PHYSICAL SCIENCE PHS

College of Natural Science

203. Foundations of Physical Sciences
Fall, Winter, Spring, Summer. 4(3-3)
Primarily for elementary school teachers.
Integrated descriptive course in the elements of physical science including the interrelations among chemistry, geology, meteorology, astronomy, and physics.

400. Physical Science for Teachers
Fall, Winter, Spring, Summer. 3 or 4 credits. May re-enroll for a maximum of 12 credits. Teacher certification with science major or minor.
For in-service teachers stressing process, inquiry, meaning and field experience. Topics will be generated from the classroom experiences of participants.

410. Seminar on Recent Advances in Physical Science
Fall, Winter, Spring, Summer. 3(3-0)
May re-enroll for a maximum of 6 credits if different topic is taken. Approval of department.
A series of lectures by senior faculty of topics on the history, development, the most recent advances and the possible future and limits of the physical sciences.

412. Seminar on Man, His Earth
Fall, Winter, Spring, Summer. 3(3-0)
Approval of department.
A summary by senior faculty from Astronomy, Anthropology, Botany, Geology, Meteorology, and Zoology of new ideas, methods, and theories employed by current researchers to unravel the mysteries of the origin of the earth, its interior, the forces developing the scenic surface features, and the evolution of life in its historical setting.

880. Problems in Physical Science
Fall, Winter, Spring, Summer. 1 to 12 credits. May re-enroll for a maximum of 18 credits. Bachelor's degree in a physical science.

PHYSICS — Descriptions of Courses

201. The Science of Sound I
Rock, Bach and Oscillators
Winter. 3(3-4) 287 or 400 Interdepartmental with the Mechanical Engineering Department.

202. The Science of Sound II
Spring. 3(3-0) or 4(4-0) 201. Interdepartmental with and administered by the Mechanical Engineering Department.

237. Introductory Physics
Fall, Winter. 3(4-0) MTH 102 or 109 or 111 or concurrently. Mechanics and heat.

238. Introductory Physics
Winter, Spring. 3(4-0) 237.
Heat, electricity and magnetism.

239. Introductory Physics
Fall, Spring. 3(4-0) 338.
Wave motion, sound, light, and modern developments.

257. Introductory Physics Laboratory
Fall, Winter, Summer. 1(0-2) 237 or 291, or concurrently. Mechanics and heat.

258. Introductory Physics Laboratory
Winter, Spring, Summer. 1(0-2) 238 or 292 or concurrently. Heat, electricity and magnetism.

259. Introductory Physics Laboratory
Fall, Spring, Summer. 1(0-2) 239 or 293 or concurrently. Wave motion, sound, light and modern developments.

281A. Physics I
Fall, Winter, Spring. 3 credits—Self-paced only. MTH 112.
Statistical equilibrium, Newton's laws, power, harmonic motion, rotational motion.

281B. Physics I
Fall, Winter, Spring. 3 credits—Self-paced only. MTH 113; PHY 291 or concurrently.
Extensions of 281, plus: frames of reference, special relativity, rocket equation, forced oscillations, resonances, fluid motion, numerical (computer) solutions, moments of inertia, gyroscopic motion.

282A. Physics II
Fall, Winter, Spring. 3 credits—Self-paced only. MTH 111; PHY 291 or concurrently.
Microscopic origin of heat flow and first law of thermodynamics, electric and magnetic forces and sources, direct currents.

282B. Physics II
Fall, Winter, Spring. 3 credits—Self-paced only. 281, or 291A, or 287, or 291B, or concurrently.
Extensions of 282, plus: entropy, transport phenomena, general relativity, electromagnetics, solids, liquids, plasma, Maxwell's equations, electro-magnetic fields, energy, alternating currents, and other electricity and magnetism applications, numerical (computer) solutions.
Descriptions — Physics of Courses

283. Basic Physics III
Fall, Winter, Spring. 2 credits—Self-paced only. 291, or 282A, or 288, or 289, or 292A or 292B.

Physics of sound, light, and optical instruments, wave-particle duality, radiocactivity, fission and fusion, elementary particles, fundamental forces of nature.

283A. Physics IIIA
Fall, Winter, Spring. 1 credit—Self-paced only. 282, or 282A, or 289, or 292A, or 292B; MTH 214 or approval of department.

Extension of the 283 material, plus topics in: spectral origins and analysis, optics, standing wave phenomena, diffraction, quantum mechanics, numerical (computer) solutions, nuclei.

284. Calculus Concepts in Physics I
Fall, Winter, Spring, Summer. 2 credits—Self-paced only. 237 and MTH 113.

Extension of 237 involving calculus concepts. 237 plus 244 equals 287. Kinematics, dynamics, rigid body motions, energy, and oscillatory motion.

285. Calculus Concepts in Physics II
Fall, Winter, Spring, Summer. 2 credits—Self-paced only. 238, 284, and MTH 214.

Continuation of 238 involving calculus concepts. 238 plus 237 equals 289. Electrostatic interactions, magnetic fields: forces and sources, magnetostatics, and electrical circuits.

286. Calculus Concepts in Physics III
Fall, Winter, Spring, Summer. 2 credits—Self-paced only. 239, 285, and MTH 214.

Extension of 239 involving calculus concepts. 239 plus 238 equals 290. Wave Phenomena, photons, atomic states and transitions, quantum mechanics, subatomic phenomena.

287. Principles of Physics
Fall, Winter, Spring. 4(5-0) MTH 113.

Mechanics.

288. Principles of Physics
Fall, Winter, Spring. 4(5-0) 287;

MTH 214 or approval of department.

Heat and thermodynamics, electricity and magnetism.

289. Principles of Physics
Fall, Winter, Spring, Summer. 4(5-0) 288; MTH 214 or approval of department.

Wave motion, sound, light, and modern developments.

291. Physics I
Spring. 4(5-0) MTH 214 or concurrently.

First of a five-term course sequence in elementary physics consisting of 291, 292, 293, 294, and 395. In this sequence the principles of physics are presented in a unified manner that emphasizes modern concepts. Mechanics, including special relativity.

291A. Honors Physics IA
Fall, Winter, Spring. 1 credit—Self-paced only. MTH 113, PHY 281A or 287.

Subjects and topics as in 287, generally on a more advanced level and less closely prescribed.

291B. Honors Physics IB
Fall, Winter, Spring. 5 credits—Self-paced only. MTH 113.

Combined course, equivalent to 287 plus 291A.

292. Physics II
Fall. 4(5-0) 291; MTH 215 or concurrently.

Continuation of 291. Electricity and magnetism with some special relativity.

292A. Honors Physics IIA
Fall, Winter, Spring. 1 credit—Self-paced only. MTH 214; PHY 281A, or 287, or 291A, or 291B, or 292A.

Subjects and topics as in 288, generally on a more advanced level and less closely prescribed.

292B. Honors Physics IIB
Fall, Winter, Spring. 5 credits—Self-paced only. MTH 214; PHY 281A, or 287, or 291A, or 291B, or 292A.

Combined course, equivalent to 288 plus 292A.

293. Physics III
Winter. 4(5-0) 292.

Continuation of 292. Wave physics including optics.

293A. Honors Physics IIIA
Fall, Winter, Spring. 1 credit—Self-paced only. MTH 215; PHY 282A, or 288, or 292A, or 292B.

Subjects and topics as in 289, generally on a more advanced level and less closely prescribed.

293B. Honors Physics IIIB
Fall, Winter, Spring. 5 credits—Self-paced only. MTH 215; PHY 282 and 282A, or 288, or 292A, or 292B.

Combined course, equivalent to 290 plus 293A.

294. Physics IV
Spring. 4(5-0) 293 or 289.

Continuation of 293. Introduction to quantum physics.

297. Principles of Physics Laboratory
Fall, Winter, Spring. 1(0-3) 281, or 287, or 291B or 292 or concurrently.

Experiments in general and modern physics.

298. Principles of Physics Laboratory
Winter, Spring. 1(0-3) 282A, or 292A, or 292B, or 293 or concurrently.

Heat and thermodynamics, electricity and magnetism.

299. Principles of Physics Laboratory
Fall, Winter, Summer. 1(0-3) 283, or 289, or 293, or 293B, or 294 or concurrently.

Wave motion, sound, light, and modern developments.

301. Bohr and Einstein: The Concept of Nature in Our Day
Fall. 3(0-0) Juniors.

Basic contemporary ideas about the natural world and their significance for man presented through study of the lives of Niels Bohr (quantum theory) and Albert Einstein (relativity theory).

304. Special Problems
Fall, Winter, Spring. 1 to 5 credits. May re-enroll for a maximum of 5 credits. Approval of department.

310. Calculus Concepts in Physics
Fall, Winter, Spring. 5(5-0) 237, 238, 239; MTH 214.

A transition course to prepare students who had non-calculus introductory physics for upper-division courses. Discussions and problems in mechanics, electricity and magnetism, wave motion and modern physics. Familiarity with non-calculus introductory physics is assumed.

357. Topics in Contemporary Physics
Spring. 4(4-0) One year of general college physics.

Atomic and nuclear physics, cosmic rays and elementary particles, nuclear energy, new theoretical concepts. Recommended for prospective high school teachers.

364. Introduction to Modern Physics I
Fall, Winter, Spring. 3(3-0) 289 or 293B or approval of department.

Atomic structure, wave and particle aspects of radiant energy; optical and X-ray spectra.

365. Introduction to Modern Physics II
Winter, Spring. 3(3-0) 289 or 294.

Nuclear, molecular, solid state and elementary particle physics. Special emphasis is given to applications such as reactors, superconductors, semi-conductors, fusion reactions, particle accelerations, etc.

368. Elementary Solid State Physics I
Winter. 3(3-0) 289 or 294.

Crystal structure and binding; lattice dynamics, specific heat, thermal conductivity; free electron theory of metals, conductivity, optical properties; elementary band theory; Hall effect, effective masses in metals and semi-conductors.

369. Elementary Solid State Physics II
Spring. 3(3-0) 368.

Ferroelectricity, paramagnetism, ferrimagnetism, antiferromagnetism, domain walls; point defects, and dislocations in metals, formation and motion energies, internal friction, radiation damage.

392. Physics II Laboratory
Fall. 1(0-3) 287 or 291B or 292 or concurrently.

Experiments in classical mechanics and electricity and magnetism.

393. Physics III Laboratory
Winter. 1(0-3) 289, or 292B, or 293 or concurrently.

Experiments in wave motion and optics.

394. Physics IV Laboratory
Spring. 1(0-3) 289 or 293B, or 294 or concurrently.

Experiments in general and modern physics.

395. Physics V
Fall. 3(3-0) 293B, or 294, or 364.

Continuation of 294. Thermodynamics and statistical physics.

400H. Honors Work
Fall, Winter, Spring. Variable credit.

404. Special Problems
Fall, Winter, Spring. 1 to 5 credits. 289 or 293; approval of department.

419. Physical Phenomena and Electronic Instrumentation I
Winter. 4(3-3) 293 or 293B; MTH 215. Interdepartmental with Electrical Engineering.

Concepts of electronics relative to use in investigations of physical phenomena and their subsequent applications to provide reliable instrumentation. Nuclear radiation detectors, photometers and magnetometers are examples of specific topics covered.

A-150
420. **Physical Phenomena and Electronics Instrumentation II**
Spring. 3(2-3) 419.
Noise and its characterization. Typical electronics instruments are analyzed in detail. A reliable instrument that uses a physical effect is developed by the student.

427. **Intermediate Mechanics**
Fall. 3(3-0) 289 or 293B; MTH 205.
Statics and dynamics of a particle and of rigid bodies; linear and non-linear oscillations; gravitation from a field point of view; transformation properties of physical quantities; introduction to mathematical techniques of theoretical physics.

429. **Advanced Mechanics**
Spring. 3(3-0) 428.
Advanced methods of theoretical mechanics; generalized coordinates; Lagrange's and Hamilton's equations; the wave equation, theory of vibrations.

431. **Laboratory for Radioactivity and Radiisotope Techniques**
Spring, Summer. 2(3-0) or 3(3-0) One year each of general college chemistry and physics. Interdepartmental with the Department of Chemistry. First 7 weeks. Elementary nuclear processes and properties with emphasis on radioactivity, its measurement, and its interaction with matter. Effects of radiation on chemical and biological systems. Applications of nuclear technology, safety and environmental factors. Last 3 weeks. Fundamentals of nuclear models, reactions and decay mechanisms. Basic principles of nuclear reactors and accelerators.

432. **Optics**
Fall. 4(3-3) 289 or 293B; MTH 215. Geometrical optics including Fermat's Principle, reflection, refraction, prisms, thin lenses, thick lenses, aberrations, and the effects of apertures and stops, interference.

438. **Optics**
Spring. 4(3-0) 438. Physical optics including Rayleigh-Fourier Principles, diffraction; Fourier transform of wave forms, convolution, diffraction and image formation; holography; polarization.

447. **Electricity and Magnetism I**
Winter. 4(4-0) Eighteen credits in physics including 299 or 293B; MTH 215. Advanced study of electromagnetic phenomena; electrostatic potential from Laplace's and Poiseuille's equations; effects of dielectric and magnetic materials; magnetic fields and potentials; induced c.m.f.; Maxwell's equations; electromagnetic radiation and waves.

448. **Electricity and Magnetism II**
Spring. 4(4-0) 447. Continuation of 447.

457. **Advanced Physics Laboratory (General)**
(Fall.) Fall. 3(1-6) 15 credits in physics including 289 or 293B. Experiments in modern physics of historical interest and in general physics research techniques. Emphasizes experimental methods and proper treatment of data. Independent work encouraged.

457N. **Advanced Physics Laboratory (Nuclear)**
(Fall.) Winter of even-numbered years. Spring of odd-numbered years. 3(1-6) 15 credits in physics including 289 or 293B. Experiments in nuclear physics. Detection of nuclear radiation and determination of nuclear properties. Emphasizes research methods and proper treatment and interpretation of data. Independent work encouraged.

457S. **Advanced Physics Laboratory (Solid State)**
(Fall.) Spring of even-numbered years. Winter of odd-numbered years. 3(1-6) 15 credits in physics including 289 or 293B. Experiments in low temperature and solid state physics. Emphasizes research methods and proper treatment and interpretation of data. Independent work encouraged.

491. **Introduction to Quantum Mechanics I**
Fall. 3(3-0) 294 or 364; MTH 215.
Schrödinger wave equation and its applications; angular momentum; one electron atoms; moments and spin; perturbation methods; absorption and emission of radiation; atomic and molecular structure.

492. **Introduction to Quantum Mechanics II**
Winter. 3(3-0) 491. Continuation of 491.

493. **Introduction to Quantum Mechanics III**
Spring. 3(3-0) 492. Continuation of 492.

497. **Introduction to Elementary Particle Physics**
Fall. 3(3-0) 294 or 364 or 491. Relativistic kinematics, invariance principles. Phenomenological analysis of elementary particle interactions with matter. Weak, electromagnetic and strong interactions. High energy accelerators and techniques in experimental high energy physics.

498. **Introduction to Nuclear Physics**
Spring. 3(3-0) 294 or 364 or 491. Interactions of nuclear radiations with matter; properties of nuclei; alpha, beta, gamma decay; nuclear models; nuclear reactions and elementary applications of scattering theory; reactors, accelerators; introduction to high-energy physics.

817. **Techniques of Theoretical Physics**
Fall. 3(3-0) Graduate students; or approval of department. Application of contour integration to physical problems; basic concepts of theoretical formulation of quantum mechanical systems; solution of physical problem using Green's Functions, the delta function, series, integral transforms.

827. **Theoretical Physics I**
Summer of odd-numbered years. 3(3-0) 428 or approval of department. Vector analysis, mechanics of a particle and of systems of particles. Lagrange's equations, Hamiltonian methods, rotational motion.

828. **Theoretical Physics II**
Summer of even-numbered years. 3(3-0) 448 or approval of department. Special relativity, Maxwell's equations, electrodynamics and electromagnetic waves.

829. **Theoretical Physics III**
Winter. 3(3-0) Approval of department. Principles of thermodynamics; topics in kinetic theory; introduction to statistical mechanics.

830. **Symmetry in Solid State Physics**
Spring. 3(3-0) Graduates or approval of department. Translational symmetry and Bloch's Theorem, reciprocal lattice, Brillouin zones; point groups, representations, character tables, molecular vibrations, group of the wave vectors and band theory of solids, crystal fields.

840. **Electromagnetic Theory I**
Fall. 3(3-0) 428, 448. Electrodynamics; Laplace's equation, Poisson's equation; Green's theorem, solution of boundary problems by method of images; inversion; boundary-value problems in Cartesian, spherical and cylindrical coordinates; spherical harmonics; Bessel functions.

847. **Electromagnetic Theory II**
Winter. 3(3-0) 447. Multipole harmonics; multipole expansions; electromagnetic field of a charge; electromagnetic field of a charge distribution; magnetic fields and potentials; induced c.m.f.; Maxwell's equations; electromagnetic radiation and waves.

849. **Electromagnetic Theory III**
Spring. 3(3-0) 448. Wave guides and resonant cavities, boundary-value problems. Simple radiating systems, antennas. Special relativity, covariancy of electromagnetic fields, transformation of electromagnetic fields. Radiation by moving charges, Lienard-Wiechert potentials.
859. Ionized Gases
Spring. 3(3-0) E E 835 or PHY 443. Interdepartmental with the departments of Astronomy and Astrophysics and Electrical Engineering and administered by Electrical Engineering.
Elastic collision processes; Boltzmann equation; moment equations; basic plasma phenomena; motion of a charged particle in electrical and magnetic field; individual and collective charged particle behavior.

857. Theoretical Mechanics I
Winter. 3(3-0)
Two-body central force problems, rigid body motion, small oscillations, Hamilton’s principle, Lagrangian and Hamiltonian formalism for particles and fields, canonical transformations, relativity.

858. Theoretical Mechanics II
Spring. 3(3-0) Approval of department.
Hamiltonian formalism for particles and fields, variational methods, canonical transformations, small oscillators, classical fields, relativity.

860. General Relativity and Cosmology I
Fall of odd-numbered years. 3(3-0) 858 or approval of department. Interdepartmental with the Department of Astronomy and Astrophysics.
Conceptual foundations of general relativity theory; elements of tensor calculus; Einstein-Christoffel curvature tensor; the field equations; experimental tests; special solutions; the extension to cosmology.

861. General Relativity and Cosmology II
Winter. 3(3-0) AST 860. Interdepartmental with the Department of Astronomy and Astrophysics.
Relativistic cosmology: the model universes; steady-state theory; observational evidence and possibilities for decision among models; current problems.

867. Quantum Mechanics IV
Fall. 3(3-0) 839.
Transformation theory and invariance principles; the rotation group and theory of angular momentum; Wigner-Eckart theorem and applications.

868. Relativistic Quantum Mechanics I
Winter. 3(3-0) 867.
Relativistic equations of motion; Dirac equation, free particle solutions and Lorentz transformation properties; interaction with electromagnetic fields; quantization of scalar, electromagnetic and Dirac fields.

869. Quantized Fields
Spring. 3(3-0) 868. Heisenberg representation, S-matrix reduction formulas, Feynman rules, quantum electrodynamics; topics from many-body theory.

877. Equilibrium Statistical Mechanics
Fall. 3(3-0) Approval of department.
Ensembles, partition functions, thermodynamic potentials with applications to simple thermodynamics; topics from many-body theory.

878. Nonequilibrium Statistical Mechanics
Winter. 3(3-0) 877. Time-dependent Liouville equation, Bloch equation, and master equation, with application to relaxation processes and atomic, molecular, and nuclear systems.

879. Quantum Statistical Mechanics
Spring. 3(3-0) 878. Green’s function techniques with application to transport theory, superconductivity, magnetism.

899. Research
Fall, Winter, Spring. Summer. Variable credit. Approval of department.

927. Elementary Particle Physics I
Fall. 3(3-0) 859.
Properties of elementary particles; invariance principles and conservation laws; strong, electro-magnetic, and weak interactions; pion physics.

928. Atomic Principles II
Winter. 3(3-0) 827.
Baryon and meson resonances, unitary symmetry, dispersion relations.

929. Elementary Particle Physics II
Spring. 3(3-0) 828.
Selected current topics, partial wave amplitudes and Regge poles; current algebra and weak interactions.

937. Molecular Structure and Spectra I
Fall of odd-numbered years. 3(3-0) 837 or concurrently.
Structure and spectra of diatomic molecules.

938. Molecular Structure and Spectra II
Winter of even-numbered years. 3(3-0) 937.
Structure and spectra of polyatomic molecules.

939. Molecular Structure and Spectra III
Spring of even-numbered years. 3(3-0) 938.
Advanced topics in vibration-rotation theory of polyatomic molecules.

947. Solid State Physics I
Fall. 3(3-0) 839 and 840.
Crystal symmetry, crystal binding, lattice vibrations and specific heat, one-electron theory; Hartree-Fock equation, Brillouin zones.

948. Solid State Physics II
Winter. 3(3-0) 947.
Effective mass approximation, exchange and correlation corrections. Theory of conductivity and related effect, metals and semiconductors.

949. Solid State Physics III
Spring. 3(3-0) 948.
Ionic crystals. Imperfections in crystals, plastic deformations, color centers. Optical properties. Rectification, transistors, selected topics.

957. Nuclear Physics I
Fall. 3(3-0) 867.
Nucleon-nucleon scattering, nuclear sizes and shapes, multipole moments; shell model; collective states.

958. Nuclear Physics II
Winter. 3(3-0) 957.
Experimental methods and instrumentation; nuclear reactions; inelastic scattering and particle transfer.

959. Nuclear Physics III
Spring. 3(3-0) 958.
Many-body methods in nuclear physics; Bethe-Goldstone equation; effective interaction; nuclear models.

984. Advanced Readings in Physics or Astronomy
Fall, Winter, Spring, Summer. Variable credit. Interdepartmental with the Department of Astronomy and Astrophysics.

987. Advanced Topics in Physics
Fall, Winter, Spring. 3(3-0) or 4(4-0)
In any one term this course will be devoted to a single topic, such as advanced quantum theory, quantum electrodynamics, specialized topics in solid state physics, statistical mechanics, relativity theory and cosmology.

999. Research
Fall, Winter, Spring, Summer. Variable credit. Approval of department.

PHYSIOLOGY PSL

College of Human Medicine
College of Natural Science
College of Osteopathic Medicine
College of Veterinary Medicine

240. Introductory Physiology
Fall, Spring, Summer. 4(3-2) Sophomores or approval of department.
Survey of the physiology of circulatory system, excretion, nervous system and special senses, digestion, metabolism and endocrinology.

241. Introductory Physiology
Winter, Summer. 4(3-2) 240.
Continuation of 240. Physiology of muscle function and neuro-muscular relationships; exercise, respiration; changes in organ systems in relation to muscular exercise.

323. Physiology, Anatomy, and Hygiene of the Eye
Fall, Summer of even-numbered years. 3(2-2) 240; Elementary Education or Special Education major, or approval of department.
Basic course in anatomy, physiology, and hygiene of the visual system; includes discussion of normal visual functioning and abnormal visual functioning, with methods of correction and educational implications.

331. Human Physiology
Winter. 4(3-2) ANT 316; CEM 132, or approval of department.

332. Human Physiology
Spring. 4(3-2) 331.

401. Comparative Physiology I
Fall. 4(3-2) 460 or BS 215 and CEM 132. Interdepartmental with Department of Zoology.
A comparison of osmoregulation, digestion, respiration, and other physiological processes in a wide range of organisms.