331. Design Implementation II Winter. 4(1-6) 330, 343.
Continuation of 330 with the further study of contract documents including bidding procedures, the preparation of a set of construction drawings for the development of a small site, specifications and the construction process.

332. Design Implementation III (432) Spring. 3(3-2) 331, 344.
Construction materials, their proper use, job supervision and office practice.

344. Site Planning for Recreational Facilities Spring. 4(1-6) 345.
The improvement of man's physical environment, plans for public and quasi-public urban buildings and spaces, including parks, playgrounds, marinas and facilities for athletics. Field trips required.

402. History of Environmental Development (302) Fall, Winter, Spring. 4(3-0)
Analysis of man's attempts to organize and design outdoor space, emphasis on major influences, people and historical landscape styles and movements.

421. Bibliographic Research and Methods in Environmental Design Fall. 4(2-2) Senior majors.
Projects in the preparation of a personal biographical dossier and portfolio, based on previous landscape architectural courses, is required from each student as a final examination.

430. Special Projects in Environmental Design Summer. 3(3-0) 318, 332, 345.
The improvement of the design of an individual's physical environment as taught by a sequence of highly regarded professional practitioners and educators in the environmental design professions.

440. Advanced Landscape Design Winter. 5(3-2) 446.
Lectures, readings and laboratory assignments on a variety of landscape design projects. A personal horticultural dossier and portfolio, based on previous landscape architectural courses, is required from each student as a final examination.

441. Terminal Project in Design Spring. 5(2-6) 332, 447.
Completion of a design project selected by the student and approved by the School, involving the preparation of a set of drawings including site design, planting design, construction, rendering and layout.

450. Architectural Design Winter. 4(0-6) Bachelor of Science in Landscape Architecture.
Lectures, discussions, written reports, and studio projects in architectural design, emphasizing complex architectural planning, form structure and site relationships.

455. History of Landscape Design Winter. 3(3-0) Bachelor of Science in Landscape Architecture.
Significant movements, personalities, and projects in landscape design, from ancient to contemporary times, with emphasis on the development of landscape architecture as taught by a sequence of highly regarded professional practitioners.

460. Research Methods Winter. 3(0-6) Bachelor of Science in Landscape Architecture.
Review of traditional and proven research methods in the physical and social sciences utilizing representative case studies as applied to environmental considerations.

465. Seminar Spring. 3(3-0) Bachelor of Science in Landscape Architecture.
Professional philosophy of landscape architecture, the social responsibility of the landscape architect, administrative processes and methods essential for effective professional practice.

470. Design Theory and Implementation—Construction Spring. 3(3-0) Bachelor of Science in Landscape Architecture.
Comprehensive site projects involving construction plans, working drawings, contract documents, cost estimates and office practice.

475. Comprehensive Design Fall, Winter, Spring. 4(0-8) Must be repeated for a total of twelve credits. Bachelor of Science in Landscape Architecture.
Studio projects and discussions emphasizing the synthesis of landscape architectural principles and related disciplines as applied to a wide range of design scales and sites in both urban and regional contexts.

485. Professional Contact Summer. 4(0-8) Bachelor of Science in Landscape Architecture.
Similar to 475, but taught by a sequence of highly regarded professional practitioners and educators in the environmental design professions.

490. Special Problems Fall, Winter, Spring. 2 to 5 credits. May re-enroll for a maximum of 8 credits. Approval of school.
Investigations of landscape architecture, development of course, not available to undergraduate students in landscape architecture, developed from special interest areas.

801. Graduate Landscape Architecture I Fall, Winter, Spring, Summer. 5 to 12 credits.
A series of complex problems of variable subject matter adjusted to the interests and needs of each individual student and designed to emphasize various phases of landscape architecture such as planning and design, drafting and delineation, surveying and construction, contracts, specifications and reports, and city planning.

802. Graduate Landscape Architecture II Fall, Winter, Spring, Summer. 5 to 12 credits. 801.
Continuation of 801.

803. Graduate Landscape Architecture III Fall, Winter, Spring, Summer. 5 to 12 credits. 802.
Continuation of 802.

804. Comprehensive Problem Fall, Winter, Spring, Summer. Variable credit. May re-enroll for a maximum of 15 credits.
Development of a terminal, creative project of subject matter selected by the student and approved by the department, involving the various phases of landscape architecture and submitted to the faculty as evidence of his mastery of the principles of his profession.

VETERINARY MEDICINE

500. Veterinary Medical Communication Fall, Spring. 1(1-0) Admission to the professional veterinary program. Seminars on professional speaking and writing and ethical considerations.

600. Veterinary Medical History, Ethics, and Jurisprudence Fall, Spring, 1(1-0) Admission to the veterinary professional program. Seminars on historical background, ethical principles, and legal responsibilities of the veterinary medical profession.

ZOLOGY

College of Human Medicine

College of Natural Science

College of Osteopathic Medicine

200. Resource Ecology and Man Fall. 4(2-4) Three terms of natural sciences; not open to zoology majors.
Identification of Michigan birds in field and laboratory, including life histories, habits, and consideration of their economics, aesthetic and recreational value.
301. Nature and Man
Spring. 4(2-6) Three terms of natural science; not open to zoology majors. Relates man to his natural environment. Chief emphasis on identifying characteristic animal life in broad areas of nature and how man fits or misfits into these. Lectures, laboratory and field trips illustrate this relationship.

302. Vertebrate Life of the Past
Fall. 3(3-0) Not open to zoology majors. Interdepartmental with and administered by the Geology Department. Fossil vertebrates from fish to man.

304. Biology, Behavior and Man
Winter. 3(3-6) Juniors; not open to zoology majors. Examines philosophical and biological issues which make the study of animal behavior relevant to man. Emphasizes history of animal behavior, current theories, and experiments relating biological and environmental determinants of adaptive and non-adaptive behavior patterns.

305. Biology of Vertebrates
Fall. 4(3-3) B S 212. Not suggested for students having previous experience in vertebrate taxonomy or morphology. Primarily concerned with natural history of vertebrates. Topics include morphological characteristics, ecology, zoogeography, and taxonomy of vertebrate animal groups. Laboratory involves recognition of representative species within the various classes.

314. Comparative Anatomy of Vertebrates
(315.) Winter. 5(3-6) B S 212. Comparative anatomy and evolution of vertebrates. The dogfish and a mammal dissected in the laboratory.

317. Principles of Development
Fall, Spring. 3(3-0) B S 212. Development of animals, especially vertebrates. Principles are illustrated by modern experimental studies of developmental problems.

318. Principles of Development Laboratory
Fall, Spring. 2(0-6) 317 or concurrently; B S 212. Principles of development illustrated by analysis of the ontogeny of selected organisms.

341. Human Heredity
Fall, Winter, Spring, Summer. 4(3-3) Three terms of Natural Science; Sophomores; not open to zoology majors. Students may not receive credit in more than one of the following: 341, 441, 459. Inheritance of human, physical, physiological, and psychological traits, and forces that influence human evolution. Foundation is laid on which applications of heredity in fields of education, sociology, anthropology, psychology, dentistry, and medicine must rest. Course includes field trips to state institutions.

381. Fundamentals of Invertebrate Zoology
Winter. 4(3-3) B S 212. Form and function of representative invertebrates. Meets requirements for a course in invertebrate Zoology. Students expecting to obtain advanced degrees in Zoology or those more interested in a systematic or ecological approach should elect Zoology 481.

389. Animal Ecology
Spring. 4(3-4) B S 212 or concurrently. Animals in relation to their environment. Factors affecting the distribution and abundance of animals. Interrelationships between climate, soil, vegetation, geologic history and animal life. Population characteristics as related to reproduction and mortality factors.

391. Zoological Problems
Fall, Winter, Spring, Summer. 1 to 8 credits. May re-enroll for a maximum of 12 credits. Juniors; B S 212; 6 credits in zoology; approval of department. Advanced work in morphology, field zoology, genetics, mammalogy, ornithology, or ichthyology.

400H. Honors Work
Fall, Winter, Spring. Variable credit. Juniors.

401. Comparative Physiology I
Fall. 4(3-4) B S 240 or B S 212 and CEM 132. Interdepartmental with and administered by the Department of Physiology. A comparison of osmoregulation, digestion, respiration, and other physiological processes in a wide range of organisms.

402. Comparative Physiology II
Winter. 4(4-0) 401 or approval of department. Interdepartmental with the Department of Physiology. A comparison of sensory, motor, endocrine and other integrative mechanisms in animals.

404. Biological and Ecological Concepts for Engineers and Mathematicians
Winter. 3(3-0) Approval of department. Biological and ecological concepts important to formal analysis of living systems, vital properties, processes, and limitations; population dynamics, selection, competition, and predation; ecological community structure and function; industrialized ecosystem.

412. Principles of Animal Behavior
Summer. 4(4-0) For teachers of biology. Not applicable toward major in zoology. Evolutionary, hormonal, and neurological bases of animal behavior.

413. Animal Behavior
Spring. 4(4-0) B S 212. Description of the known behavior of the various vertebrate and invertebrate phyla with emphasis upon adaptive significance. Thus, special attention will be given to mating, defensive, and nutritive behavior. The genetics and ontogeny of behavior will be presented when known. Behavior will be related to the ecology of various animal populations.

414. Biological Mechanisms of Animal Behavior
Winter. 3(3-0) or 5(3-6) 413. Consideration of neurological and hormonal mechanisms controlling behavior. Emphasis will be upon mammalian systems, and will deal with the assumptions which underlie current concepts in the biology of behavior.

415. Ecological Aspects of Animal Behavior
Fall. 4(4-0) 413. Consideration of orientation, navigation and homing behavior, food preferences, habitat selection, exploration, behavioral periodicity, communication, social organization and the ecology of behavior. In both vertebrates and invertebrates.

430. Vertebrate Paleontology
Winter. 4(3-3) 314, or approval of department. Interdepartmental with and administered by the Geology Department. Fossil vertebrates with emphasis on the evolution of major groups. Laboratories on modern techniques and on the identification and interpretation of fossils.

441. Fundamental Genetics
Fall, Spring. 5(5-0) B S 212. Students may not receive credit in more than one of the following: 341, 441, 459. Survey of principles of heredity in animals, plants, and microorganisms. Serves as single course in genetics for majors in any of the biological sciences, and as prerequisite for further work in genetics.

442. Advanced Genetics
Winter. 3(3-0) or 5(2-9) 441; MTH 108 or 111 recommended. Through discussion of quantitative inheritance, linkage and crossing-over, genetic consequences of chromosome aberrations, results of differences in life cycles of animals, plants and microorganisms. Breeding experiments with Drosophila and Neurospora.

443. Developmental Genetics
(441.) Spring. 4(4-0) 441 and 217. Mechanics of gene action. Role of gene in the embryology, morphology, and physiology fields.

455. Experimental Ecology
Spring. 5(2-9) Approval of department. Interdepartmental with the Botany and Plant Pathology Department. Dynamics, regulation and production of biological populations, structure composition and stability of biotic communities; biogeochemical and energetic characteristics of ecosystems.

456. Experimental Analysis of Development
Winter. 3(3-0) or 5(6-3) 317 and 418. Analysis of developmental biology of selected forms, emphasis on cellular and sub-cellular basis of differentiation, stressing modern experimental techniques. Individual laboratory problems as introduction to research methods.

457. Vertebrate Morphology for Teachers
Summer. 4(4-0) B S 212. A comprehensive survey of developmental processes, with special emphasis on results of experimental analysis as they explain the morphogenesis of cells, tissues and organs.

459. Genetics for Teachers of Biology
Summer. 5(5-0) B S 212. Students may not receive credit in more than one of the following: 341, 441, 459. Principles of heredity in animals, plants and microorganisms.

460. Field Ornithology
Summer. 3 credits. B S 215 or approval of department. Given at W. K. Kellogg Biological Station. The study of birds of the regional area, with emphasis on field techniques in relation to problems in avian identification, ecology and behavior.

461. Ornithology
Spring. 4(2-6) 305 or 314. Principles of classification, structure, distribution, migration, life histories, and habits. Laboratory and field identification of birds by size, form, color, song and habitat.

471. Ichthyology
Summer. 3(2-9) 205 or 314. Interdepartmental with and administered by Fisheries and Wildlife Department. Classification and natural history of fishes. Emphasis on food, game, and forage fishes.

480. Field Ornithology
476. Limnology
Winter. 4(3-0) B S 212. Interdepartmental with and administered by the Fisheries and Wildlife Department.
Ecology of lakes and streams with special reference to physical, chemical, and biological factors affecting their productivity.

477. Limnological Methods
Winter. 3(0-0) 491; F W 476 concurrently. ENT 301, 302 recommended. Interdepartmental with and administered by the Fisheries and Wildlife Department.
Methods and instruments of limnological field investigation on lakes and streams.

478. Comparative Limnology
Summer. 6 credits. B S 212 or approval of department. Given at W. K. Kellogg Biological Station.
Theoretical concepts and methods of analysis of environmental parameters influencing productivity of freshwater. Comparative field investigations of lakes, streams, and other aquatic habitats.

480. Biology of Fresh-water and Terrestrial Invertebrates
Summer. 6 credits. 301 or B S 212 and approval of department. Given at W. K. Kellogg Biological Station.
Systematics and ecology of invertebrates with emphasis on the local fauna.

481. Invertebrate Zoology
Fall. 5(3-8) 381 or B S 212 and approval of department.
Biology of invertebrates with special reference to their natural history, classification, distribution, and economic importance.

482. Biology of the Protozoa
Winter. 4(4-0) or 5(3-8). B S 212.
Morphology, physiology, and natural habitats of protozoa.

483. Physiological Ecology
Fall. 4(3-2). 381 or 481.
Physiological aspects of basic ecological principles and concepts.

484. Herpetology
Spring. 3(3-6) 305 or 314.
Classification and natural history of amphibians and reptiles, with emphasis on Michigan species.

486. Mammalogy
Fall. 4(2-6) 305 or 314.
Classification, natural history of mammals, with emphasis on Michigan species. Field studies, preparation of study specimens.

489. Animal Distribution
Winter. 3(2-0). 441; 389 recommended.
Principles and patterns of animal distribution. Emphasis on major faunal regions, centers of origin, and concepts relating to the distribution of modern vertebrates.

491. Quantitative Biology
Fall. 4(4-0) STT 483 or approval of department.
Application of biometrical techniques to biological problems.

492. Cytochemistry
Fall. 4(3-3) B S 212.
General principles of microscopy, microchemistry, fixation, embedding and sectioning of animal tissue; study of various cellular organs and the localization of lipids, carbohydrates, proteins, nucleic acid and various hydrolytic enzymes in the cell.

497. Principles of Endocrinology
Winter. 4(4-0) Organic Chemistry; 317. Interdepartmental with the Department of Physiology.
Hormonal principles, illustrated by experimental observations on vertebrates and invertebrates. Emphasis on cellular endocrinology. Group discussion, background in organic chemistry and cell biology strongly recommended. Term paper required.

516. Malacology
Summer. 3 credits. 491 or approval of department. Given at W. K. Kellogg Biological Station.
Biogeography of mollusks; morphology, classification, distribution, evolution, ecology, and economics. Laboratory and field work will emphasize identification and biology of the local land and fresh-water mollusk fauna.

517. Ecology of Zooplankton
Summer. 4 every third year. 3 credits. Given at W. K. Kellogg Biological Station.
Comparative ecological studies on planktonic animals with special emphasis on life tables, filtering rates, food selection, production, size, predation, niche, and species diversity.

820. Behavior of Animal Populations
Fall. 4(4-0) 413.
Behavior on the ecological level. Characteristics of populations rather than individuals will be stressed. Evolution will be considered on the population level.

821. Ontogeny of Behavior
Winter. 4(4-0) 317, 413.
Changing pattern of behavior during the development of individual animals; effects of external control of the external environment, and neurological and chemical intervention upon behavior.

822. Behavior of Aquatic Animals
Fall. 4(3-5) 413; F W 476 recommended.
Emphasis will be upon vertebrates. Approach will be primarily ecological on adaptation to special aquatic environments.

823. Neurological and Hormonal Correlations of Animal Behavior
Spring. 4(4-0) 414, 415.
Lectures, papers and discussions on the neural and hormonal determinants of animal behavior. Emphasis will be placed upon mammalian behavior.

825. Tropical Biology: An Ecological Approach
Winter, Summer. 12 credits. Approval of department and acceptance by Organization for Tropical Studies. Interdepartmental with and administered by the Botany and Plant Pathology Department.
An introduction in the field to the principles of ecology as they operate in the tropics, especially concerning the tropical environment and biota, ecologic relations, communities, and evolution in the tropics. Given in Costa Rica by Organization for Tropical Studies.

826. Advanced Tropical Zoology
Summer. 12 credits. Approval of department and acceptance by Organization for Tropical Studies.
A field course concerning the adaptation, evolution and physiological characteristics of tropical animal life. The subject of the course might vary from term to term and will be given in the field in Latin America.

830. Advanced Vertebrate Zoology
Winter. 4(4-0) May re-enroll for a maximum of 12 credits. 305; two years of undergraduate zoology and approval of department.
Advanced vertebrate biology including systematics, ecology, distribution, morphology.

838. Population Ecology
Summer. 6 credits. Approval of department. Given at W. K. Kellogg Biological Station. Interdepartmental with the Botany and Plant Pathology Department.
An experimental-field approach to the study of populations and communities. Selected topics will deal with population composition, predation, community structure and species abundance. This course is intended to complement 592.

844. Problems in Human Genetics
Spring. 5(5-0) 441 or approval of department.
Methods used in the study of human genetics and their application to medical, physiological and social problems. Laboratory consists of field trips and independent study selected by the student in consultation with the instructor.

845. Organic Evolution
Winter. 4(4-0) 441 and a course in comparative biology.
A historical view of evolutionary thought, a presentation of the evolution of prebiological systems and a critical evaluation of the evolution of genetic systems.

850. Ultrastructure
Spring. 4(2-6) BOT 427.
New developments in instrumentation and techniques of electron microscopy and their practical application in studying morphological and physiological changes in various organ systems.

854. Histochemistry
Winter. 4(3-4) Two years of undergraduate zoology.

857. Experimental Morphology
Spring. 4(3-1) 317.
Analysis of mechanisms of morphogenesis, particularly as these occur in post-gastrular stages of development. The significance of tissue interactions in developing and regenerating systems will be emphasized.

855. Neuroembryology
Spring. 4(4-0) 318 and approval of department.
Experimental analyses of morphogenesis of vertebrate nervous systems.

859. Analysis of Hormone Action
Spring. 4(4-0) 317 or approval of department. Interdepartmental with the Physiology Department.
Discussion of recent work in the molecular and developmental aspects of hormone action in vertebrates and invertebrates. Selected topics to vary from year to year.

862. Advanced Ornithology: Systematics
Winter of odd-numbered years. 5(3-6)
Courses 862 and 863 constitute an advanced series preferably to be taken in sequence. The first term deals primarily with systematics, including a brief survey of the birds of the world.

863. Advanced Ornithology: Anatomy and Physiology
Winter of even-numbered years. 4(3-8).
Feathers, plumages, and the internal anatomy of birds, including dissection of a pigeon and comparisons with other birds.
<table>
<thead>
<tr>
<th>Course Number</th>
<th>Course Title</th>
<th>Term(s)</th>
<th>Credits</th>
<th>Instructor Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>881</td>
<td>Biology of the Arthropoda</td>
<td>Winter</td>
<td>5(3-6)</td>
<td>481 or approval of department. Interdepartmental with the Entomology Department.</td>
</tr>
<tr>
<td></td>
<td>Ecology, life cycles, morphology, taxonomy, and distribution of arthropods other than insects.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>882</td>
<td>Cellular Morphogenesis</td>
<td>Fall</td>
<td>2(2-0)</td>
<td>One course in biochemistry, approval of department. Selected topics on the structure, biological processes and differentiation of living cells as related to development.</td>
</tr>
<tr>
<td>883</td>
<td>Laboratory in Cellular Morphogenesis</td>
<td>Fall</td>
<td>2(0-6)</td>
<td>Approval of department. Laboratory work in cellular morphogenesis accompanying 882.</td>
</tr>
<tr>
<td>884</td>
<td>Invertebrate Neural Systems</td>
<td>Fall of odd-numbered years</td>
<td>4(3-3)</td>
<td>Biochemistry and neurophysiology recommended. Nervous systems in the invertebrates, including sense organs, effector organs, central nervous systems and integrative mechanisms.</td>
</tr>
<tr>
<td>890</td>
<td>Special Problems</td>
<td>Fall, Winter, Spring, Summer</td>
<td>1 to 15</td>
<td>Two years of undergraduate zoology. Approval of department. Consideration of current problems.</td>
</tr>
<tr>
<td>891</td>
<td>Current Topics in Ecological Research</td>
<td>Fall, Winter, Spring, Summer</td>
<td>1 credit</td>
<td>May re-enroll for a maximum of 4 credits. Approval of department. Given at W. K. Kellogg Biological Station. Discussions and special problem work; current theoretical views and investigations; treatment of the dynamics of energy and biomass in terrestrial and aquatic ecosystems; methods of analysis.</td>
</tr>
<tr>
<td>892</td>
<td>Dynamics of Biologic Populations</td>
<td>Winter</td>
<td>5(4-3)</td>
<td>491; one course in ecology or approval of department. Quantitative analyses of the dynamics, production, regulation, energetics and distribution of animal populations.</td>
</tr>
<tr>
<td>893</td>
<td>Fertilization and Early Embryogenesis</td>
<td>Fall</td>
<td>3(3-0)</td>
<td>317, one year of basic biochemistry and approval of department. Developmental biology of early stages of animal life, emphasis on physiology and biochemistry of marine invertebrate eggs.</td>
</tr>
<tr>
<td>894</td>
<td>Laboratory in Fertilization and Early Embryogenesis</td>
<td>Fall</td>
<td>2(0-6)</td>
<td>883 or concurrently and approval of department. Special emphasis on handling of echinoderm eggs and analytic methods used in embryology.</td>
</tr>
<tr>
<td>895</td>
<td>Seminar Topics</td>
<td>Fall, Winter, Spring</td>
<td>1 credit</td>
<td>Approval of department. Graduate level seminars on current research topics in biology.</td>
</tr>
<tr>
<td>899</td>
<td>Research</td>
<td>Fall, Winter, Spring, Summer</td>
<td>Variable</td>
<td>Approval of department. Research for the master's degree in genetics, morphology, mammalogy, wildlife management, ornithology, fisheries biology, limnology, quantitative biology, invertebrate, experimental embryology, animal behavior, herpetology.</td>
</tr>
<tr>
<td>999</td>
<td>Research</td>
<td>Fall, Winter, Spring, Summer</td>
<td>Variable</td>
<td>Approval of department. Research of the Ph.D. degree in genetics, morphology, mammalogy, wildlife management, ornithology, fisheries biology, limnology, quantitative biology, invertebrate, experimental embryology, animal behavior, herpetology.</td>
</tr>
</tbody>
</table>