967. Advanced Research Methods in Education
Fall, Spring, 4(3-1) ED 867 and ED 869, or Ed 969B.
Principles and techniques in survey research with limited consideration of content analysis and observational studies. Sampling, instrumentation, data collection, and data analysis.

968B. Research Analysis in Personnel Work
Winter, Summer. 3(3-0). Approval of department.
Critical review of research and literature in counseling and personnel services.

969. Quantitative Methods in Educational Research
B. Advanced Quantitative Methods in Educational Research
Fall, Winter, Summer. 4(2-1) ED 869 or present and approval of instructor.
Principles and techniques in the application of inferential statistics to educational data with emphasis on the analysis of variance and multiple comparison procedures. Overview of regression techniques.
C. Experimental Design in Education
Winter, Spring, Summer. 4(3-1) ED 969B.
Theory and practice in the design, analysis and interpretation of experimental and quasi-experimental research.

970. Readings and Research in Teacher Education and Professional Development
Spring 3(3-0). Approval of department.
Literature on research on practice in teacher education fields, issues, problems, and skills needed by educational leaders in preservice and inservice teacher education.

971. Externship in Educational Administration
Fall, Winter, Spring. 3 credits. May reenroll for a maximum of 27 credits. Present or part-time position as an educational administrator.
Discussion of participant's current administrative problems and solution strategies; faculty visits to participant's schools and speakers on issues in educational administration.

972. Multidisciplinary Seminar in Educational Administration
Fall, Winter, Spring. 3 credits. May reenroll for a maximum of 18 credits. 9 credits of ED 971.
Discussion of generic problems and issues in administration identified and interpreted through selected readings and speakers from the several behavioral sciences.

973. College Student Personnel Administration I
Fall, 3(3-0). Approval of department.
Emphasis on planning, organization, financing, research, evaluation and administration for programs and services which exist principally to serve individual student needs: counseling, orientation, health, placement, financial aid, etc.

974. College Student Personnel Administration II
Winter, 3(3-0). Approval of department.
Student organizations and activities; student union; on and off-campus living environments. Emphasis on planning, organization, financing, research, evaluation and administration of these programs and services.

975. College Student Personnel Administration III
Spring, 3(0-3) Approval of department.
Analysis of student rights and responsibilities; academic freedom; regulation of student conduct; systems of governance and judicial processes; legal basis for student personnel programs and administration.

977. Teacher Assessment and Development
Fall, 3(3-0). Completion of 27 credits at graduate level.
Concepts of teacher assessment, techniques and instruments for analysis of teaching, current assessment practices, and strategies for teacher development based on needs.

978. Professional Lectures in Educational Administration
Fall, 3(3-0). Graduate students in Educational Administration.
Lectures by faculty in Educational Administration in individual faculty research and service interests, exploration of recent research and other scholarly publications.

982. Seminars in Education
Fall, Winter, Spring, Summer.
Variable credit. Approval of department.
Seminars in the various fields of emphasis.

983. Readings and Independent Study in Education
Fall, Winter, Spring, Summer.
Variable credit. Approval of department.
Study on an individual or group basis in the various fields of emphasis.

984. Laboratory and Field Experience in Education
Fall, Winter, Spring, Summer.
Variable credit. Approval of department.
Supervised advanced graduate practicums, observation, internships, and externships in the various areas of emphasis.

985. Counseling Pre-Practicum
Spring 3(2-1). Doctoral status in college counseling or related area and approval of department.
Seminar emphasizing establishing good interpersonal relationships, self-understanding, an understanding of psychodynamics, and test interpretation as preparation for assuming counseling responsibilities. An opportunity is provided for the study of counseling with limited contacts with clients.

986A. Counseling Practicum I
Fall, 3(0-3). ED 985 or approval of department.
Supervised experience working with college students in a counseling relationship. Group discussions, group supervision and observation of counseling interviews, and individual supervision.

986B. Counseling Practicum II
Winter, 3(3-0). ED 986A.
Supervised experience working with college students in a counseling relationship. Group discussions, group supervision and observation of counseling interviews, and individual supervision.

986C. Counseling Practicum III
Spring, 3(0-3). ED 986B.
Supervised experience working with college students in a counseling relationship in the residence halls. Individual supervision, increased contact hours, and participation in staff activities.

987A. Seminar: Continuing Education and Social Policy
Fall, 3(3-0). May reenroll for a maximum of 6 credits. Majors or approval of department.
Continuing education, as social force impacting and impacted by government and corporate policy. Examination of domestic and foreign examples of interaction between social policy and continuing education.

987B. Seminar: Continuing Education in Higher Education Institutions
Winter, 3(3-0). May reenroll for a maximum of 6 credits. Majors or approval of department.
Patterns, problems, and potential for continuing education in two and four year colleges. Problems of governance, reward system, leadership roles, etc.

988. Behavioral Counseling Laboratory
Fall, Winter, Spring. 1 to 6 credits.
May reenroll for a maximum of 21 credits.
Supervised experience in behavioral counseling (individual and group), community consultation, applied behavioral research, journal manuscript preparation, preparing instructional materials, and instructional management.

990A. Field Experience: Special Education Administration Simulation
Spring, 3(0-9). Approval of department.
Supervised graduate practicum in administration of the Special Education program of a simulated school district.

990B. Field Experience: Special Education Administration
Fall, Winter, Spring. Summer. 3 to 12 credits. May reenroll for a maximum of 18 credits. Approval of department.
Supervised graduate practicum or internship in special education administration.

996. Physiological Measurement in Counseling Psychology
Spring, 3(2-2). ED 414 and approval of department.
Physiological measurement in counseling psychology treatment, training, and research.

999. Doctoral Dissertation Research
Fall, Winter, Spring, Summer.
Variable credit. Approval of department.

ELECTRICAL ENGINEERING AND SYSTEMS SCIENCE

College of Engineering

Electrical Engineering E E

275. Consumer Electronics
Fall, Winter, Spring, 3(3-0).
Electronic circuit components and devices; their operation in transmitters, receivers, stereosystems, etc. Electronic measurements, magnetic recording, speaker systems, and other topics will be considered.

Basic Electronic Circuits
Spring, Summer, 4(4-0) E E 301, MTH 215
Volt-ampere characteristics of diodes and transistors. Voltage, current and power amplification. Stability, transient and high-frequency effects. Feedback, oscillators and operational amplifiers.

Electronics Laboratory I
Winter, Spring, 1(0-3) E E 300; E E 301 concurrently.
Electronic test equipment and measurement fundamentals. Experimental verification of topics covered in E E 300 and E E 301. Computer-aided circuit analysis and design.

Electronics Laboratory II
Fall, 1(0-3) E E 302

Electromagnetic Fields and Waves I
Fall, Winter, 3(3-0) M TH 310, PHY 208
Vector analysis, Electrostatics, EM sources, scalar potential, Poisson's and Laplace's equations, dielectric media, capacitance, and energy storage. Boundary-value problems for electrostatic fields.

Electromagnetic Fields and Waves II
Winter, Spring, 3(3-0) E E 303
Magnetostatic fields; EM sources, vector potential, magnetic media, inductance, and energy storage. Time-varying fields and Maxwell's equations; energy conservation, potential theory, and EM boundary-value problems.

Electromagnetic Fields and Waves III
Spring, Summer, 3(3-0) E E 306; E E 308 concurrently
Application of Maxwell's equations; radiation, propagation, reflection, and power flow of plane wave EM waves; EM boundary-value problems. Transmission line theory; transient and steady state waves, standing and traveling waves, reflections and standing-wave-ratio.

Fields and Waves Laboratory
Spring, Summer, 1(0-3) E E 306; E E 307 concurrently
Experimental investigation of charged particle motion in EM fields, dielectric and magnetic properties and materials, probing of currents and charges, and propagation of transient and steady-state waves. Digital computer solutions for EM field and wave problems.

Introduction to Electronic Instrumentation Systems
Fall, Winter, Spring, 4(3-3) PHY 288
Basic electronic concepts; passive and active components; power; wave generation; switching devices; equivalent circuits; transducers; signal conditioning; recording; data management; basic elements of control.

Control Systems Design
Winter, 3(3-0) SYS 313
Interdepartmental with Systems Science. Controller design via root loci and frequency response methods; controllability, observability; state-space design techniques for continuous and computer-controlled feedback systems; survey of digital control.

Introduction to Computer-Aided Circuit Design
Spring, 3(3-0) CPS 120, E E 302
Introduces the techniques used for automatic formulation, analysis and optimization of linear and nonlinear electronic circuits. Students will write a modest but useful analysis program package.

Physical Phenomena and Electronic Instrumentation I
Winter, 4(3-3) PHY 289, PHY 298 or approval of department. MTH 215 Interdepartmental with and administered by the Department of Physics. Concepts of electronics relative to uses in investigations of physical phenomena and their subsequent applications to provide reliable instrumentation. Nuclear radiations, detectors, photometers and magnetometers are examples of specific topics covered.

Electromechanical Energy Conversion
Winter, 3(3-0) E E 301, E E 303
Review of electromagnetics; design, specification, and use of d. c. machines in industrial and servo-control applications, synchronous generators and transformers for power systems; three-phase power; per unit notation.

Power System Analysis
Spring, 3(3-0) E E 420
Model of power system components; analysis and planning techniques including load flow, short circuit, transient stability; voltage and frequency control; economic operation of power systems.

Digital Electronics I
Fall, 3(3-0) E E 302
Characteristics and applications of digital integrated circuits. Number systems and Boolean algebra. Gates, flip flops, clocks, counters, shift registers, A/D and D/A converters. Basic applications of these devices.

Digital Electronics II
Winter, 3(3-0) E E 430 or CPS 421
Basics of minicomputer and microcomputer based systems. Programming fundamentals. The I/O bus. Interfacing, data acquisition, data storage, and data communication. Practical design problems.

Digital Electronics Laboratory
Winter, Spring, 1(0-3) May reenroll for a maximum of 2 credits. E E 431 or concurrently
Design, construct and test representative digital electronic circuits. Hands-on experience with microcomputers and programmable calculators. Applications in data acquisition and control.

Guided Transmission Systems
Fall, 3(3-0) E E 307
Guided wave theory; normal modes, propagation characteristics in rectangular and circular waveguides. Stripline and microstrip. Electromagnetic resonators; frequency and Q. Circuit theory of waveguiding systems. Scattering matrix; system applications.

Radiation and Propagation of Electromagnetic Waves
Winter, 3(3-0) E E 308
Radiation, propagation, scattering and reception of electromagnetic waves; circuit and radiation characteristics of wire and microwave and antennas; radiation fields, self and mutual impedances of antennas and arrays; microwave aperture antennas.

Transmission and Radiation Laboratory
Winter, 1(0-3) E E 435; E E 436 concurrently
Microwave transmission and radiation laboratory. Measurement of frequency, wavelength, standing waves, impedance, and power. Experiments on transmission line, waveguides, cavity resonators, microwave circuits, and circuit and radiation properties of antennas.

Deterministic Communication Systems
Fall, 3(3-0) Approval of department. Probability theory applied to communications. Representation of signals in time and frequency domain. Processing of signals by linear, simple nonlinear and time-variant systems. Linear and nonlinear, analog and digital modulation and demodulation; for example, AM, FM, PCM.

Applied Probability in Communication Theory
Winter, 3(3-0) E E 455 or approval of department

Statistical Communication Systems
Spring, 3(3-0) E E 456; E E 457 concurrently
Representation, processing and filtering of random signals. Performance of digital systems with noise. Optimal digital communications systems. Signal detection, information concepts, coding. Communication systems such as radar, television, PCM, and telephony.

Control Systems Laboratory
Fall, 2(1-3) E E 303 or E E 345; SYS 313 Interdepartmental with Systems Science. Experimental investigations of feedback systems. Study of solid state controllers. Properties and applications of phase lock loops. Introduction to digital control.
474. **Physical Principles of Electronic Devices**
Fall, 3(3-0) E E 302; E E 305.

475. **Electronic Devices and Circuits I**
Winter, 3(3-0) E E 474.
Analysis and design of devices and circuits based on principles discussed in E E 474. Physical models and operations for BJTs, FETs, and other semiconductor devices.

476. **Electronic Devices and Circuits II**
Spring, 3(3-0) E E 307, E E 475.
Continuation of topics covered in E E 475. Power semiconductor devices, solid state energy-conversion devices. Optoelectronic devices and applications. High-frequency device design, models and applications.

477. **Electro-optic Devices**
Spring of odd-numbered years. 3(3-0) E E 306.
Atomic origin and the operational characteristics of light sources and detectors. Basic design considerations for gas and solid state lasers. Methods of optical detection, applications.

480. **Integrated Circuits: Operational Amplifiers**
Spring, 3(3-0) E E 302.

484. **Electronic Devices Laboratory**
Winter, 1(0-3) E E 475 concurrently.
Measurement of semiconductor bulk properties. Device fabrication. Experimental study of selected electronic devices and design application based on principles discussed in E E 474 and E E 475.

490. **Special Topics in Electrical Engineering**
Fall, Winter, Spring. Summer, 1 to 4 credits. May reenroll for a maximum of 12 credits. Approval of department.
Exposition of special topics in electrical engineering.

495. **Independent Study**
Fall, Winter, Spring. Summer, 1 to 3 credits. May reenroll for a maximum of 3 credits in E E 495 and SYS 495 combined. Approval of department.
Independent study of a topic in electrical engineering of particular interest to the student.

499. **Undergraduate Research**
Fall, Winter, Spring. Summer, 1 to 3 credits. May reenroll for a maximum of 6 credits in E E 490 and SYS 490 combined. Approval of department.
Independent undergraduate research in contemporary areas of electrical engineering such as: alternative energy, monitoring and control, bioengineering, power systems, integrated electronics, electromagnetic systems.

801. **Special Problems**
Fall, Winter, Spring. Summer, 1 to 4 credits. Approval of department.
Investigation of a topic in electrical engineering compatible with the student's prerequisites, interest, and ability.

811. **Noise and Fluctuation Phenomena**
Spring of even-numbered years; Summer of odd-numbered years. 3(3-0) Approval of department.
Quantum formulation of thermal noise; noise phenomena associated with electron tubes, transistors, beam and parametric devices, amplifiers, mixers, and detectors; techniques and equipment for noise measurements.

822. **Electric Energy System Theory**
Fall. 4(4-0) E E 421, MTH 334, SYS 313.
Analysis, control, and operation of electric power systems. Models of generators, transformers, and transmission lines; voltage and automatic generation control, economic dispatch, load flow, short circuit and stability.

831. **Active Network Synthesis**
Fall. 3(3-0) Approval of department.

835. **Electromagnetic Theory I**
Fall. 3(3-0) Approval of department.
Electrostatics, magnetostatics, electrodynamics, Maxwell's equations, force and energy equations, potential functions. Green's function, radiation of electromagnetic waves, plane waves, cylindrical waves, spherical waves.

836. **Electromagnetic Theory II**
Winter, 3(3-0) E E 835.
Electromagnetic radiation from simple antennas; analysis of transmitting and receiving systems; propagation of electromagnetic waves in various media; electromagnetic fields in open-wire lines and waveguides.

837. **Guided Transmission Systems**
Spring, 3(3-0) E E 836.
Discontinuities and impedance in waveguides; equivalent circuits of microwave devices; waveguide excitations; scattering matrix, resonant cavities, microwave circuits.

841. **Fourier Optics**
Spring of even-numbered years. 3(3-0) E E 455 or E E 850, 3(3-0) E E 835.
Electromagnetic (Fourier) optics and optical information processing. Spatial linear systems, EM optics and scalar diffraction; lenses; optical imaging systems; optical information processing; holography.

846. **Analysis of Random Time Functions**
Winter, 3(3-0) Approval of department.
Mathematical models for time-dependent random phenomena; properties of correlation functions and spectral densities; stationarity and ergodicity; response of linear systems to random inputs; introduction to applied harmonic analysis.
Descriptions—ELECTRICAL ENGINEERING AND SYSTEMS SCIENCE

of Courses

913. General Automata Theory III
Spring of even-numbered years. 3(3-0)
CPS 912. Interdepartmental with and administered by the Department of Computer Science.

926. Antenna Theory I
Winter of even-numbered years 3(3-0)
E E 837.
Linear antennas; cylindrical dipole antennas as radiating, receiving and scattering elements; current and charge distributions on antennas; electromagnetic fields of antennas; coupled antennas; linear antenna arrays.

927. Antenna Theory II
Spring of even-numbered years. 3(3-0)
E E 976.
Microwave antennas; slot antennas; slot wave guide arrays; horn and reflector-type antennas; frequency independent antennas; pattern theory.

930. Topics in Solid State Device Research
Spring of odd-numbered years. 3(3-0)
E E 875.
Relationship of solid state theory and material properties to device performance. Topics selected from current device research areas and vary with year. Examples are photovoltaic, amorphous semiconductor, and piezoelectric devices.

975. Quantum Electromagnetics
Winter of odd-numbered years. 3(3-0)
E E 874.
Emission, absorption and amplification of radiation; energy levels for optically active materials; kinetic modeling of plasmas and chemically reacting plasmas; rate equation modeling and empty cavity modes of lasers and masers.

976. Lasers and Masers
Spring of odd-numbered years. 3(3-0)
E E 875.
Advanced modeling of lasers and masers, quantization of wave fields, line width, multimode phenomena, mode locking, ring and Zeeman lasers, recent developments and applications.

989. Waves and Radiations in Plasmas
Winter of odd-numbered years. 3(3-0)
E E 850.
Interdepartmental with the departments of Astronomy and Astrophysics, and Physics.
Plasma oscillation; interaction, electromagnetic fields with plasmas, wave propagation in magnetized media; plasma sheath; radiation of electric source in incompressive and compressive plasmas; electrosound waves; magnetohydrodynamic; research topics in plasmas.

999. Doctoral Dissertation Research
Fall, Winter, Spring, Summer. Variable credit. Approval of department.

Systems Science

150. Introduction to Environmental Systems
(DIC 201) Fall. 3(3-0)
Basic systems concepts presented in a nonmathematical manner. Application to selected ecological topics, e.g., energy, water quality, population dynamics, interaction models. Interactive models provide opportunity for students to play decision-making role.

311. Discrete-Time Systems
Fall, Winter. 3(3-0) MTH 215.
Discrete-time system modeling, discrete-time signals, difference equations, convolution summations, z-transforms, transfer functions, stability analysis, digital filters.

312. Continuous-Time Systems
Winter, Spring. 3(3-0) SYS 311.

313. Analysis of Control Systems
Spring, Summer. 3(3-0) SYS 312.
Control system characteristics, performance criteria, transient and steady-state responses, error analysis, stability, root locus method, frequency response techniques, gain and phase margins.

404. Biological and Ecological Concepts for Engineers and Mathematicians
Winter. 3(3-0) Approval of department. Interdepartmental with and administered by the Department of Zoology.
Biological and ecological concepts important to formal analysis of living systems, vital properties, processes, and limitations; population dynamics, selection competition, and predation; ecological community structure and function; industrialized ecosystem.

410. Systems Methodology
Winter. 3(3-0) IDC 201, MTH 113, CPS 110 or CPS 120 Interdepartmental with the Department of Engineering.
The systems approach in multidisciplinary large scale problem solving. The development of useful systems analysis tools; systems design; feasibility study; computer simulation for feasibility evaluation.

411. Systems Project
Spring. 2(2-0) SYS 410.
Interdepartmental with the Department of Engineering.
Completion of a systems study initiated in SYS 410. The project may involve the design of hardware, simulation of a solution to an interdisciplinary problem, or development of a solution concept.

415. Control Systems Design
Winter. 3(3-0) SYS 313.
Interdepartmental with and administered by Electrical Engineering.
Controller design via root loci and frequency response methods; controllability, observability; state-space design techniques for continuous and computer-controlled feedback systems; survey of digital control.

442. Systems Concepts for Biologists
Winter. 3(3-0) Approval of department. Basic concepts of systems science important to formal analysis and control of biological communities, with emphasis on modeling and on analysis of behavior through numerical solutions.

464. Control Systems Laboratory
Fall, 2(1-3) E E 303 or E E 345; SYS 313.
Interdepartmental with and administered by Electrical Engineering.
Experimental investigations of feedback systems. Study of linear state-space models. Properties and applications of phase lock loops. Introduction to digital control.

465. Process Optimization Methods
Fall. 3(3-0) MTH 310.
Interdepartmental with and administered by the Department of Chemical Engineering.
Methods for determining optimum design and operating policies of systems of varying complexity. Includes classical methods, mathematical programming and modern methods.

475. Introduction to Operations Research
Winter. 4(4-0) MTH 310, CPS 120.
Interdepartmental with and administered by the Department of Agricultural Engineering.
Methodology and basics of operations research; formulation and analysis of probabilistic models of inventory, waiting line, and reliability processes; random process simulation and network planning models.

495. Independent Study
Fall, Winter, Spring, Summer. 1 to 3 credits. May reenroll for a maximum of 6 credits in SYS 495 and E E 495 combined. Approval of department.
Independent study of a topic in systems science of particular interest to the student.

499. Undergraduate Research
Fall, Winter, Spring. 1 to 3 credits. May reenroll for a maximum of 6 credits. Approval of department.
Independent undergraduate research in contemporary areas of systems science.

801. Special Problems
Fall, Winter, Spring, Summer. 1 to 4 credits. May reenroll for a maximum of 8 credits. Approval of department.

810. Introduction to Linear System Theory
Fall. 3(3-0) MTH 214.
Interdepartmental with Social Science (College of).
A first course in system theory for students from a range of disciplines. Mathematical representation of system variables, transform and state space method of analysis, introduction to control theory, applications to physical, economic and social systems.

811. System Methodology and Simulation
Winter. 3(3-0) SYS 810, STT 441.
Interdepartmental with Social Science (College of).
Problem definition, design of abstract models for system design and control, simulation of systems described by differential and difference equations, generation of random variables, simulation of discrete object stochastic systems, simulation languages, applications to physical, economic and social systems.

813. System Project
Spring. 3(3-0) SYS 811.
Interdepartmental with Social Science (College of).
Individual or team application of simulation methods to system design and/or management.

814. Advanced System Methodology and Simulation
Spring. 3(3-0) SYS 811.
Simulation of a class of time-varying distributed parameter processes; organization and design of large simulation models; optimization and parameter estimation for large simulation models; applications to economic, social and biological systems; other topics of current interest.
820. System Dynamics and Control
Spring (4-4-0) MTH 215; knowledge of matrices and Laplace transforms.
Fundamentals of continuous and discrete dynamic control systems; feedback; transform and state variable design techniques; introduction to optimal control design.

826. Linear Concepts in Systems Science
Fall. (4-0) Approval of department.
State-space and frequency domain models of interconnected systems; solution of continuous and discrete-time linear systems; response characteristics; stability.

827. Nonlinear Concepts in Systems Science
Winter. (4-4-0) SYS 836.
Existence, uniqueness and stability in nonlinear systems; autonomous systems and the phase space; linearization, perturbation, describing functions and harmonic balance procedures; numerical solutions.

835. Nonlinear Optimization Models
(827) Winter, Summer. (4-4) Students may not receive credit for both SYS 835 and MGT 835. CHE 465 or MGT 834 or knowledge of linear programming. Interdepartmental and jointly administered with the Department of Management. Interdepartmental with the Department of Chemical Engineering. Nonlinear optimization examples and applications. Kahn-Tucker Theory. Saddle point optimality conditions. Algorithms for problems with constraints. Unconstrained optimization; introduction to search methods.

838. Feasibility Analysis of Energy Systems
Winter. (3-0) STT 441.
Methods for selecting energy conversion and transmission facilities with emphasis on electric utilities. Demand forecasting system reliability; selection of size, type and location of conversion facilities; cost analysis.

841. Optimization of Urban Traffic Flow
Fall of odd-numbered years. (3-0) Approval of department. Interdepartmental with Civ Eng. Engineering.
Traffic flow models used in design of computerized traffic control systems. Optimal freeway ramp metering algorithms. Offline and online optimization of traffic signal timing.

843. Ecosystem Analysis, Design and Management
Spring. (3-0) SYS 442 or ZOL 404. Interdepartmental with the Department of Zoology.
Groups of students from various biological and nonbiological disciplines will synthesize and analyze models of selected biological systems. Project should yield information relevant to solution of contemporary ecological problems.

851. Modeling of Engineering Systems
Fall. (4-0) M.E. 458 or E.E. 415. Interdepartmental with and administered by the Department of Mechanical Engineering.
Modeling of engineering devices and components; analysis into systems; bond graph representation; prediction of dynamic behavior by linear, nonlinear and simulation methods; applications to mechanical, electrical, fluid, thermal systems.

899. Master's Thesis Research
Fall, Winter, Spring, Summer. Variable credit. Approval of department.

961. Optimal Control Theory I
Fall. (3-0) SYS 827, SYS 835 or approval of department. MTH 426.
Formulation of the general control problem; controllability, observability and normality in discrete and continuous-state systems; performance functions; typical control problems.

962. Optimal Control Theory II
Winter. (3-0) SYS 961 or approval of department.
Optimum control theory in continuous-state and discrete-state systems; necessary and sufficient conditions for optimal solutions, geometric interpretations related to calculus of variations; typical applications.

963. Optimal Estimation and Control Theory
Spring. (3-0) SYS 962 or E.E. 847 or approval of department.
Techniques of optimal control and communication theory, development of stochastic control and detection models, state estimation, Kalman filtering, optimal control, computational methods.

999. Doctoral Dissertation Research
Fall, Winter, Spring. Variable credit. Approval of department.

ENGINEERING - Descriptions of Courses

College of Engineering

1255. Orientation to Engineering Careers
Winter. (2-0) Credits earned in this course are included in computation of GPA and MAP but are not included in the 180 credits required for graduation. Engineering careers, history and philosophy of engineering, profession, present and future challenges, industrial job functions, employment trends.

160. Engineering Communications
Fall, Winter, Spring. (4-3-0) MTH 108 or MTH 111 or concurrently.
Engineering graphics, descriptive geometry, freehand sketching, graphical, numerical and computer program solutions. Written technical reports and oral technical presentations.

161. Mechanical Drawing
Fall, Winter, Spring. (2-0-4)
Lettering and use of care of instruments. Orthographic projection, working drawings, machine sketching and isometric drawing.

162. Mechanical Drawing
Fall, Winter, Spring. (2-0-4) EGR 160 or EGR 161.
Continuation of EGR 161 with emphasis on freehand lettering and sketching, advanced working drawings.

200. Technology, Society and Public Policy
Winter. (3-0) Twelve credits from natural science or engineering. Interdepartmental with the Department of Natural Science.
Description and analysis of certain current technologies and their consequences; exploration of avenues for assessing such consequences as an aid to formulation of public policy.

260. Engineering Drawing
Fall, Winter, Spring. (0-6)
The development of the ability to communicate graphically, pictorially, and orally. Orthographic projection, freehand sketching, oral reports and creative problem solving techniques are employed to enhance learning.

267. Architectural Drafting I
Fall, Winter, Spring. (0-6)

270. Computer Graphics
Spring. (3-0) EGR 160 or EGR 161; CPS 110 or CPS 120, or approval of department. Use of computer controlled display systems for the solution of multidimensional problems.

300. Technology and Utilization of Energy
Winter. (3-0) Initial course in any sequence of courses in the Department of Natural Science. Interdepartmental with and administered by the Department of Mechanical Engineering.
Problems of energy technology and its impact; energy sources, conversions, waste and environmental effects, future outlook for mankind.

322. Interior Lighting Design
Fall, Winter, Spring. (2-2-2) HED 213; approval of department. Interdepartmental with and administered by the Department of Human Environment and Design.
The basic principles and practices of interior design lighting, light control, distribution, quality and quantity of light as it affects man's near environment.

344. Engineering Cooperative Education
Fall, Winter, Spring, Summer. Zero credits. (3 credits—See page A-1, item 3) May reenroll for a maximum of six terms. Employment assignment approved by College of Engineering.
Pre-professional employment in industry and government related to student's major.

A-73