841. Seminar in Epistemology
 Fall, Winter, Spring. 4 credits. May re-enroll for credit. Approval of department.

845. Seminar in Metaphysics
 Fall, Winter, Spring. 4 credits. May re-enroll for credit. Approval of department.

850. Seminar in Aesthetics
 Fall. 4(3-0) Approval of department.
 The nature of aesthetic values, grounds of criticism, function of the arts, etc.

860. Seminar in Social Philosophy
 Spring. 4(3-0) Approval of department.
 Philosophy of law and of the state.

Concrete bases of language and nature of meaning.

870. Seminar
 860. Seminar
 880. Seminar

899. Seminar
 889. Seminar
 899. Seminar

PHYSICAL SCIENCE PHS

College of Natural Science

203. Foundations of Physical Sciences
 Fall, Winter, Spring, Summer. 4(3-3)
 Primarily for elementary school teachers.

401. Mathematics for Teachers
 Fall. 4(4-0) Teaching experience and approval of department.
 Provides mathematical background for science teachers. It will emphasize the basic concepts of mathematics, including number systems. Topics will be selected from algebra, analytic geometry and trigonometry to illustrate the principles of number, operation, relation, proof and other basic mathematical ideas.

402. Mathematics for Teachers
 Fall, Winter. 4(4-0) 401 or approval of department.
 Continuation of 401.

403. Mathematics for Teachers
 Winter, Spring, 4(4-0) 402 or approval of department.
 Continuation of 402.

404. Physical Science for Teachers
 Fall, Winter, Spring. 4(3-3) Bachelor's degree.
 An integrated course in the physical sciences on the nature of the matter and energy gained by interrelating the facts, principles and laws about light, electricity, magnetism and sound as well as the structure and properties of substances, rates of reaction, equilibria. The concepts of measurement will be stressed. The course is for general science teachers and is not applicable for chemistry or physics majors.

405. Physical Science for Teachers
 Fall, Winter, Spring. 4(3-3) 404.
 Continuation of 404.

406. Physical Science for Teachers
 Fall, Winter, Spring. 4(3-3) 405.
 Continuation of 405.

407. Earth Science for Teachers
 Fall. 3(3-0) or 4(3-3)
 Fundamentals of climatology with its relationship to weathering in rocks; agents of erosion, transportation, and deposition; study of the common minerals; the three classes of rocks, and igneous, sedimentary and metamorphic processes; geographic features including glaciers, volcanoes, oceans, lakes, deserts, caves and others. Laboratory includes identification of minerals, rocks, study of topographic maps; and field trips to points of geologic interest.

408. Earth Science for Teachers
 Winter. 3(3-0) or 4(3-3) 407.
 Continuation of physical geography and introduction to historical geology, containing discussions of earth structures, mountain building, economical geology, geologic time, basic astronomy, theories of earth origin; the earliest geologic eras, earliest geologic evidence of life.

409. Earth Science for Teachers
 Spring. 3(3-0) or 4(3-3) 408.
 Historical development of the various geologic periods through time with reference to the evolutionary development of the physical landscape, ancient geography, past climate, diastrophic processes; geomorphic features including glaciers, transportation, and deposition; study of the nature of the earth, its interior, the forces developing the scenic surface features, the nature of the matter, and energy gained by interrelating the facts, principles and laws about light, electricity, magnetism and sound as well as the structure and properties of substances, rates of reaction, equilibria. The concepts of measurement will be stressed. The course is for general science teachers and is not applicable for chemistry or physics majors.

410. Seminar on Recent Advances in Physical Science
 Fall, Winter, Spring, Summer. 3(3-0)
 May re-enroll for a maximum of 6 credits if different topic is taken. Approval of department.
 A series of lectures by senior faculty on topics on the history, development, the most recent advances and the possible future and limits of the Physical Sciences.

411. Seminar on Man, His Universe
 Fall, Winter, Spring, Summer. 3(3-0)
 Approval of department.
 A creative review by senior faculty from Astronomy, Biochemistry, Biophysics, Geology, Physics and Philosophy on the impact of recent space probes in developing modern concepts of the universe.

412. Seminar on Man, His Earth
 Fall, Winter, Spring, Summer. 3(3-0)
 Approval of department.
 A summary by senior faculty from Astronomy, Anthropology, Botany, Geology, Meteorology, and Zoology of new ideas, methods, and theories employed by current researchers to unravel the mysteries of the origin of the earth, its interior, the forces developing the scenic surface features, and the evolution of life in its historical setting.

PHYSICS PHY

College of Natural Science

Introductory courses are divided into three groups:

1. 237, 238, 239 (theory) and 257, 258, 259 (laboratory) open to students who are taking at the same time, or who have taken, first year mathematics through college algebra and trigonometry.

2. 247, 258, 259 (theory) and 297, 298, 300 (laboratory) for students of engineering, physical sciences, mathematics, and others. Those electing this sequence should have completed courses in mathematics through two terms of analytic geometry and calculus.

3. 391, 392, 393, 394, 395 for physics majors and others who have a special interest in physics. Students electing this sequence should have completed or should be taking the second term of analytic geometry and calculus.

A student may change from one group of introductory courses to another but may not receive credit for the equivalent of more than one complete three-term introductory sequence.

Credit may not be earned for more than one of the courses PHY 291, 357, 364 or 491.

PHY 357 and 360 cannot be used to meet the requirements for a major in physics.

All 400 level physics courses require PHY 289 or 293 as prerequisites.

237. Introductory Physics
 Fall, Winter, 3(4-0) MTH 102 or 109 or 111 or concurrently.
 Mechanics and heat.

238. Introductory Physics
 Fall, Spring, 3(4-0) 237.
 Heat, electricity and magnetism.

239. Introductory Physics
 Fall, Spring, 3(4-0) 239.
 Wave motion, sound, light, and modern developments.

257. Introductory Physics Laboratory
 Fall, Winter, 1(0-2) 237 or concurrently.
 Mechanics and heat.

258. Introductory Physics Laboratory
 Winter, Spring, 1(0-2) 258 or concurrently.
 Heat, electricity and magnetism.

259. Introductory Physics Laboratory
 Fall, Spring, 1(0-2) 259 or concurrently.
 Wave motion, sound, light and modern developments.

287. Principles of Physics
 Fall, Winter. 4(5-0) MTH 113.
 Mechanics.

288. Principles of Physics
 Fall, Spring. 4(5-0) 287, MTH 214 or approval of department.
 Heat and thermodynamics, electricity and magnetism.

299. Principles of Physics
 Fall, Spring, Summer. 4(5-0) 288, MTH 214 or approval of department.
 Wave motion, sound, light, and modern developments.
291. Physics I Spring, 4(5-0) MTH 113 or concurrently.
First of a five-term course sequence in elementary physics consisting of 291, 292, 293, 294 and 395. In this sequence the principles of physics are presented in a unified manner that emphasizes modern concepts. Mechanics, including special relativity.

292. Physics II Fall, 4(5-0) 291; MTH 214 or concurrently.
Continuation of 291. Electricity and magnetism with some special relativity.

293. Physics III Winter, 4(5-0) 292; MTH 215 or concurrently.
Continuation of 292. Wave physics including optics.

294. Physics IV Spring, 4(5-0) 293 or 299.
Continuation of 293. Introduction to quantum physics.

297. Principles of Physics Laboratory Fall, Winter, 1(0-2) 287 or concurrently.
Mechanics.

298. Principles of Physics Laboratory Winter, Spring, 1(0-2) 288 or concurrently.
Heat and thermodynamics, electricity and magnetism.

299. Principles of Physics Laboratory Fall, Spring, Summer, 1(0-2) 289 or concurrently.
Wave motion, sound, light and modern developments.

357. Topics in Contemporary Physics Spring, 4(4-0) One year of general college physics.
Atomic and nuclear physics, cosmic rays and elementary particles, nuclear energy, new theoretical concepts. Recommended for prospective high school teachers.

360. Introduction to Radioactivity Summer, 3(2-3) One year of college physics or approval of department.
Elementary nuclear properties and processes emphasizing nature of radioactivity and its measurement. Special attention given to experimental techniques used with radioisotopes, and their associated radiations provide physical background for biological and industrial applications.

364. Atomic Physics for Engineers Fall, Winter, Spring, 3(3-0) Engineering Juniors or approval of department.
Atomic structure; wave and particle aspects of radiant energy; optical and X-ray spectra.

392. Physics II Laboratory Fall, 1(0-3) 392 or concurrently.
Experiments in classical mechanics and electricity and magnetism.

393. Physics III Laboratory Winter, 1(0-3) 392 or concurrently.
Experiments in wave motion and optics.

394. Physics IV Laboratory Spring, 1(0-3) 394 or concurrently.
Experiments in general and modern physics.

395. Physics V Fall, 3(3-0) 294 or approval of department.
Continuation of 294. Thermodynamics and statistical physics.

400I. Honors Work Fall, Winter, Spring. Variable credit.

404. Special Problems Fall, Winter, Spring, Summer, 1 to 5 credits. 289 or 293; approval of department.

419. Electronics Spring, 3(2-3) 416
Electron tube and solid-state circuits designed for control and physical measurement. Laboratory work provides direct study of characteristics of tubes and circuits.

427. Intermediate Mechanics Fall, 3(3-0) 299 or 293; MTH 215.
Statics and dynamics of a particle and of rigid bodies; linear and non-linear oscillations; gravitation from a field point of view; transformation properties of physical quantities; introduction to mathematical techniques of theoretical physics.

428. Intermediate Mechanics Winter, 3(3-0) 426.
Continuation of 427.

429. Advanced Mechanics Spring, 3(3-0) 426.
Advanced methods of theoretical mechanics; generalized coordinates; Lagrange's and Hamilton's equations; the wave equation, theory of vibrations.

437. Optics Winter, 4(2-0) 289 or 293; MTH 215.
Geometrical and physical optics. Treatment of thick lens theory, interference, diffraction and polarization phenomena, and propagation of light in material media.

438. Optics Spring, 4(3-3) 439.
Continuation of 438.

447. Electricity and Magnetism I Winter, 4(4-0) Eighteen credits in physics, including 289 or 293; MTH 215.
Advanced study of electromagnetic phenomena; electrostatic potentials from Laplace's and Poisson's equations; effects of dielectric and magnetic materials; magnetic fields and potentials; induced e.m.f.; Maxwell's equations; electromagnetic radiation and waves.

448. Electricity and Magnetism II Spring, 4(4-0) 447.
Continuation of 447.

457. Advanced Physics Laboratory Fall, Winter, Spring, 2(2-0) May reenroll for a maximum of 6 credits. 15 credits in physics including 289 or 293.
Laboratory course consisting of experiments in modern physics of historical interest and in research techniques in solid-state and nuclear physics. Emphasizes experimental methods and proper treatment and integration of data. Independent work encouraged.

459. Intermediate Solid State Physics Winter, 3(3-0) 284 or 394.
Classification of solids (crystal structure and X-ray methods); imperfections; electrical, magnetic, and thermal properties of solids; electron theory of metals; superconductors; semi-conductors.

491. Introduction to Quantum Mechanics (467) Fall, 3(3-0) 294; MTH 215.
Schroedinger wave equation and its applications; angular momentum; one electron atoms; moments and spin; perturbation methods; absorption and emission of radiation; atomic and molecular structure.

492. Introduction to Quantum Mechanics II (468) Winter, 3(3-0) 491.
Continuation of 491.

493. Introduction to Quantum Mechanics III (465) Spring, 3(3-0) 492.
Continuation of 492.

498. Introduction to Nuclear Physics (398) Spring, 3(3-0) 294 or 394.
Interactions of nuclear radiations with matter; properties of nuclei; alpha, beta, gamma decay; nuclear models; nuclear reactions and elementary applications of scattering theory, reactors, accelerators; introduction to high-energy physics.

517. Techniques of Theoretical Physics I Fall, 2(2-0) Graduate student or approval of department.
Formulation of physical problems and practical methods of solving frequently encountered differential and integral equations including numerical methods; approximations appropriate to physical situations are stressed.

518. Techniques of Theoretical Physics II Winter, 2(2-0) 817.
Special functions of importance to theoretical physics are described. Solution of physical problems using Green's Functions, the delta function, expansions in series, integral transforms.

519. Techniques of Theoretical Physics III Spring, 2(2-0) 818, MTH 433.
Application of methods of contour integration to solution of physical problems; introduction to basic concepts involved in theoretical formulation of quantum mechanical states, observables, and development of dynamical systems.

827. Theoretical Physics I Summer of odd-numbered years, 3(3-0)
428 or approval of department.
Vector analysis, mechanics of a particle and of systems of particles. Lagrange's equations, Hamiltonian methods, rotational motion.

828. Theoretical Physics II Summer of even-numbered years, 3(3-0) 448 or approval of department.
Special relativity, Maxwell's equations, electrodynamics and electromagnetic waves.

829. Theoretical Physics III Spring, Summer of odd-numbered years, 3(3-0) Approval of department.
Principles of thermodynamics; topics in kinetic theory; introduction to statistical mechanics.

837. Quantum Mechanics I Fall, 3(3-0) 428, 491.
The formulation of quantum mechanics, superposition principle, state vector and representation; uncertainty principle; Schroedinger equation and its solution for physical systems.

838. Quantum Mechanics II Winter, 3(3-0) 837.
Approximation methods, perturbation theory, applications to atomic transitory, angular momentum.
839. Quantum Mechanics III
Spring. 3(3-0) 838.
Collision processes and scattering theory, applications; many-particle systems.

847. Electromagnetic Theory I
Fall. 3(3-0) 428, 448.
Electrostatics; Laplace's equation, Poisson's equation; Green's theorem; solution of problems by method of images; inversion; boundary-value problems in Cartesian, spherical and cylindrical coordinates; spherical harmonics; Bessel functions.

848. Electromagnetic Theory II
Winter. 3(3-0) 847.
Multipole and multiple expansion; electrostatics of macroscopical materials, dielectrics, magnetostrictics, vector potential, magnetic moment, Maxwell's equations for time-varying fields, energy and momentum conservation. Plane electromagnetic waves and polarization.

849. Electromagnetic Theory III
Spring. 3(3-0) 848.

857. Theoretical Mechanics I
Fall. 3(3-0) 856.
Two-body central force problems, rigid body motion, small oscillations, Hamilton's principle, Lagrangian and Hamiltonian formalism for particles and fields, canonical transformations, relativity.

858. Theoretical Mechanics II
Winter. 3(2-0) Approval of department.
Hamiltonian formalism for particles and fields, variational methods, canonical transformations.

859 Theoretical Mechanics III
Spring. 3(2-0) Approval of department.
Small oscillations, classical fields, relativity.

867. Quantum Mechanics IV
Fall. 3(3-0) 869.
Transformation theory and invariance principles; the rotation group and theory of angular momentum; Wigner-Eckart theorem and applications.

939. Molecular Structure and Spectra I
Fall of odd-numbered years. 3(3-0) 837 or concurrently.
Structure and spectra of diatomic molecules.

939. Molecular Structure and Spectra II
Winter of even-numbered years. 3(3-0) 936.
Structure and spectra of polyatomic molecules.

947. Solid State Physics I
Fall. 3(3-0) 459 and 839.
Crystal symmetry, crystal binding, lattice vibrations and specific heat, one-electron theory; Hartree-Fock equation, Brillouin zones.

948. Solid State Physics II
Winter. 3(3-0) 947.
Effective mass approximation, exchange and correlation corrections. Theory of conductivity and related effect, metals and semiconductors.

949. Solid State Physics III
Spring. 3(3-0) 948.
Ionic crystals. Imperfections in crystals, plastic deformations, color centers. Optical properties. Rectification, transistors, selected topics.

957. Nuclear Physics I
Fall. 3(3-0) 867.
Nucleon-nucleon scattering, nuclear sizes and shapes, multipole moments, shell model; collective states.

958. Nuclear Physics II
Winter. 3(3-0) 957.
Experimental methods and instrumentation; nuclear reactions; inelastic scattering and particle transfer.

959. Nuclear Physics III
Spring. 3(2-0) 958.
Many-body methods in nuclear physics; Bethe-Goldstone equation; effective interaction; nuclear models.

960. Techniques in Nuclear and Particle Physics
Fall. 3(3-0) Approval of department.
Properties of accelerators and particle beams, passage of radiation through matter, particle detection, pulse electronics, statistics, on-line computation.

961. Accelerator Physics
Winter. 3(3-0) 849, 859.

964. Advanced Readings in Physics
Fall. 849. Winter, Spring. 3(3-0) or 4(4-0) Approval of department.

967. Advanced Topics in Physics
Fall. 3(3-0) or 4(4-0) in any one term this course will be devoted to a single topic, such as advanced quantum theory, quantum electrodynamics, specialized topics in solid state physics, statistical mechanics, relativity theory and cosmology.

999. Research
Fall. 849. Winter, Spring. 3(3-0) or 4(4-0) Approval of department.

PHYSIOLOGY

College of Human Medicine
College of Natural Science
College of Veterinary Medicine

240. Introductory Physiology
Fall. Spring, Summer. 4(3-2) Sophomore or approval of department.
Survey of the physiology of circulatory system, excretion, nervous system and special senses, digestion, metabolism, and endocrinology.

241. Introductory Physiology
Winter. 4(3-2) 240.
Continuation of 240. Physiology of muscle function and neuro-muscular relationships, excretion, respiration; changes in organ systems in relation to muscular exercise.

323. Physiology, Anatomy, and Hygiene of the Eye
Fall. Summer of even-numbered years. 3(2-2) 240. Elementary Education or Special Education major, or approval of department.
Basic course in anatomy, physiology, and hygiene of the visual system; includes discussion of normal visual functioning and abnormal visual functioning, with methods of correction and education implications.

331. Human Physiology
Winter. 4(3-2) ANT 316; CEM 132, or approval of department.

332. Human Physiology
Spring. 4(3-2) 331.