ARTS AND LETTERS

College of Arts and Letters

350H. Perspectives in Literature
Fall. 4(3-0) Juniors, approval of the Honors College.
Attention will be focused on several major literary works. Students will employ various types of literary analysis, considering theme, idea, structure, etc., and examining major trends in contemporary literary criticism.

391H. Perspectives in Philosophy
Winter. 4(3-0) Juniors, approval of the Honors College.
The two primary areas of concern will be ethics and aesthetics, each emphasized on one or the other to be determined by the professor. The course will include reading of major works, discussion of major figures in the field, and the preparation of a substantial paper.

392H. Perspectives in History
Spring. 4(3-0) Juniors, approval of the Honors College.
The focus will be on the nature of international diplomacy in the 20th century, the development of nationalism, the balance of power system, the influence of new ideologies, and the development of the power structure since 1945.

450. Arts Management
Fall, Winter, Spring. 5 to 5 credits. May re-enroll for a maximum of 9 credits. Seniors or Graduate Students or approval of department. Administration of arts organizations, management of facilities, understanding operational methods and procedures of performing companies, financial structure and funding of arts centers, study of audience development, contemporary trends in arts management field.

999. Research
Fall, Winter, Spring, Summer. Variable credit. May re-enroll for maximum of 36 credits. Approval of college.

ASTRONOMY AND ASTROPHYSICS

College of Natural Science

117. Introductory Observing
Fall, Spring. 1(0-2) 119, or 217, or 229 or concurrently and approval of department. Observations of celestial objects, constellation identification, and occasional planetarium exercises.

119. General Astronomy
Fall, Winter, Spring. 4(4-0) Not open to engineering or physical science majors. Students may not receive credit in more than one of the following: 119, 217, 229.
Physical nature of solar system, star clusters, and galaxies as seen by modern astronomers. Limited opportunity for astronomical observations.

120. Topics in Astronomy
Winter, Spring. 4(4-0) 119.
Detailed qualitative discussion of currently interesting topics in astronomy. Quasars, pulsars, black holes, planetary exploration, cosmology, concepts of relativity.

121. General Astronomy
Fall, Winter. 4(4-0) MTH 102. Students may not receive credit in more than one of the following: 119, 217, 229.
Descriptive course intended primarily for physical science majors. A semi-quantitative discussion of time, telescopes, the solar system, stars, clusters of stars, galaxies, and cosmology. Limited opportunity for astronomical observations.

229. General Astronomy
Spring. 4(4-0) PHY 289 or 291 or concurrently. Students may not receive credit in more than one of the following: 119, 217, 229.
Fundamental observations in astronomy and their interpretation through physical laws. Intended for physical science majors and recommended for astrophysics majors. Quantitative discussion of orbital motion, time, telescopes, solar system, stars, galaxies, and cosmology. Limited opportunity for astronomical observations.

327. Practical Astronomy
Spring. 3(3-0) 217, MTH 113.

375. Contemporary Astronomy
Winter. 3(3-0) 119 or 217 or 229, MTH 113 recommended.
A continuation of General Astronomy with particular emphasis on modern developments. Includes interstellar matter, star formation, stellar evolution through final stages, supernova, pulsars, neutron stars, galaxies and cosmology.

437. Observatory Practice
Fall, 3(1-4) 327 and approval of department.

458. Astrophysics
Winter. 3(3-0) 217 or 229, PHY 289, or approval of department.
Application of physical principles to the atmosphere and interiors of stars to deduce their physical properties. Discussion of radiation, spectra and gas properties.

459. Solar System Physics
Spring. 3(3-0) PHY 289 or approval of department.
Properties of the sun, interplanetary space, planets, and satellites as deduced from terrestrial observations and from space probes. Recent results of the NASA space program will be emphasized.

500. Research Methods
Fall, Winter, Spring Summer. 2(0-6)
May re-enroll for a maximum of 6 credits. Beginning graduate students. Interdepartmental with and administered by the Department of Physics.
Problems and techniques of current research by taking part in the design and setup of experiments, data taking and reduction; study and practice of theoretical methods. Areas of study: solid state and molecular structure, nuclear, elementary particles, astronomy, astrophysics.

801. Seminar
Winter. 1(1-0) May re-enroll for a maximum of 2 credits. Graduate students or approval of department.
Seminars to be presented by both faculty and students to review papers in the current astronomical research literature.

819. Stellar Structure
Spring of even-numbered years. 3(3-0)
PHY 395 or approval of department. Physical properties of the stellar interior. Methods of calculating models. Stellar evolution. Comparison of theory with current observations.

829. Extragalactic Astronomy and Observational Cosmology
Spring of even-numbered years. 3(3-0)
Approval of department.

859. Ionized Cases
Spring. 3(3-0) E E 335 or PHY 448. Interdepartmental with the Physics Department and Electrical Engineering, and administered by Electrical Engineering. Elastic collision processes; Boltzmann equation; moment equations; basic plasma phenomena; motion of a charged particle in electrostatic and magnetic field; individual and collective charged particle behavior.

889. Stellar Atmospheres
Spring of odd-numbered years. 3(3-0)
PHY 395 or approval of department. The physics of radiation and the equation of its transfer. Theory of absorption coefficient and line absorption profiles. The gray atmosphere and calculation of model atmospheres.

886. General Relativity and Cosmology I
Fall of even-numbered years. 3(3-0)
PHY 856 or approval of department. Interdepartmental with and administered by the Physics Department.
Conceptual foundations of general relativity theory; elements of tensor calculus; Riemann-Christoffel curvature tensors; the field equations; experimental tests; special solutions; the extension to cosmology.

888. General Relativity and Cosmology II
Winter of odd-numbered years. 3(3-0)
Interdepartmental with and administered by the Physics Department. Relativistic cosmology: the model universes; steady-state theory; observational evidence and possibilities for decision among models; current problems.