissertation Research
Fall, Winter, Spring, Summer. Variable credit. Approval of department.

MICROBIOLOGY AND PUBLIC HEALTH

College of Human Medicine
College of Natural Science
College of Osteopathic Medicine
College of Veterinary Medicine

200. Elementary Microbiology
Fall. Winter. 4(3-2) Three terms of Natural Science. Primarily for majors outside the College of Natural Science.
Descriptive biochemistry and related forms of microorganisms, their growth and nature, their application in industry, and their control in public health.

234. Elementary Medical Microbiology
Fall. Winter. 3(3-3) CEM 130, B S 211, approval of department.
Survey of immunology and microbiology with emphasis on pathogenic microorganisms, antimicrobial agents, and laboratory diagnosis.

301. Introductory Microbiology
Fall, Winter, Spring. 3(3-0) CEM 242, CEM 244 or BCH 200.
Fundamentals of microbiology. Ranges of cell structure and activities; nutrition, growth, and importance of major microbial groups.

302. Introductory Microbiology Laboratory
Fall, Winter, Spring. 20-4 MPH 301 or concurrently.
Methodology of microbiology including microcopy, staining, assepsis, culture media and quantification.

310. Food Safety and Microbiology
Fall. 3(3-3) Juniors; CEM 122 or concurrently or approval of department. Not open to students with credit in FSC 440. Interdepartmental with and administered by Food Science.
Effects of food handling, preparation and service on food safety. Microorganisms in foods, sanitation, food borne disease and food service regulations.

400. Bacteriology for High School Science
Summer. 4(4-4) Bachelor's degree and teaching certificate.
Fundamental concepts, experiments, and projects useful in secondary school science courses.

400H. Honors Research
Fall, Winter, Spring. Summer. 2 credits. May reenroll for a maximum of 8 credits. Approval of department.
A four-term research project with thesis.