The first college at the first land-grant institution, the College of Agriculture and Natural Resources is committed to advancing knowledge and transforming lives in communities, agriculture, and natural resources. The college provides innovative leadership in science, technology, design, management, biofuels, the bioeconomy, and international involvement. Academic programs in the college build on strong foundations in science, technology, engineering and mathematics (STEM). The wide selection of academic programs and career pathways include food, nutrition, and their applications to health; community, family and youth development; agricultural production; technology, management, and design; food processing; biofuels, the bioeconomy, globalization, international development, and sustainability.

Students learn to manage resources, people, and technology to improve the use, conservation and renewal of natural and created environments; develop sustainable systems; manage green spaces; enhance community and economic development; and advance food safety and nutrition. Graduates are employed as scientists, leaders, educators, managers, and stewards of human and natural resources.

The diverse disciplines and expertise in the college encompass research in animal and plant biotechnology, control of invasive species, control of pathogens, protection of biodiversity, management of urban sprawl, environmental remediation, wildlife management, use of biosensors to detect foodborne pathogens, tourism, ergonomics and lean construction, and the sustainability of agricultural and natural resource systems. Knowledge derived from research is integrated into course work and extended to benefit the community, state, nation and world – epitomizing the excellence of the land-grant tradition.

Educational programs nurture a learning environment that educates and prepares students for graduate study and/or for leadership in local, state, national, and international arenas. Graduates of the college have the tools they need to undertake endeavors that ensure the sustainability of food, prosperity and leisure activities in a world environment that has finite resources. For those interested in short-term certificate programs, the Institute of Agricultural Technology offers a variety of technical programs that are less than two years in length.

UNDERGRADUATE PROGRAMS

Personal attention is a key aspect of all college programs, and undergraduate research is promoted and encouraged. The college offers a highly student-oriented advising system. Students are assigned an academic advisor to suggest courses and career emphases. In the student-advisor relationship, the capabilities, aspirations and goals of the students remain paramount throughout their academic careers. Academic advisors work closely with students from the time they express an interest in the major, and undergraduate research is encouraged in all majors.

For students who desire one of the degree options available through the college, but wish to delay their choice of a specific major until a later date, a no-preference program is offered. Under this arrangement, freshmen enrolled in the Undergraduate University Division may designate their major preference as Agriculture and Natural Resources No-Preference. Students selecting this major preference are advised by faculty members in the College of Agriculture and Natural Resources. Through careful selection of courses, they are encouraged to explore a variety of areas to help in selecting a major. The key element of this program is its flexibility. Students may remain in it until they attain...
sophomore or junior standing, or they may select other major preferences at any time before becoming juniors.

Bachelor of Science degree programs are offered in the following areas: Agribusiness Management; Agriculture, Food and Natural Resources Education; Animal Science; Construction Management; Crop and Soil Sciences; Dietetics; Entomology; Environmental Economics and Policy; Environmental Studies and Sustainability; Fisheries and Wildlife; Food Industry Management; Food Science; Forestry; Horticulture; Nutritional Sciences; Packaging; and Sustainable Parks, Recreation and Tourism. A Bachelor of Arts degree program in Interior Design and a Bachelor of Landscape Architecture degree program in Landscape Architecture are also offered.

The College of Agriculture and Natural Resources cooperates with the College of Engineering in offering an undergraduate program in Biosystems Engineering. The college also participates with the College of Social Science in offering an undergraduate program in Urban and Regional Planning.

Students who are enrolled in bachelor's degree programs in the college may elect the Minor in Environmental and Sustainability Studies. For additional information, refer to the statement on Minor in Environmental and Sustainability Studies in the College of Natural Science section of this catalog.

Honors Study
The College of Agriculture and Natural Resources encourages honors students to develop enriched and distinctive undergraduate programs. In each of the career pathways offered in the college, members of the faculty are carefully selected to serve as departmental Honors College advisors. These advisors assist each Honors College student in planning a rigorous and balanced program that reflects individual interests and competencies. In addition to the university–wide array of introductory Honors courses available to exceptional students, the college encourages participation in research and enrollment in graduate courses and independent study.

Opportunities for Individual Emphasis
In furthering the students’ education, the flexible nature of the program in each major makes it possible for students to pursue areas of special interest through regular course work, special seminars, research and travel. By anticipating new and growing areas of need for trained personnel, the college makes it possible for students to prepare themselves adequately in these areas. Following are a few of the opportunities for special emphasis available to students in any major within the college.

International Study. The college offers opportunities for short-term and semester-length study abroad programs around the world. Undergraduates are encouraged to make a study abroad experience part of their curriculum. In addition, students in the College of Agriculture and Natural Resources, and others interested in agricultural development abroad, may select courses from numerous subject areas. Offerings in agricultural economics, agricultural engineering, animal science, crop and soil sciences, extension personnel development, forestry, horticulture and resource development have special relevance to international agriculture and rural development. Emphasis is placed on environmentally sound crop and animal production, application of new technical knowledge, planning and administration, and efficient use of human and natural resources for developing countries.

Science Emphasis. Many students realize early in their college years that they wish to prepare for careers in research or university teaching. Academic advisors assist them in selecting science courses (biological, physical and social) and mathemat-ics courses that will offer the best possible preparation for graduate study.

Undergraduate Research. The college Undergraduate Research Program allows students to become more actively engaged in their education through intellectual inquiry and practical learning. Students work closely with a faculty mentor to conduct original research in the chosen area of interest.

Freshmen
Students meeting the general requirements for admission shown in the Undergraduate Education section of this catalog are enrolled in the Undergraduate University Division. However, they may declare a major preference in the College of Agriculture and Natural Resources and be assigned an academic advisor in the college. Freshmen who declare a major will usually have both an Undergraduate University Division advisor and an advisor in their major.

Admission to the College of Agriculture and Natural Resources

1. Completion of at least 28 credits acceptable to the college with an academic record, which at least meets the requirements of Academic Standing of Undergraduate Students.
2. Acceptance as a major in one of the academic programs of the college.

Several majors within the College have limited enrollment and may admit students only upon reaching junior standing or have other requirements that must be met prior to admission to the major. These majors include construction management, dietetics, interior design, landscape architecture, and packaging. For additional information, refer to the statements on the Department of Food Science and Human Nutrition, School of Packaging, and the School of Planning, Design and Construction.

Students with fewer than 28 credits may designate a major preference within the College of Agriculture and Natural Resources. Students selecting a major preference within the College are advised by faculty members or advisors in the College of Agriculture and Natural Resources.

Graduation Requirements

1. The University requirements for bachelor's degrees as described in the Undergraduate Education section of this catalog.

Alternative tracks to Integrative Studies in General Science have been approved for selected majors leading to the Bachelor of Science degree in the college. For additional information, refer to the lists of requirements for the major and degree programs that appear in the statements on the departments.

The completion of the College of Agriculture and Natural Resources mathematics requirement referenced in item 2. a. below may also satisfy the University mathematics requirement.

2. The requirements of the College of Agriculture and Natural Resources for the Bachelor of Science degree that are listed below:
 a. The mathematics requirement may be met by completing one of the following or may be satisfied by placing into a calculus course based on the Mathematic Services Placement Exam.
 (1) Mathematics 103 and Statistics and Probability 200 or 201.
 (2) Mathematics 103 and 114.
...Mathematics 116.
9
Integrating Learning Transitions
At least 26 credits in courses in the college.
310
Pathways in Integrating Learning
Economics 201 or 202.
At least 9 additional credits in approved courses. A list of approved courses is available from the Director.
310
Integrated Learning Seminar I
3
ANR 410 Integrated Learning Transitions
3
(3) Mathematics 116.
b. Economics 201 or 202.
c. At least 26 credits in courses in the college.
d. The specific requirements for a major in the college.

Students who are enrolled in bachelor’s degree programs in the College of Agriculture and Natural Resources may elect a Specialization in Environmental Studies. For additional information, refer to the Specialization in Environmental Studies statement in the College of Natural Science section of this catalog.

MINOR IN LEADERSHIP IN INTEGRATED LEARNING

The Minor in Leadership in Integrated Learning is available as an elective to undergraduate students whom the college has identified as Liberty Hyde Bailey Scholars. The minor is administered by the College of Agriculture and Natural Resources. The Director of the Liberty Hyde Bailey Scholars Program coordinates the minor on behalf of the Dean.

The minor provides an opportunity for students to develop a leadership identity that reflects integration of ideas across social, economic, environmental, and cultural domains in addition to disciplinary learning. Students participate actively in the learning experience by developing individualized plans of study and assessment through course work in the minor. Students develop a variety of inquiry strategies though exploration of service learning, social justice and diversity, community building, problem solving, meaning making, and transformative systems thinking. Leadership, learning experiences, and reflections are documented in the student’s learning e-portfolio and are presented during the culminating experience.

With the approval of the department that administers the student’s degree program, courses that are used to satisfy the requirements for the minor may also be used to satisfy the requirements for the bachelor’s degree.

Requirements for the Minor in Leadership in Integrated Learning

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANR 210 Pathways in Integrated Learning</td>
<td>3</td>
</tr>
<tr>
<td>ANR 310 Integrated Learning Seminar I</td>
<td>3</td>
</tr>
<tr>
<td>ANR 410 Integrated Learning Transitions</td>
<td>3</td>
</tr>
</tbody>
</table>

The student must complete:

1. An individualized plan of study approved by the Director of the Bailey Scholars Program including:
 a. All of the following courses: .. 9
 b. At least 9 additional credits in approved courses. A list of approved courses is available from the Director.

TEACHER CERTIFICATION OPTIONS

The agriculture, food and natural resources education disciplinary minor leading to the Bachelor of Science degree in the College of Agriculture and Natural Resources is available for teacher certification.

The agriculture, food and natural resources education disciplinary minor in the College of Agriculture and Natural Resources is also available for teacher certification. In addition, vocational endorsement in agricultural education is available to persons who meet specified requirements.

Students who elect the agriculture, food and natural resources education disciplinary major, or the agriculture, food and natural resources education disciplinary minor, must contact the Department of Community Sustainability.

For additional information, refer to the statement on the agriscience disciplinary major and to the statement on TEACHER CERTIFICATION in the Department of Teacher Education section of this catalog.

GRADUATE STUDY

Through its graduate programs, the College of Agriculture and Natural Resources seeks to provide opportunities for advanced study, original research and supervised experience in teaching, coupled with a broadening of a student’s educational background.

The College of Agriculture and Natural Resources offers graduate study leading to the Master of Science degree in the following majors: agricultural, food and resource economics; animal science; biosystems engineering; construction management; community sustainability; crop and soil sciences; dietetics; fisheries; forestry; horticulture; human nutrition; packaging; plant breeding, genetics and biotechnology—crop and soil sciences; plant breeding, genetics and biotechnology—forestry; plant breeding, genetics and biotechnology—horticulture; plant breeding, genetics and biotechnology—plant biology; plant pathology; and sustainable tourism and protected area management. A master’s degree program is offered jointly with the College of Business. Qualified students may earn joint master’s degrees in forestry and business administration.

The College of Agriculture and Natural Resources offers graduate study leading to the Master of Arts degree in Environmental Design.

The Master of Urban and Regional Planning degree program with a major in urban and regional planning is offered through the College of Social Science. For information about that program, refer to the statement on the School of Planning, Design and Construction in the College of Social Science section of this catalog. Students may complete a professional dietetics internship certificate program through the Department of Food Science and Human Nutrition.

The Doctor of Philosophy degree may be earned with majors in agricultural, food and resource economics; agricultural engineering; animal science; biosystems engineering; community sustainability; crop and soil sciences; entomology; fisheries and wildlife; food science; forestry; horticulture; human nutrition; human nutrition—environmental toxicology; packaging; planning, design and construction; plant breeding, genetics and biotechnology—crop and soil sciences; plant breeding, genetics and biotechnology—forestry; plant breeding, genetics and biotechnology—horticulture; plant breeding, genetics and biotechnology—plant biology; plant pathology; and sustainable tourism and protected area management.

The following dual Juris Doctor (J.D.) programs with Michigan State University College of Law are available through the College of Agriculture and Natural Resources: Michigan State University M.S. degree program with a major in Fisheries and Wildlife and Michigan State University College of Law J.D.; Michigan State University M.S. degree program with a major in Forestry and Michigan State University College of Law J.D.

The regulations and requirements presented here are the minimum for the college as a whole and must be fulfilled by all students in all departments. Any requirements not set forth herein or in university regulations are matters of departmental policy. Individual departments may have additional requirements beyond the minimum established for the college. Admissions to graduate programs may be limited by unit resources.

Graduate Specializations and Certificates

Students who are enrolled in master’s degree programs in the College of Agriculture and Natural Resources may elect the master’s Specialization in Agribusiness. For additional information, refer to the Specialization in Agribusiness Management statement in the Department of Agricultural, Food, and Resource Economics section of this catalog.
Students who are enrolled in master's and doctoral degree programs may elect the *Graduate Certificate in Conservation Law*. For additional information, refer to the statement on *Graduate Certificate in Conservation Law* in the Department of Fisheries and Wildlife section of this catalog.

Students who are enrolled in master's and doctoral degree programs may elect the *Graduate Certificate in Forest Carbon Science, Policy and Management*. For additional information, refer to the statement on *Graduate Certificate in Forest Carbon Science, Policy and Management* in the Department of Forestry section of this catalog.

Students who are enrolled in doctoral degree programs in departments and programs emphasizing environmental science and policy may elect the *Graduate Specialization in Environmental Science and Policy*. For additional information, refer to the *Graduate Specialization in Environmental Science and Policy* statement in the *College of Social Science* section of this catalog.

Students who are enrolled in master's and doctoral degree programs in the College of Agriculture and Natural Resources, the College of Natural Science, and the College of Veterinary Medicine may elect the *Graduate Specialization in Fish and Wildlife Disease Ecology and Conservation Medicine*. For additional information, refer to the statement on *Graduate Specialization in Fish and Wildlife Disease Ecology and Conservation Medicine* in the College of Veterinary Medicine section of this catalog.

Students who are enrolled in Master of Science degree programs in the departments of Agricultural, Food, and Resource Economics, Biosystems and Agricultural Engineering, Animal Science, Entomology, Food Science and Human Nutrition, Horticulture, and Packaging may elect a *Specialization in Food Safety*. For additional information, refer to the statement on the specialization in the *College of Veterinary Medicine* section of this catalog.

Students who are enrolled in Master of Science and Doctor of Philosophy degree programs in the Department of Food Science and Human Nutrition may elect a *Interdepartmental Graduate Specialization in Infancy and Early Childhood*. For additional information, refer to the statement on *Interdepartmental Graduate Specializations in Infancy and Early Childhood* in the *College of Social Science* section of this catalog.

Students who are enrolled in Master of Science and Doctor of Philosophy degree programs in the departments of Agricultural, Food, and Resource Economics; Fisheries and Wildlife; or Forestry may elect a *Graduate Specialization in Environmental and Resource Economics*. For additional information, refer to the statement on *Interdepartmental Graduate Specializations in Environmental and Resource Economics*.

Master of Science

In addition to meeting the requirements of the university, students must meet the requirements specified below.

Admission

Acceptance of an applicant is determined by the department in which the applicant wishes to do his or her major work, with the approval of the dean of the college, after consideration of the applicant's academic record, experience, personal qualifications, and objectives. Applicants who are admitted are classified in one of two groups: *regular*, for students who are fully qualified to undertake master's degree programs, or *provisional*, for students who have some remediable inadequacy of qualifications, or deficiency in subject matter preparation.

Normally an undergraduate grade-point average of 3.00 (B) or higher is required for admission to any status. Credits earned in regular or provisional status are acceptable as part of a student's degree requirements upon approval of the major professor and the dean.

Requirements for the Master of Science Degree

PROGRAM. The student, in consultation with the major professor, develops the prescribed program of study. The program should be established at the earliest possible date, consistent with departmental requirements, and filed with the department and the dean. Two plans of study are available:

- **Plan A**—Completion of a research program and preparation of a satisfactory thesis are required. Research credits must equal at least 6, but not more than 10.
- **Plan B**—Preparation of a thesis is not required. The program may include research or special problems not exceeding 6 credits.

EXAMINATION. The candidate must pass a final examination on the program of study before a committee selected by the major professor and approved by the department chairperson, in accordance with University and departmental policy for Plan A and Plan B programs.

In case of failure, the student may appear for reexamination at a time specified by the examining committee.

Academic Standards

FOR RETENTION. The major professor and department in which the student is majoring review and make a decision concerning the retention of any student failing to fulfill departmental requirements, and may dismiss a student at the end of any semester. Notice of dismissal from a departmental program is given to the student by the department chairperson, and the dean is notified of such action.

Residence

The student should spend at least one full semester in residence on campus. At least 8 credits excluding research must be taken in course work on the campus in East Lansing.

Doctor of Philosophy

The Doctor of Philosophy degree is granted for distinctive attainment by the student in a special field, as evidenced by a dissertation which shows independent and creative thought and by passing detailed examinations over the student's chosen fields.

In addition to meeting the requirements of the university, students must meet the requirements specified below.

Admission

Acceptance of an applicant is determined by the department in which the applicant wishes to do his or her major work, with the approval of the dean of the college, after consideration of the applicant's academic record, experience, personal qualifications, and objectives. Applicants who are admitted are classified in one of two groups: *regular*, for students whose records and qualifications show that they are ready to pursue a course of study toward the doctorate, or *provisional*, for students who, although their previous work appears to have been at an acceptably high academic level, nevertheless lack some important requirements for the course of study they intend to follow toward the doctorate. Such deficiencies will often necessitate the completion of collat-
eral courses for which credit will not be counted toward the degree.

 Normally a grade–point average of 3.00 (B) or higher in all previous academic work is required for admission to regular or provisional status.

 Admission is open to students with a master’s or bachelor’s degree or their equivalents; however, applicants meeting these requirements are not guaranteed admission into a doctoral program. Some departments may require completion of a master’s degree prior to admission into the doctoral program.

 Credits earned in regular or provisional status are acceptable as part of a student’s degree requirements upon approval by the guidance committee and the dean.

 Examinations

 COMPREHENSIVE. A comprehensive knowledge of the student's major and related fields must be demonstrated by examination, written or oral, to the guidance committee. If the student fails to pass, there may not be a reexamination until after one semester of additional work toward the degree is completed.

 FINAL. The final oral examination, primarily in defense of the dissertation, is conducted by the guidance committee, supplemented, at the discretion of the dean, by two appointed faculty members. Other faculty members may attend at the chairperson’s discretion. The final oral examination cannot be conducted before the dissertation is in the final form unbound.

 Academic Standards

 FOR RETENTION. The guidance committee and the department in which the student is majoring review and make a decision concerning the retention of any student failing to fulfill departmental requirements, and may dismiss a student at the end of any semester. Notice of dismissal from a departmental program is given to the student by the department chairperson, and the dean is notified of such action.

 Residence

 One year of residence after completion of the master’s degree or its equivalent is required. This permits the student to work with and under the direction of the faculty, and to engage in independent and cooperative research utilizing university facilities. Normally, the year of residence will be made up of two semesters involving completion of at least 9 credits of graduate work each semester.

 INTERDEPARTMENTAL GRADUATE PROGRAM in PLANT BREEDING, GENETICS and BIOTECHNOLOGY

 The interdepartmental graduate program in Plant Breeding, Genetics and Biotechnology is jointly administered by the departments of Crop and Soil Sciences, Forestry, Horticulture, and Plant Biology. Faculty who have been identified by the chairpersons of these departments are members of the Plant Breeding, Genetics and Biotechnology Program. One member of the faculty is designated as the Coordinator and oversees the program.

 The interdepartmental graduate program in Plant Breeding, Genetics and Biotechnology is designed to:

 1. Provide contemporary graduate education and training in the field of plant breeding and genetics, so that students may be prepared to teach, conduct independent research, and use modern technologies.
 2. Enable students to gain knowledge in the various disciplines that support plant breeding activities through course work in such fields as biochemistry, plant physiology, entomology, plant pathology, and food science.
 3. Provide an intellectual and resource environment conducive to graduate research.
 4. Foster an awareness of plant breeding and genetics programs in both the public and private sectors.

 Master of Science

 In addition to meeting the requirements of the university and of the College of Agriculture and Natural Resources, students must meet the requirements specified below.

 Admission

 A student seeking admission to the Plant Breeding, Genetics and Biotechnology program at the master’s level must have completed a Bachelor of Science degree in a plant science or related field with an emphasis on plant breeding and genetics. A minimum grade–point average of 3.00 in courses in agricultural, biological, and physical sciences and an academic background sufficient to indicate probable success in the program are required.

 To be considered for admission to the program, the student must be accepted as an advisee by a faculty member in the student’s major department who is also a member of the Plant Breeding, Genetics and Biotechnology faculty. Admission to the program is by approval of one of the four participating departments, the Plant Breeding, Genetics and Biotechnology faculty, and the Coordinator of the Plant Breeding, Genetics and Biotechnology Program. In special cases, applicants with deficiencies in background courses may be admitted on a provisional basis. Such students will not be considered for advanced degrees until they have fulfilled the requirements for admission to regular status.

 Requirements for the Master of Science Degree

 The student’s guidance committee, selected in consultation with the student and the major professor at the time that the student is admitted to the program, plans the student’s course of study with the student’s particular interests, capabilities, and professional goals in mind. The student’s guidance committee is composed of three faculty members; the student’s major professor and at least one other person must be members of the Plant Breeding, Genetics and Biotechnology faculty. At least one member must be from a department other than the one that administers the student’s major.

 Only Plan A (with thesis) is available. The student is required to complete courses, learn research methodologies, and conduct thesis research pertinent to the plant species under study. The student must complete two credits of Horticulture 892, and two core courses as specified by the Plant Breeding, Genetics and Biotechnology faculty. Credits in Master’s Thesis Research (course number 899) must total at least 6 but not more than 10. One semester of teaching experience is also required. The student’s program will be reviewed by the Plant Breeding, Genetics and Biotechnology faculty. The degree is conferred upon recommendation of the department, the Coordinator of the Plant Breeding, Genetics and Biotechnology Program, and the Dean of the college.
Doctor of Philosophy

In addition to meeting the requirements of the university and of the College of Agriculture and Natural Resources, students must meet the requirements specified below.

Admission

A student seeking admission to the Plant Breeding, Genetics and Biotechnology program at the doctoral level must have completed a Bachelor or Master of Science degree in the plant sciences with an emphasis on plant breeding and genetics. A minimum grade-point average of 3.00 is required.

To be considered for admission to the program, the student must be accepted as an advisee by a faculty member in the student's major department who is also a member of the Plant Breeding, Genetics and Biotechnology faculty. Admission to the program is by approval of one of the four participating departments, the Plant Breeding, Genetics and Biotechnology faculty, and the Coordinator of the Plant Breeding, Genetics and Biotechnology Program.

Requirements for the Doctor of Philosophy Degree

The guidance committee, selected in consultation with the student and the major professor at the time that the student is admitted to the program, plans the student's course of study with the student's particular interests, capabilities, and professional goals in mind. The student's guidance committee is composed of four faculty members; the student's major professor and at least one other person must be members of the Plant Breeding, Genetics and Biotechnology faculty. At least one member must be from a department other than the one that administers the student's major.

The student is required to complete courses, learn research methodologies, and conduct dissertation research pertinent to the plant species under study. The student must complete at least 12 credits in 800-level plant breeding and genetics courses including four credits of Horticulture 892, and two core courses as specified by the Plant Breeding, Genetics and Biotechnology faculty. One semester of teaching experience is also required.

The student's program is subject to review by the Plant Breeding, Genetics and Biotechnology faculty. The degree is conferred upon recommendation of the department, the Coordinator of the Plant Breeding, Genetics and Biotechnology Program, and the Dean of the college.

GRADUATE SPECIALIZATION in ENVIRONMENTAL TOXICOLOGY

The College of Agriculture and Natural Science, and the College of Veterinary Medicine administer the Graduate Specialization in Environmental Toxicology. The College of Agriculture and Natural Resources is the primary administrative unit.

The specialization is available as an elective to students who are enrolled in master's degree programs in the departments of Animal Science, Community Sustainability, Crop and Soil Sciences, Entomology, Fisheries and Wildlife, Food Science and Human Nutrition, Geological Sciences, Pathobiology and Diagnostic Investigation, Plant, Soil and Microbial Sciences, and Zoology. The specialization is designed for students who are interested in combining study in their disciplines with study in environmental toxicology, and in applying their knowledge to solve environmental problems.

A faculty member who is in the department that administers the student's degree program and who is associated with the Specialization in Environmental Toxicology will serve as the student's academic advisor for the specialization. The academic advisor will assist the student in planning a program of study that is related to the student's interests, capabilities, and professional goals. With the approval of the department and college that administers the student's degree program, the courses that are used to satisfy the requirements for the specialization may also be used to satisfy the requirements for the master's degree.

Requirements for the Graduate Specialization in Environmental Toxicology

The student's program of study must be approved by the student's academic advisor for the specialization. The student must meet the requirements specified below:

1. **Credits**
 - Have a grade–point average of at least 3.00 in the courses that are used to satisfy the requirements for the specialization.
 - Complete the following courses (6 credits):
 - CSUS 846 Law of Environmental Regulation
 - PHM 450 Introduction to Chemical Toxicology
 - Complete two courses from any of the five categories listed below (6 to 8 credits):
 - Environmental Dynamics
 - CSS 455 Environmental Pollutants in Soil and Water
 - Environmental Chemistry
 - ENE 481 Environmental Chemistry: Equilibrium Concepts
 - Dynamics of Environmental Systems
 - ENE 801 Dynamics of Environmental Systems
 - Groundwater Hydraulics
 - ENE 821 Groundwater Hydraulics
 - Environmental Geochemistry
 - GLG 421 Environmental Geochemistry
 - Aquous Geochemistry
 - GLG 521 Aquous Geochemistry
 - Microbial Ecology
 - MMG 425 Microbial Ecology
 - Ecosystem Ecology and Global Change
 - ZOL 897 Ecosystem Ecology and Global Change
 - Environmental Impact Assessment
 - CSUS 429 Environmental Impact Assessment
 - Waste Management
 - ENE 483 Water and Wastewater Treatment
 - ENE 487 Microbiology for Environmental Science and Engineering
 - Biological Processes in Environmental Engineering
 - ENE 804 Biological Processes in Environmental Engineering
 - Analytical Chemistry
 - CEM 833 Advanced Analytical Chemistry II
 - CEM 838 Separation Science
 - Structure and Spectroscopy of Organic Compounds
 - CEM 849 Structure and Spectroscopy of Organic Compounds
 - Toxicity
 - AMS 407 Food and Animal Toxicology
 - BMB 960 Selected Topics in Biochemistry I
 - FSC 807 Advanced Food Toxicology
 - Biochemistry and Molecular Biology
 - BMB 960 may be counted toward the requirements for the specialization only when the topic deals with environmental toxicology.

2. **Seminar**
 - Attend a minimum of six seminars in environmental toxicology.

GRADUATE SPECIALIZATION IN FISH AND WILDLIFE DISEASE ECOLOGY AND CONSERVATION MEDICINE

The Specialization in Fish and Wildlife Disease Ecology and Conservation Medicine is designed to provide students with improved understanding of the likely consequences of increased contact between fish and wildlife, domestic animals and human populations for emergence and spread of infectious diseases. Students will gain a sound understanding of the basis of fish and wildlife disease, and an appreciation of the diagnostic and surveillance tools needed to move toward effective disease control among wild populations and ecosystems. Students will also obtain the skills that will enable them to work effectively within interdisciplinary and interagency teams to develop disease surveillance, control, and prevention plans.

The specialization which is administered by the Department of Fisheries and Wildlife and the College of Agriculture and Natural Resources, is available as an elective to master’s and doctoral students in the College of Agriculture and Natural Resources, the College of Natural Science, and the College of Veterinary Medicine. Students enrolled in Plan A (thesis) master’s programs are encouraged to develop thesis topics which integrate their chosen
discipline with the interdisciplinary focus integral to this specialization. It is designed for students who are interested in combining study in their disciplines with the study of fish and wildlife disease ecology and in applying their knowledge to the management of emerging and recurring disease in fish and wildlife populations and in ecosystems.

With the approval of the department or school and college that administers the student’s degree program, courses that are used to satisfy the requirements for the specialization may also be used to satisfy the requirements for the graduate degree program. The student’s program of study must be approved by the student’s academic advisor for the specialization.

Requirements for the Specialization in Fish and Wildlife Disease Ecology and Conservation Medicine

The student must:

1. Complete all of the following courses (10 credits):
 - FW 423: Principles of Fish and Wildlife Disease
 - FW 423L: Principles of Fish and Wildlife Disease Laboratory
 - FW 463: Wildlife Disease Ecology
 - FW 821: Conservation Medicine
 - ANP 659: Gender, Justice, and Environmental Change

2. Students must provide evidence of background and/or education in epidemiology and or quantitative methods. Typically, this background or education will be in the form of successful completion of one semester-long course in each of these areas. Course work taken prior to entering the graduate specialization can be used to satisfy this requirement. Waiver of this requirement requires review by the advisor for the specialization.

3. Master’s and doctoral students will complete a thesis or dissertation reflecting the integration of the student’s discipline.

GRADUATE SPECIALIZATION in GENDER, JUSTICE, and ENVIRONMENTAL CHANGE

The Graduate Specialization in Gender, Justice, and Environmental Change is administered by the College of Agriculture and Natural Resources and the College of Social Science. The primary administrative unit for this specialization is the College of Agriculture and Natural Resources.

The Graduate Specialization in Gender, Justice, and Environmental Change is available as an elective for students who are enrolled in master’s and doctoral programs at Michigan State University. The goal of this program is to provide graduate students from different academic backgrounds with analytical and methodological tools to address environmental issues from the perspectives of gender relations and social justice. Students will be encouraged to develop an understanding of global perspectives on environmental issues in view of local-global linkages. The program will prepare students to foster the growth of research, service, and interdisciplinary collaboration in the fields of gender and environmental studies and to increase knowledge of the relationships between gender and domestic and international environmental issues.

Persons who are interested in the specialization must contact the advisor for the Graduate Specialization in Gender, Justice, and Environmental Change in the College of Agriculture and Natural Resources. To be admitted to the specialization, a student must have been admitted to a graduate program at Michigan State University.

With the approval of the department and college that administer the student’s degree program, courses that are used to satisfy the requirements for the specialization may also be used to satisfy the requirements for a master’s or doctoral degree.

Requirements for the Specialization in Gender, Justice, and Environmental Change

The student must complete a total of 12 credits:

<table>
<thead>
<tr>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Both of the following courses:</td>
</tr>
<tr>
<td>ANP 659 Gender, Justice, and Environmental Change: Methods and Application</td>
</tr>
<tr>
<td>FW 858 Gender, Justice, and Environmental Change: Issues and Concepts</td>
</tr>
<tr>
<td>2. Two courses relevant to gender, justice and environmental change. These courses will be selected, with advisor approval, after consideration of a recommended list of courses, furnished by the advisor, from such fields as agricultural economics, anthropology, forestry, fisheries and wildlife, political science, resource development, sociology, social work, and women’s studies.</td>
</tr>
<tr>
<td>a. Policy course</td>
</tr>
<tr>
<td>b. Elective course</td>
</tr>
</tbody>
</table>

INTERDEPARTMENTAL GRADUATE SPECIALIZATIONS in ENVIRONMENTAL AND RESOURCE ECONOMICS

The interdepartmental graduate specialization in environmental and resource economics is an elective for students in all graduate majors. The specialization is designed to:

1. provide an opportunity for graduate students to obtain advanced training in the field of environmental and natural resource economics.
2. develop an intellectual environment, which will foster the growth of research and public service in the area of environmental and natural resource economics.
3. foster an understanding among graduate students of the career opportunities and professional responsibilities in the fields of environmental and natural resource economics.
4. increase public awareness of environmental and natural resource problems and alternative solutions.

Students who elect this graduate specialization seek a high degree of proficiency in the economic analysis of environmental and natural resource problems. The specialization is suitable for graduate students who intend to specialize in this area of economic analysis, as well as for those who may have a departmental major in a non-economic aspect of the environment and natural resources, but who want to deepen their understanding of how economics influences their major area of study.

The College of Agriculture and Natural Resources and the College of Social Science jointly administer the specialization. The College of Agriculture and Natural Resources is the primary administrative unit. The faculty who participate in this specialization are drawn from the departments of Agricultural Economics; Community, Agriculture, Recreation and Resource Studies, Economics; Fisheries and Wildlife; and Forestry.

Core faculty are selected by the chairpersons of the six participating departments. Each department designates one core faculty member to serve on a Coordinating Committee for the Specialization in Environmental and Resource Economics. The Coordinating Committee oversees the policies and program requirements adopted by the core faculty. Faculty members who comprise the core faculty may change with the mutual consent of the chairpersons of the departments, upon recommendation of the Coordinating Committee.

Requirements for the Specializations in Environmental and Resource Economics

Master’s Students: The specialization consists of the completion of approximately 18 credits of resource economics and methods courses specified by the coordinating committee and approved by the core faculty. Credits in courses taken for the specialization may be counted toward the requirements for the student’s major at the discretion of the major department. At least
Requirements for the Bachelor of Science Degree in Agribusiness Management

1. The University requirements for bachelor's degrees as described in the Undergraduate Education section of this catalog; 120 credits, including general elective credits, are required for the Bachelor of Science degree in Agribusiness Management.

The University's Tier II Writing Requirement for the Agribusiness Management major is met by completing Agribusiness Management 437. That course is referenced in item 3. a. below.

The completion of the Agribusiness Management mathematics requirement may also satisfy the College of Agriculture and Natural Resources and the University mathematics requirement.

2. The requirements of the College of Agriculture and Natural Resources for the Bachelor of Science degree.

Certain courses referenced in requirement 3. below may be counted toward College requirements as appropriate.

Students must achieve a grade of at least 2.0 or higher in each ABM and FIM and EEP course referenced in items 3. a. and in all courses taken to fulfill requirements 3. b. and 3. c.

Agribusiness Management 435 and Environmental Economics and Policy 405 may be used to fulfill requirement 3. b. if it is not used to fulfill requirement 3. c. Agribusiness Management 130 may be used to fulfill requirement 3. b. if it is not used to fulfill requirement 3. e.

3. The following requirements for the major:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABM 100</td>
<td>Decision-making in the Agri-Food System</td>
<td>3</td>
</tr>
<tr>
<td>ABM 203</td>
<td>Data Analysis for the Agri-Food System</td>
<td>3</td>
</tr>
<tr>
<td>ABM 210</td>
<td>Professional Seminar in Agribusiness Management</td>
<td>1</td>
</tr>
<tr>
<td>ABM 222</td>
<td>Agribusiness and Food Industry Sales (W)</td>
<td>3</td>
</tr>
<tr>
<td>ABM 225</td>
<td>Commodity Marketing I</td>
<td>3</td>
</tr>
<tr>
<td>ABM 410</td>
<td>Advanced Professional Seminar in Agribusiness Management</td>
<td>1</td>
</tr>
<tr>
<td>ABM 422</td>
<td>Vertical Coordination in the Agri-Food System</td>
<td>3</td>
</tr>
<tr>
<td>ABM 437</td>
<td>Agribusiness Strategic Management (W)</td>
<td>3</td>
</tr>
<tr>
<td>ACC 230</td>
<td>Survey of Accounting Concepts</td>
<td>3</td>
</tr>
<tr>
<td>EC 201</td>
<td>Introduction to Microeconomics</td>
<td>3</td>
</tr>
<tr>
<td>EC 202</td>
<td>Introduction to Macroeconomics</td>
<td>3</td>
</tr>
<tr>
<td>EEP 260</td>
<td>World Food, Population and Poverty</td>
<td>3</td>
</tr>
<tr>
<td>FIM 220</td>
<td>Food Product Marketing</td>
<td>3</td>
</tr>
<tr>
<td>MKT 327</td>
<td>Introduction to Marketing</td>
<td>3</td>
</tr>
<tr>
<td>MTH 124</td>
<td>Survey of Calculus I</td>
<td>3</td>
</tr>
<tr>
<td>SCM 303</td>
<td>Introduction to Supply Chain Management</td>
<td>3</td>
</tr>
<tr>
<td>ABM 130</td>
<td>Farm Management I</td>
<td>3</td>
</tr>
<tr>
<td>ABM 337</td>
<td>Labor and Personnel Management in the Agri-Food System</td>
<td>3</td>
</tr>
<tr>
<td>ABM 400</td>
<td>Public Policy Issues in the Agri-Food System</td>
<td>3</td>
</tr>
<tr>
<td>ABM 425</td>
<td>Commodity Marketing II</td>
<td>3</td>
</tr>
<tr>
<td>ABM 427</td>
<td>Global Agri-Food Industries and Markets</td>
<td>3</td>
</tr>
<tr>
<td>ABM 430</td>
<td>Farm Management II</td>
<td>3</td>
</tr>
<tr>
<td>ABM 435</td>
<td>Financial Management in the Agri-Food System</td>
<td>3</td>
</tr>
<tr>
<td>EEP 405</td>
<td>Corporate Environmental Management (W)</td>
<td>3</td>
</tr>
<tr>
<td>FIM 335</td>
<td>Food Marketing Management</td>
<td>3</td>
</tr>
<tr>
<td>FIM 460</td>
<td>Retail Information Systems</td>
<td>3</td>
</tr>
<tr>
<td>GBL 323</td>
<td>Introduction to Business Law</td>
<td>3</td>
</tr>
<tr>
<td>SGT 325</td>
<td>Management Skills and Process</td>
<td>3</td>
</tr>
<tr>
<td>ABM 435</td>
<td>Financial Management in the Agri-Food System</td>
<td>3</td>
</tr>
<tr>
<td>EEP 405</td>
<td>Corporate Environmental Management (W)</td>
<td>3</td>
</tr>
<tr>
<td>STT 200</td>
<td>Statistical Methods</td>
<td>3</td>
</tr>
<tr>
<td>STT 315</td>
<td>Introduction to Probability and Statistics for Business</td>
<td>3</td>
</tr>
<tr>
<td>STT 320</td>
<td>Introduction to Finance</td>
<td>3</td>
</tr>
<tr>
<td>ABM 303</td>
<td>Economics of Decision Making in the Agri-Food System</td>
<td>3</td>
</tr>
<tr>
<td>EC 301</td>
<td>Intermediate Microeconomics</td>
<td>3</td>
</tr>
<tr>
<td>ABM 490</td>
<td>Independent Study</td>
<td>3</td>
</tr>
<tr>
<td>ABM 493</td>
<td>Professional Internship in Agribusiness Management</td>
<td>3</td>
</tr>
</tbody>
</table>

DEPARTMENT of AGRICULTURAL, FOOD, and RESOURCE ECONOMICS

Lindon J. Robison, Acting Chairperson

UNDERGRADUATE PROGRAMS

The department offers three undergraduate majors: agribusiness management, environmental economics and management, and food industry management. These majors emphasize the application of business and social sciences to the management of public and private sector organizations. Each major is built on a liberal education base with a core of professional courses and sufficient electives for students and their advisors to tailor individualized programs.

AGRIBUSINESS MANAGEMENT

The agribusiness management major is designed for students who are interested in careers with agricultural input supply, agricultural production, commodity assembly and processing, and agricultural marketing organizations. The program, which focuses on the managerial functions performed by organizations throughout the agribusiness sector, provides a system-wide perspective of managerial problems confronting such organizations. Faculty who are associated with the program maintain close relationships with agribusiness companies. Those relationships benefit students who seek information about careers, scholarships, and employment in the field.

FOOD INDUSTRY MANAGEMENT

The food industry management major is designed for students who are interested in careers in the food industry. Graduates of this major enter managerial positions with food wholesalers-distributors and retailers as well as sales, account management,
and production supervision positions with food manufacturers. The program provides a system-wide perspective of managerial problems confronting firms in the food industry, recognizes the increasing interdependence among such firms and focuses on creating consumer value. Faculty who are associated with the program maintain close relationships with food companies and trade associations, bring practical applications and examples to the classroom and provide current information about career and scholarship opportunities.

Requirements for the Bachelor of Science Degree in Food Industry Management

1. The University requirements for bachelor’s degrees as described in the Undergraduate Education section of this catalog; 120 credits, including general elective credits, are required for the Bachelor of Science degree in Food Industry Management.

The University’s Tier II Writing Requirement for the Food Industry Management major is met by completing Food Industry Management 439. That course is referenced in item 3. a. below.

The completion of the Food Industry Management mathematics requirement may also satisfy the College of Agriculture and Natural Resources and the University mathematics requirement.

2. The requirements of the College of Agriculture and Natural Resources for the Bachelor of Science degree.

Certain courses referenced in requirement 3. below may be counted toward College requirements as appropriate.

Students must achieve a grade of at least 2.0 or higher in each ABM and FIM and EEP course referenced in items 3. a. and in courses taken to fulfill requirements 3. b., 3. c., and 3. d.

Agribusiness Management 435 may be used to fulfill requirement 3. b. if it is not used to fulfill requirement 3. c.

Environmental Economics and Policy 405 may be used to fulfill requirement 3. b. if it is not used to fulfill requirement 3. c.

Agribusiness Management 130 may be used to fulfill requirement 3. b. if it is not used to fulfill requirement 3. d.

3. The following requirements for the major:

<table>
<thead>
<tr>
<th>CREDITS</th>
<th>Requirements for the Bachelor of Science Degree in Food Industry Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>44</td>
<td>a. All of the following courses:</td>
</tr>
<tr>
<td></td>
<td>ABM 100 Decision-making in the Agri-Food System</td>
</tr>
<tr>
<td></td>
<td>ABM 203 Data Analysis for the Agri-Food System</td>
</tr>
<tr>
<td></td>
<td>ACC 230 Survey of Accounting Concepts ..</td>
</tr>
<tr>
<td></td>
<td>EC 201 Introduction to Microeconomics ..</td>
</tr>
<tr>
<td></td>
<td>EC 202 Introduction to International Economics ...</td>
</tr>
<tr>
<td></td>
<td>EEP 260 World Food, Population and Poverty ..</td>
</tr>
<tr>
<td></td>
<td>FIM 210 Professional Seminar in Food Industry Management</td>
</tr>
<tr>
<td></td>
<td>FIM 220 Food Product Marketing ...</td>
</tr>
<tr>
<td></td>
<td>FIM 335 Food Marketing Management ..</td>
</tr>
<tr>
<td></td>
<td>FIM 439 Food Business Analysis and Strategic Planning (W)</td>
</tr>
<tr>
<td></td>
<td>FIM 460 Retail Information Systems ...</td>
</tr>
<tr>
<td></td>
<td>MTH 124 Survey of Calculus I ...</td>
</tr>
<tr>
<td></td>
<td>SCM 303 Introduction to Supply Chain Management ..</td>
</tr>
<tr>
<td>9</td>
<td>b. Three of the following courses:</td>
</tr>
<tr>
<td></td>
<td>ABM 130 Farm Management I ...</td>
</tr>
<tr>
<td></td>
<td>ABM 225 Commodity Marketing I ..</td>
</tr>
<tr>
<td></td>
<td>ABM 400 Policy Issues in the Agri-Food System ..</td>
</tr>
<tr>
<td></td>
<td>ABM 422 Vertical Coordination in the Agri-Food System</td>
</tr>
<tr>
<td></td>
<td>ABM 425 Commodity Marketing II ...</td>
</tr>
<tr>
<td></td>
<td>ABM 427 Global Agri-Food Industries and Markets ..</td>
</tr>
<tr>
<td></td>
<td>ABM 435 Financial Management in the Agri-Food System</td>
</tr>
<tr>
<td></td>
<td>EEP 405 Corporate Environmental Management (W) ..</td>
</tr>
<tr>
<td></td>
<td>FIM 224 Information and Market Intelligence in the Agri-Food Industry</td>
</tr>
<tr>
<td></td>
<td>FIM 415 Human Resource Management and Challenges</td>
</tr>
<tr>
<td></td>
<td>GBL 323 Introduction to Business Law ..</td>
</tr>
<tr>
<td></td>
<td>MGT 325 Management Skills and Processes ..</td>
</tr>
<tr>
<td></td>
<td>MKT 351 Retail Management ..</td>
</tr>
<tr>
<td>3</td>
<td>c. One of the following courses:</td>
</tr>
<tr>
<td></td>
<td>ABM 435 Financial Management in the Food Industry System..........................</td>
</tr>
<tr>
<td></td>
<td>EEP 405 Corporate Environmental Management ...</td>
</tr>
<tr>
<td></td>
<td>FI 320 Introduction to Finance ...</td>
</tr>
<tr>
<td>3 or 4</td>
<td>d. One of the following courses:</td>
</tr>
<tr>
<td></td>
<td>ABM 130 Farm Management I ...</td>
</tr>
<tr>
<td></td>
<td>STT 200 Statistical Methods ..</td>
</tr>
<tr>
<td></td>
<td>STT 201 Statistical Methods ..</td>
</tr>
<tr>
<td></td>
<td>STT 315 Introduction to Probability and Statistics for Business</td>
</tr>
<tr>
<td>3</td>
<td>e. One of the following courses:</td>
</tr>
<tr>
<td></td>
<td>STT 200 Statistical Methods ..</td>
</tr>
<tr>
<td></td>
<td>STT 201 Statistical Methods ..</td>
</tr>
<tr>
<td></td>
<td>STT 315 Introduction to Probability and Statistics for Business</td>
</tr>
</tbody>
</table>

ENVIRONMENTAL ECONOMICS AND MANAGEMENT

Environmental Economics and Management prepares students for careers that require balancing environmental sustainability and economic development. The major develops economic analysis skills and basic environmental science knowledge and applies these skills and knowledge to analyze the role of environmental considerations in economic decisions of government, firms, and households. The major prepares students for employment opportunities with state, federal and international government agencies, environmental interest groups, environmental consulting firms, and industry. The major also offers students the opportunity to prepare for graduate study in environmental economics or environmental policy studies programs.

Requirements for the Bachelor of Science Degree in Environmental Economics and Management

1. The University requirements for bachelor’s degrees as described in the Undergraduate Education section of this catalog; 120 credits, including general elective credits, are required for the Bachelor of Science degree in Environmental Economics and Management.

The University’s Tier II writing requirement for the Environmental Economics and Management major is met by completing Environmental Economics and Policy 405. That course is referenced in item 3. a. below.

The completion of the Environmental Economics and Management mathematics requirement may also satisfy the College of Agriculture and Natural Resources and the University mathematics requirement.

2. The requirements of the College of Agriculture and Natural Resources for the Bachelor of Science degree.

Certain courses referenced in requirement 3. below may be counted toward College requirements as appropriate.

Students must achieve a grade of at least 2.0 or higher in each ABM and FIM and EEP course referenced in items 3. a. and in courses taken to fulfill requirements 3. b., 3. c., and 3. d.

Agribusiness Management 435 and 437 and Food Industry Management 339 may be used to fulfill requirement 3. b. if it is not used to fulfill requirement 3. c.

Agribusiness Management 130 may be used to fulfill requirement 3. b. if it is not used to fulfill requirement 3. d.

3. The following requirements for the major:

<table>
<thead>
<tr>
<th>CREDITS</th>
<th>Requirements for the Bachelor of Science Degree in Environmental Economics and Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>44</td>
<td>a. All of the following courses:</td>
</tr>
<tr>
<td></td>
<td>ABM 100 Decision-making in the Agri-Food System ...</td>
</tr>
<tr>
<td></td>
<td>ABM 210 Professional Seminar in Agriculture and Natural Resources Management</td>
</tr>
<tr>
<td></td>
<td>ACC 230 Survey of Accounting Concepts ...</td>
</tr>
<tr>
<td></td>
<td>EC 201 Introduction to Microeconomics ...</td>
</tr>
<tr>
<td></td>
<td>EC 202 Introduction to International Economics ..</td>
</tr>
<tr>
<td></td>
<td>EEP 260 World Food, Population and Poverty ..</td>
</tr>
<tr>
<td></td>
<td>EEP 405 Corporate Environmental Management (W) ..</td>
</tr>
<tr>
<td></td>
<td>FIM 220 Food Product Marketing ..</td>
</tr>
<tr>
<td></td>
<td>FIM 335 Food Marketing Management ...</td>
</tr>
<tr>
<td></td>
<td>FIM 401 Advanced Professional Seminar in Agriculture and Natural Resources Management</td>
</tr>
<tr>
<td></td>
<td>FIM 405 Data Analysis for the Agri-Food System ..</td>
</tr>
<tr>
<td></td>
<td>FIM 460 Retail Information Systems ...</td>
</tr>
<tr>
<td></td>
<td>MTH 124 Survey of Calculus I ...</td>
</tr>
<tr>
<td></td>
<td>SCM 303 Introduction to Supply Chain Management ..</td>
</tr>
<tr>
<td>9</td>
<td>b. Three of the following courses:</td>
</tr>
<tr>
<td></td>
<td>ABM 130 Farm Management I ...</td>
</tr>
<tr>
<td></td>
<td>ABM 222 Agribusiness and Food Industry Sales (W) ..</td>
</tr>
<tr>
<td></td>
<td>ABM 225 Commodity Marketing I ...</td>
</tr>
<tr>
<td></td>
<td>ABM 337 Labor and Personnel Management in the Agri-Food System</td>
</tr>
<tr>
<td></td>
<td>ACC 230 Survey of Accounting Concepts ...</td>
</tr>
<tr>
<td></td>
<td>EC 201 Introduction to Microeconomics ...</td>
</tr>
<tr>
<td></td>
<td>EC 202 Introduction to International Economics ..</td>
</tr>
<tr>
<td></td>
<td>EEP 260 World Food, Population and Poverty ..</td>
</tr>
<tr>
<td></td>
<td>EEP 320 Environmental Economics ..</td>
</tr>
<tr>
<td></td>
<td>EEP 405 Corporate Environmental Management (W) ..</td>
</tr>
<tr>
<td></td>
<td>EEP 460 Natural Resource Economics ...</td>
</tr>
<tr>
<td></td>
<td>FIM 203 Data Analysis for the Agri-Food System ..</td>
</tr>
<tr>
<td></td>
<td>FIM 220 Food Product Marketing ...</td>
</tr>
<tr>
<td></td>
<td>MKT 327 Introduction to Market Research ..</td>
</tr>
<tr>
<td></td>
<td>MTH 124 Survey of Calculus I ...</td>
</tr>
<tr>
<td></td>
<td>SCM 303 Introduction to Supply Chain Management ..</td>
</tr>
<tr>
<td>3</td>
<td>c. One of the following courses:</td>
</tr>
<tr>
<td></td>
<td>ABM 130 Farm Management I ...</td>
</tr>
<tr>
<td></td>
<td>STT 200 Statistical Methods ...</td>
</tr>
<tr>
<td></td>
<td>STT 201 Statistical Methods ...</td>
</tr>
<tr>
<td></td>
<td>STT 315 Introduction to Probability and Statistics for Business</td>
</tr>
<tr>
<td>3</td>
<td>d. One of the following courses:</td>
</tr>
<tr>
<td></td>
<td>ABM 130 Farm Management I ...</td>
</tr>
<tr>
<td></td>
<td>STT 200 Statistical Methods ...</td>
</tr>
<tr>
<td></td>
<td>STT 201 Statistical Methods ...</td>
</tr>
<tr>
<td></td>
<td>STT 315 Introduction to Probability and Statistics for Business</td>
</tr>
<tr>
<td>3</td>
<td>e. One of the following courses:</td>
</tr>
<tr>
<td></td>
<td>ABM 130 Farm Management I ...</td>
</tr>
<tr>
<td></td>
<td>STT 200 Statistical Methods ...</td>
</tr>
<tr>
<td></td>
<td>STT 201 Statistical Methods ...</td>
</tr>
<tr>
<td></td>
<td>STT 315 Introduction to Probability and Statistics for Business</td>
</tr>
<tr>
<td>3</td>
<td>f. One of the following courses:</td>
</tr>
<tr>
<td></td>
<td>ABM 130 Farm Management I ...</td>
</tr>
<tr>
<td></td>
<td>STT 200 Statistical Methods ...</td>
</tr>
<tr>
<td></td>
<td>STT 201 Statistical Methods ...</td>
</tr>
<tr>
<td></td>
<td>STT 315 Introduction to Probability and Statistics for Business</td>
</tr>
</tbody>
</table>
MINOR IN AGROBUSINESS MANAGEMENT

The Minor in Agribusiness Management is designed to serve students with majors in other fields who are interested in careers in agribusiness. The primary educational objective of the specialization is to provide students with a fundamental knowledge of business management in relation to agribusiness firms.

The minor is available as an elective to all students who are enrolled in bachelor's degree programs at Michigan State University other than the Bachelor of Science degree program with a major in agribusiness management. The minor is administered by the Department of Agricultural, Food, and Resource Economics.

At least 12 credits counted towards the requirements for this minor must be unique. Unique credits must not be used to fulfill another university, college, or major requirement in the student's program.

Requirements for the Minor in Agribusiness Management

The student must complete:

1. One of the following courses: 3 credits
 - ABM 100 Decision-making in the Agri-Food System
 - ABM 130 Farm Management I
 - ABM 225 Commodity Marketing I
 - ABM 435 Financial Management in the Agri-Food System

2. Two of the following courses: 3 credits
 - ABM 222 Agribusiness and Food Industry Sales (W)
 - ABM 337 Labor and Personnel Management in the Agri-Food System
 - ABM 400 Public Policy Issues in the Agri-Food System
 - ABM 422 Vertical Coordination in the Agri-Food System
 - ABM 425 Commodity Marketing II
 - ABM 427 Agribusiness and Agri-Food Industries and Markets
 - ABM 437 Agribusiness Strategic Management (W)
 - FIM 439 Food Business Analysis and Strategic Planning (W)

3. Two of the following courses including at least one course at the 300 or 400 level. Courses not used to satisfy requirements 1. and 2. may be substituted for courses listed in requirement 3. 6 credits
 - ABM 221 Agribusiness and Food Industry Sales (W)
 - ABM 337 Labor and Personnel Management in the Agri-Food System
 - ABM 400 Public Policy Issues in the Agri-Food System
 - ABM 422 Vertical Coordination in the Agri-Food System
 - ABM 425 Commodity Marketing II
 - ABM 427 Agribusiness and Agri-Food Industries and Markets
 - ABM 437 Agribusiness Strategic Management (W)
 - FIM 439 Food Business Analysis and Strategic Planning (W)

MINOR IN ENVIRONMENTAL ECONOMICS

The Minor in Environmental Economics is designed to serve students who are interested in the application of economics to environmental issues. The educational objectives of the minor are to:

1. Introduce students to the concepts and principles of environmental economics.
2. Help students to develop the skills necessary to analyze environmental and natural resource issues.
3. Help students to understand the economic dimensions of the many environmental issues facing society.

The minor is available as an elective to all students who are enrolled in bachelor's degree programs at Michigan State University. The minor is administered by the Department of Agricultural, Food, and Resource Economics.

At least 12 credits counted towards the requirements for this minor must be unique. Unique credits must not be used to fulfill another university, college, or major requirement in the student's program.

Requirements for the Minor in Environmental Economics

The student must complete a minimum of 18 credits:

1. One of the following courses: 3 or 4 credits
 - EC 201 Introduction to Microeconomics
 - EC 211 Microeconomics and Public Policy
 - EC 301 Intermediate Microeconomics

2. All of the following courses: 12 credits
 - EEP 255 Ecological Economics
 - EEP 320 Environmental Economics
 - EEP 405 Corporate Environmental Management (W)
 - EEP 460 Natural Resource Economics

3. One of the following courses: 3 or 4 credits
 - CSUS 354 Water Resources Management
 - CSUS 425 Environmental Impact Assessment
 - CSUS 429 Program Planning and Evaluation
 - CSUS 464 Environmental and Natural Resource Policy in Michigan
 - CSUS 465 Environmental and Natural Resource Law
 - EC 450 Economics of Environmental Policy (W)
 - FOR 466 Natural Resource Policy
 - FW 364 Ecological Problem Solving
 - GEO 324 Remote Sensing of the Environment
 - GEO 402 Agricultural Climatology
 - Pkg 370 Packaging and the Environment

MINOR IN FOOD INDUSTRY MANAGEMENT

The Minor in Food Industry Management is designed to serve students with majors in other fields who are interested in careers in the food industry. The primary educational objective of the minor is to provide students with a fundamental knowledge of business management in relation to the food industry.

The minor is available as an elective to students who are enrolled in bachelor’s degree programs at Michigan State University other than the Bachelor of Science degree program with a major in food industry management. The minor is administered by the Department of Agricultural, Food, and Resource Economics.

At least 12 credits counted towards the requirements for this minor must be unique. Unique credits must not be used to fulfill another university, college, or major requirement in the student's program.

Requirements for the Minor in Food Industry Management

The student must complete:

1. Both of the following courses: 6 credits
 - GBL 323 Introduction to Business Law
 - MGT 325 Management Skills and Processes
 - MGT 327 Introduction to Marketing
GRADUATE STUDY

The Department of Agricultural, Food, and Resource Economics offers Master of Science and Doctor of Philosophy degree programs in agricultural, food and resource economics.

AGRICULTURAL, FOOD and RESOURCE ECONOMICS

Graduate programs in agricultural, food and resource economics provide for coordinated study in several areas. The courses and programs are designed to help students become thoroughly grounded in the concepts and tools of economics and related fields and to enable them to solve practical problems. The department offers the following five fields of study: agribusiness strategy and management, agricultural markets and price analysis, environmental and resource economics, finance and production economics, and international agricultural development.

Students who are enrolled in Master of Science degree programs in the Department of Agricultural, Food, and Resource Economics may elect a Specialization in Food Safety. For additional information, refer to the statement on the specialization in the College of Veterinary Medicine section of this catalog.

Graduate students who are enrolled in the Department of Agricultural, Food, and Resource Economics may also elect specializations in resource economics (M.S. and Ph.D.) and agribusiness (M.S.). For additional information, refer to the statement on Interdepartmental Graduate Specializations in Resource Economics, and on the Master’s Specialization in Agribusiness.

Courses in agricultural, food and resource economics, mathematics, statistics, and related areas are available for those students who wish to begin or continue their graduate work during the summer months.

Admission

Many undergraduate programs provide background for graduate study in agricultural, food and resource economics. However, a student with inadequate background in areas deemed important to the program of study may be required to complete collateral courses in addition to the minimum credit requirements for the degree and may be admitted on a provisional status until some deficiencies are remedied. All applicants for admission to graduate degree programs in agricultural, food and resource economics are required to submit scores for the General Test of the Graduate Record Examination.

Master of Science

The master’s programs in agricultural, food and resource economics may be designed to serve either as final preparation for professional employment or as the foundation for a doctoral program.

In addition to meeting the requirements of the university and of the College of Agriculture and Natural Resources, students must meet the requirements specified below.

Requirements for the Master of Science Degree in Agricultural, Food and Resource Economics

The student may elect either Plan A (with thesis) or Plan B (non-thesis research paper). The student’s plan of study should be approved by the department prior to the beginning of the second semester of enrollment in the program.

A total of 30 credits is required for the degree under Plan A, and a total of 33 credits is required for the degree under Plan B.

Requirements for Both Plan A and Plan B:

1. A grade-point average of at least 3.0 for all courses counting toward the master’s degree, and in each course used to satisfy the mathematics, statistics, and quantitative methods requirements.

2. A minimum of 12 credits in courses in agricultural, food and resource economics, with at least 9 credits at the 800-900 level.

3. A minimum of 3 credits in courses that the department has identified as containing primarily economic theory.

4. A minimum of 9 credits in courses in quantitative analysis, including 3 credits of mathematics for economists (equivalent to AEC 801) and one elective 3 credit quantitative methods course. Alternatively, students may replace AEC 801 by 1 credit of mathematics for economists (equivalent to AEC 800A) and a second 3 credit elective quantitative methods course for a total of 10 credits in quantitative analysis.

Additional Requirements for Plan A:

1. Six credits of master’s thesis research.

Additional Requirements for Plan B:

1. A research paper or papers representing not fewer than 3 nor more than 4 credits.

2. Six credits in courses in a minor field, either within or outside the department.

Doctor of Philosophy

In addition to meeting the requirements of the university and of the College of Agriculture and Natural Resources, students must meet the requirements specified below.

Requirements for the Doctor of Philosophy Degree in Agricultural, Food and Resource Economics

The student must:

1. Acquire (a) competence in economics by completing 9 credits of Ph.D. level courses in economic theory and (b) 9
Credits in a major field in one of the five fields within agricultural, food and resource economics referenced above.

2. Pass written comprehensive examinations in economics no later than the end of the second year and in the student’s chosen major field by the end of the third year.

3. Complete (a) 6 credits in a minor field in agricultural, food and resource economics outside the major field, and (b) 6 credits in a second minor field that may be outside the Department of Agricultural, Food, and Resource Economics.

4. Acquire competence in quantitative methods by taking specified courses in mathematics for economists (3 credits), probability and statistics (3 credits), econometrics (3 credits) and one other quantitative methods course (3 credits). A grade of 3.0 must be achieved in each course.

5. Complete one graduate course (3 credits) in research methodology.

6. Complete 24 credits of dissertation research, present and obtain formal approval for the proposed dissertation research, present the results of the research at the outset of the final oral examination, and prepare a research paper suitable for submission to a professional journal.

The student’s dissertation research forms a part of the department’s research program and contributes to it. Dissertation research may be conducted overseas in conjunction with university projects or with the support of other research grants. A detailed description of master’s and doctoral program requirements and a timetable for completing them are included in the Graduate Education Policies document of the Department of Agricultural, Food, and Resource Economics.

MASTER’S SPECIALIZATION IN AGRIBUSINESS

The Master’s specialization in Agribusiness is designed to serve students who are interested in careers in agribusiness. The specialization is available as an elective to students who are enrolled in master’s degree programs in the College of Agriculture and Natural Resources, The Eli Broad Graduate School of Management, and the College of Veterinary Medicine. The specialization is administered by the Department of Agricultural, Food, and Resource Economics.

The student’s program of study for the specialization must be approved by the academic advisor for agribusiness. Through the selection of courses, the specialization complements the student’s master’s degree program. Students in agriculturally related disciplines complete courses in business management, marketing, finance, and human resource management as applied to agriculture. Students in business management fields complete courses in agribusiness.

With the approval of the department and college that administer the student’s degree program, the courses that are used to satisfy the requirements for the specialization may also be used to satisfy the requirements for the master’s degree.

Requirements for the Master’s Specialization in Agribusiness

The student must complete:

1. One of the following courses: AEC 800 Foundations of Agricultural Economics 3
 EC 805 Microeconomic Analysis 3
 Requirement 1 will be waived for students who have completed an intermediate-level course in microeconomics.
 2. Two of the following courses: AEC 851 Agricultural Firm Management 3
 AEC 853 Financial Management in Agriculture 3
 AEC 857 Strategic Management in Agribusiness 3
 Agricultural Economics 851 or 853 or 857 may be used to satisfy either requirement 2. or requirement 3., but not both of those requirements.
 3. Two of the following courses: ACC 800 Financial Accounting Concepts 3
 ACC 840 Managerial Accounting 3

DEPARTMENT of ANIMAL SCIENCE

Janice C. Swanson, Chairperson

UNDERGRADUATE PROGRAM

The undergraduate program in animal science, which leads to the Bachelor of Science degree, is designed to prepare students for a variety of careers by establishing a strong basic science foundation combined with practical experience with agricultural animals at the multiple farm facilities located near campus. Graduates may be employed in farm ownership, management, marketing, agribusiness, finance, manufacturing, public relations, extension, or consulting. Graduates often attend veterinary or graduate school.

Scientific principles of biology and animal science are important components of the program and are combined with opportunities to apply fundamental principles learned in class to farm management. The animal science major also provides students with flexibility. Academic advisors guide students in the development of a planned program of study that is consistent with their interests and goals.

All students in animal science must complete a set of required core courses including breeding and genetics, nutrition, physiology, and management. These principles are taught using horses, dairy cattle, beef cattle, swine, poultry, sheep and companion animals.

Students must choose from one of the following concentrations: animal industry, companion and exotic animal biology, animal biology/preveterinary, or production animal scholars.

The animal industry concentration is designed to prepare students for careers in managing animal operations. Marketing, sales, and production of animals and animal products offer numerous employment opportunities.

The companion and exotic animal biology concentration prepares students for careers in areas of small animal nutrition, pet food sales, and captive and small animal management. Students may also use their elective credits to complete the
Requirements for the Bachelor of Science Degree in Animal Science

1. The University requirements for bachelor's degrees as described in the Undergraduate Education section of this catalog; 120 credits, including general elective credits, are required for the Bachelor of Science degree in Animal Science. The University's Tier II writing requirement for the Animal Science major is met by completing each of the following courses: Animal Science 313, 314, 315. Those courses are referenced in item 3. a. below.

Students who are enrolled in the Animal Science major leading to the Bachelor of Science degree in the Department of Animal Science may complete an alternative track to Integrative Studies in Biological and Physical Sciences that consists of the following courses: Biological Science 111 and 111L, Chemistry 141, and Chemistry 143 or 251. The completion of Biological Science 111L satisfies the laboratory requirement. The completion of Biological Science 111L and Chemistry 143 or 251 may be counted toward both the alternative track and the requirements for the major referenced in item 3. b. below.

The completion of the College of Agriculture and Natural Resources mathematics requirement may also satisfy the University mathematics requirement.

2. The requirements of the College of Agriculture and Natural Resources for the Bachelor of Science degree.

3. The following requirements for the major:

 a. All of the following courses: 29

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANS 101 Professional Development in Animal Science I</td>
<td>1</td>
</tr>
<tr>
<td>ANS 110 Introductory Animal Agriculture</td>
<td>4</td>
</tr>
<tr>
<td>ANS 301 Professional Development in Animal Science I</td>
<td>2</td>
</tr>
<tr>
<td>ANS 313 Principles of Animal Feeding and Nutrition</td>
<td>4</td>
</tr>
<tr>
<td>ANS 314 Genetic Improvement of Domestic Animals</td>
<td>2</td>
</tr>
<tr>
<td>ANS 315 Anatomy and Physiology of Farm Animals</td>
<td>4</td>
</tr>
<tr>
<td>ANS 401 Issues in Animal Agriculture</td>
<td>4</td>
</tr>
<tr>
<td>BS 111 Cells and Molecules</td>
<td>4</td>
</tr>
<tr>
<td>BS 111L Cell and Molecular Biology Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>CEM 141 General Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>CEM 210 General Physics I</td>
<td>4</td>
</tr>
<tr>
<td>CEM 213 General Physics II</td>
<td>3</td>
</tr>
<tr>
<td>CEM 214 General Physics II</td>
<td>3</td>
</tr>
</tbody>
</table>

 b. One of the following courses: 3 or 4

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>STT 200 Statistical Methods</td>
<td>3</td>
</tr>
<tr>
<td>STT 201 Statistical Methods</td>
<td>3</td>
</tr>
<tr>
<td>STT 421 Statistics I</td>
<td>3</td>
</tr>
<tr>
<td>STT 464 Statistics for Biologists</td>
<td>3</td>
</tr>
</tbody>
</table>

 c. One of the following courses: 3 or 4

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEM 141 General Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>CEM 210 General Physics I</td>
<td>4</td>
</tr>
<tr>
<td>CEM 213 General Physics II</td>
<td>3</td>
</tr>
<tr>
<td>CEM 214 General Physics II</td>
<td>3</td>
</tr>
</tbody>
</table>

3. A minimum of 8 credits from the following courses (8 to 12 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANS 305 Applied Animal Behavior</td>
<td>3</td>
</tr>
<tr>
<td>ANS 309 Health and Hygiene of Livestock</td>
<td>3</td>
</tr>
<tr>
<td>ANS 404 Advanced Animal Genetics</td>
<td>2</td>
</tr>
<tr>
<td>ANS 451 Growth and Muscle Development</td>
<td>3</td>
</tr>
<tr>
<td>ANS 452 Advanced Animal Nutrition</td>
<td>3</td>
</tr>
<tr>
<td>ANS 453 Advanced Animal Nutrition</td>
<td>3</td>
</tr>
<tr>
<td>ANS 454 Animal Breeding</td>
<td>2</td>
</tr>
<tr>
<td>ANS 455 Growth and Muscle Development</td>
<td>3</td>
</tr>
<tr>
<td>ANS 456 Meat Science and Muscle Biology</td>
<td>3</td>
</tr>
<tr>
<td>ANS 457 Comprehensive Nutrient Management Planning</td>
<td>3</td>
</tr>
<tr>
<td>ANS 435 Dairy Production</td>
<td>4</td>
</tr>
<tr>
<td>ANS 445 Equine Exercise Physiology</td>
<td>4</td>
</tr>
<tr>
<td>ANS 455 Avian Physiology</td>
<td>4</td>
</tr>
<tr>
<td>ANS 463 Ruminant Nutrition</td>
<td>3</td>
</tr>
</tbody>
</table>

4. One of the following courses (2 to 6 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANS 493 Professional Internship in Animal Science</td>
<td>3</td>
</tr>
<tr>
<td>ANS 500A Advanced Livestock Judging</td>
<td>2</td>
</tr>
<tr>
<td>ANS 500C Advanced Dairy Judging</td>
<td>2</td>
</tr>
<tr>
<td>ANS 500D Advanced Horse Judging</td>
<td>2</td>
</tr>
</tbody>
</table>

Six credits in an approved Study Abroad program can be used to fulfill this requirement.

5. The University’s Tier II writing requirement for the Animal Science major is met by completing each of the following courses: Animal Science 313, 314, 315. Those courses are referenced in item 3. a. below.

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANS 101 Professional Development in Animal Science I</td>
<td>1</td>
</tr>
<tr>
<td>ANS 110 Introductory Animal Agriculture</td>
<td>4</td>
</tr>
<tr>
<td>ANS 301 Professional Development in Animal Science I</td>
<td>2</td>
</tr>
<tr>
<td>ANS 313 Principles of Animal Feeding and Nutrition</td>
<td>4</td>
</tr>
<tr>
<td>ANS 314 Genetic Improvement of Domestic Animals</td>
<td>2</td>
</tr>
<tr>
<td>ANS 315 Anatomy and Physiology of Farm Animals</td>
<td>4</td>
</tr>
<tr>
<td>ANS 401 Issues in Animal Agriculture</td>
<td>4</td>
</tr>
<tr>
<td>BS 111 Cells and Molecules</td>
<td>4</td>
</tr>
<tr>
<td>BS 111L Cell and Molecular Biology Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>CEM 141 General Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>CEM 210 General Physics I</td>
<td>4</td>
</tr>
<tr>
<td>CEM 213 General Physics II</td>
<td>3</td>
</tr>
<tr>
<td>CEM 214 General Physics II</td>
<td>3</td>
</tr>
</tbody>
</table>

 a. All of the following courses: 29

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANS 101 Professional Development in Animal Science I</td>
<td>1</td>
</tr>
<tr>
<td>ANS 110 Introductory Animal Agriculture</td>
<td>4</td>
</tr>
<tr>
<td>ANS 301 Professional Development in Animal Science I</td>
<td>2</td>
</tr>
<tr>
<td>ANS 313 Principles of Animal Feeding and Nutrition</td>
<td>4</td>
</tr>
<tr>
<td>ANS 314 Genetic Improvement of Domestic Animals</td>
<td>2</td>
</tr>
<tr>
<td>ANS 315 Anatomy and Physiology of Farm Animals</td>
<td>4</td>
</tr>
<tr>
<td>ANS 401 Issues in Animal Agriculture</td>
<td>4</td>
</tr>
<tr>
<td>BS 111 Cells and Molecules</td>
<td>4</td>
</tr>
<tr>
<td>BS 111L Cell and Molecular Biology Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>CEM 141 General Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>CEM 210 General Physics I</td>
<td>4</td>
</tr>
<tr>
<td>CEM 213 General Physics II</td>
<td>3</td>
</tr>
<tr>
<td>CEM 214 General Physics II</td>
<td>3</td>
</tr>
</tbody>
</table>

 b. One of the following courses: 3 or 4

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>STT 200 Statistical Methods</td>
<td>3</td>
</tr>
<tr>
<td>STT 201 Statistical Methods</td>
<td>3</td>
</tr>
<tr>
<td>STT 421 Statistics I</td>
<td>3</td>
</tr>
<tr>
<td>STT 464 Statistics for Biologists</td>
<td>3</td>
</tr>
</tbody>
</table>

 c. One of the following courses: 3 or 4

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEM 141 General Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>CEM 210 General Physics I</td>
<td>4</td>
</tr>
<tr>
<td>CEM 213 General Physics II</td>
<td>3</td>
</tr>
<tr>
<td>CEM 214 General Physics II</td>
<td>3</td>
</tr>
</tbody>
</table>

The production animal scholars concentration is a cooperative effort between the Department of Animal Science and the College of Veterinary Medicine. The concentration is for students committed to a career in food animal management and medicine and provides an admissions pathway to Production Medicine Scholars in the College of Veterinary Medicine. Students must (1) declare the concentration when they reach junior standing; (2) submit a formal application for the production animal scholars concentration; (3) demonstrate a commitment to livestock agriculture, excluding horses, through youth activities, family experiences, employment, internships, extracurricular activities, and other participation in the livestock industry.

After completion of the production animal scholars concentration, students will earn a Bachelor of Science degree in Animal Science. Students may then enter veterinary college or pursue a career in farm-based, agricultural veterinary practice. Students completing this concentration must complete the Bachelor of Science degree in Animal Science prior to matriculation into the College of Veterinary Medicine. Students interested in pursuing the admissions pathway to Production Medicine Scholars in the College of Veterinary Medicine should see the College of Veterinary Medicine section of this catalog for further information.

Students who are enrolled in the Bachelor of Science degree program with a major in animal science may elect a Specialization in Agricultural and Natural Resources Biotechnology. For additional information, refer to the Specialization in Agricultural and Natural Resources Biotechnology statement.

Agriculture and Natural Resources

Department of Animal Science
GRADUATE STUDY

The graduate program in animal science is designed to provide students with opportunities to pursue a program that focuses on the basic biomedical and agricultural sciences or on applied management aspects of animal science.

The Department of Animal Science offers Master of Science and Doctoral of Philosophy degree programs in animal science and a Doctor of Philosophy degree program in animal science-environmental toxicology.

Students who are enrolled in Master of Science degree programs in the Department of Animal Science may elect a Specialization in Environmental Toxicology. For additional information, refer to the statement on the specialization in the College of Agriculture and Natural Resources section of this catalog.

Students who are enrolled in Master of Science degree programs in the Department of Animal Science may elect a Specialization in Food Safety. For additional information, refer to the statement on the specialization in the College of Veterinary Medicine section of this catalog.

ANIMAL SCIENCE

Programs of study are based on the strengths of the department and the goals and individual students. Although individual students' programs vary, all graduate programs in animal science are designed to:

1. Provide a strong foundation in biological science and an in-depth knowledge of a specific biological discipline of importance to animal agriculture.
2. Develop creative potential and foster independent thought.
3. Improve technical skills.
4. Provide the foundation for effective, independent careers in extension, research, teaching, or agribusiness.

The department offers the following areas of specialization within the field of animal science: quantitative genetics, systems science, nutrition, physiology of growth, lactation and reproduction, microbiology, molecular biology, toxicology, and livestock and farm management. Research for theses or dissertations may focus on beef or dairy cattle, sheep, swine, horses, poultry, or fur-bearing and laboratory species. Modern animal, computer, and library facilities support research.

Students who are enrolled in the Master of Science degree program in the Department of Animal Science may elect a Specialization in Environmental Toxicology. For additional information, refer to the Graduate Specialization in Environmental Toxicology statement.

In addition to meeting the requirements of the university and of College of Agriculture and Natural Resources, the student must meet the requirements specified below.

Admission

To be admitted to the master's or doctoral degree program in animal science, students must have a bachelor's degree in animal science or in a related biological science. To enroll in advanced courses in animal science and supporting sciences, students should have completed courses that establish principles in animal science and in basic physical and biological sciences pertinent to the area of specialization within the field of animal science that the student chooses. In some cases, students may need to complete collateral courses in addition to the courses that are required for the graduate degree.
Requirements for the Master of Science Degree in Animal Science

The student may elect either Plan A (with thesis) or Plan B (without thesis). A total of 30 credits is required for the degree under either Plan A or Plan B. In cooperation with the student's major professor, the student plans a program of study that includes courses related to one of the areas of specialization within the field of animal science referenced above, seminars, and teaching experience. The student's major professor and guidance committee must approve the student's program of study, including thesis research for students under Plan A.

Requirements for the Doctor of Philosophy Degree in Animal Science

In cooperation with the student's major professor, the student plans a program of study that includes courses related to one of the areas of specialization within the field of animal science referenced above, seminars, and teaching experience. The student's major professor and guidance committee must approve the student's program of study, including dissertation research.

ANIMAL SCIENCE—ENVIRONMENTAL TOXICOLOGY

Doctor of Philosophy

For information about the Doctor of Philosophy degree program in animal science—environmental toxicology, refer to the statement on Doctoral Program in Environmental and Integrative Toxicological Sciences in the Graduate Education section of this catalog.

DEPARTMENT of BIOSYSTEMS and AGRICULTURAL ENGINEERING

Darrell W. Donahue, Chairperson

The Department of Biosystems and Agricultural Engineering is administered jointly by the College of Agriculture and Natural Resources and the College of Engineering.

UNDERGRADUATE PROGRAMS

The department offers a Bachelor of Science degree program with a major in technology systems management through the College of Agriculture and Natural Resources. That program is described below. A Minor in Technology Systems Management is also available.

The department also offers a Bachelor of Science degree program with a major in biosystems engineering through the College of Engineering. For information about that program, refer to the statement on the Department of BIOSYSTEMS and Agricultural Engineering in the College of Engineering section of this catalog.

TECHNOLOGY SYSTEMS MANAGEMENT

Bachelor of Science

The Technology Systems Management program is designed to meet the needs of students who aspire to apply new technology to solve problems in food, agricultural and biological systems. Prospective students should have an affinity for physical systems, computers, and technology, and they should be practical problem-solvers.

Students in the program acquire a strong technical background tempered by an overview of business and economics. They possess highly portable skills in technology transfer and technical problem-solving which are applicable to many related career paths.

Graduates find employment as agricultural and environmental research technicians, managers of processing and production facilities, technical sales representatives, and service and marketing managers for equipment manufacturers.

Requirements for the Bachelor of Science Degree in Technology Systems Management

1. The University requirements for bachelor's degrees as described in the Undergraduate Education section of this catalog; 120 credits, including general elective credits, are required for the Bachelor of Science degree in Technology Systems Management. The University's Tier II writing requirement for the Technology Systems Management major is met by completing Technology Systems Management 481. That course is referenced in item 3.a. below.

Students who are enrolled in the Technology Systems Management major leading to the Bachelor of Science degree in the Department of Biosystems and Agricultural Engineering may complete an alternative track to Integrative Studies in Biological and Physical Sciences that consists of Chemistry 161, Physics 231 and 251, and one of the following courses: Biological Science 110 or 111; Entomology 205; Microbiology and Molecular Genetics 205; Physiology 250; or Plant Biology 105. The completion of Physics 251 or Biological Science 110 satisfies the laboratory requirement. The completion of Mathematics 124 satisfies both the College of Agriculture and Natural Resources mathematics requirement and the University mathematics requirement.

2. The requirements of the College of Agriculture and Natural Resources for the Bachelor of Science degree. Certain courses referenced in requirement 3. below may be counted toward College requirements as appropriate.

3. The following requirements for the major:

 a. All of the following courses: ... 56

 ABM 100 Decision-making in the Agri-Food System 3
 CEM 141 General Chemistry ... 4
 CEM 161 Chemistry Laboratory I .. 1
 CSE 101 Computing Concepts and Competencies 3
 GEO 221 Introduction to Geographic Information 3
 MTH 124 Survey of Calculus I ... 3
 PHY 231 Introductory Physics I ... 3
 PHY 251 Introductory Physics Laboratory 1 ... 1
 TSM 121 Fundamentals of Electricity .. 4
 TSM 122 Alternating and Direct Current Machines 3
 TSM 223 Fundamentals of Automation and Controls 4
 TSM 224 Digital Systems, Sensors and Measurement 3
 TSM 341 Power and Machinery Systems .. 3
 TSM 342 Power and Control Hydraulics .. 3
 TSM 343 Implementation of Precision Agriculture 3
 TSM 351 Information Technology in Agricultural Systems 3
 TSM 481 Technology Systems Management – Capstone I (W) 3
 TSM 482 Technology Systems Management – Capstone II 3

 b. One of the following courses: ... 3 or 4

 BS 110 Organisms and Populations ... 4
 ENT 205 Pests, Society and Environment .. 3
 MMG 205 Allied Health Microbiology .. 3
 PLB 105 Plant Biology .. 3
 PSL 250 Introductory Physiology ... 4

 c. One of the following courses: ... 3

 COM 100 Human Communication ... 3
 COM 225 An Introduction to Interpersonal Communication 3

 d. One of the following courses: ... 3 or 4

 STT 200 Statistical Methods ... 3
 STT 201 Statistical Methods ... 4

 e. One of the following courses: ... 3

 EC 201 Introduction to Microeconomics ... 3
 EC 202 Introduction to Macroeconomics ... 3
One of the following courses:

- Energy Efficiency and Conservation in Agricultural Systems (TSM 130) 3
- Introduction to Finance (GBL 323) 3
- Management Skills and Processes (MGT 325) 3
- Introduction to Marketing (MSC 327) 3

The student must complete a minimum of 15 credits in an approved group of courses that includes courses in the College of Agriculture and Natural Resources. These courses must be chosen to form a career objective and be pre-approved by the student’s academic advisor. 15

MINOR IN TECHNOLOGY SYSTEMS MANAGEMENT

The Minor in Technology Systems Management, which is administered by the Departments of Biosystems and Agricultural Engineering, serves students interested in technology for management decision support who are pursuing careers in agriculture and natural resources. The minor provides an opportunity to gain a working knowledge of technologies necessary to monitor and manage aspects of food, agriculture, and natural resource systems.

The minor is available as an elective to students who are enrolled in bachelor’s degree programs at Michigan State University. With the approval of the department and college that administers the student’s degree program, the courses that are used to satisfy the minor may also be used to satisfy the requirements for the bachelor’s degree.

Students who plan to complete the requirements for the minor should consult an undergraduate advisor in the Department of Biosystems and Agricultural Engineering to have their program of study approved in advance and in writing.

Requirements for the Minor in Technology Systems Management

Students must complete a minimum of 15 credits from the following:

1. Four of the following courses (12 credits):
 - Energy Efficiency and Conservation in Agricultural Systems (TSM 130) 3
 - Fundamentals of Automation and Controls (TSM 222) 3
 - Renewable Energy Systems Management (TSM 226) 3
 - Information Technology in Agricultural Systems (TSM 251) 3
 - Water Management in Agriculture and Food Systems (TSM 331) 3
 - Principles of Precision Agriculture (TSM 343) 3

2. One of the following courses (3 or 4 credits):
 - Comprehensive Nutrient Management Planning (ANS 418) 3
 - Sustainable Agriculture and Food Systems: Integration and Synthesis (CSS 424) 3
 - Water Resources Management (CSUS 354) 3
 - Food Processing: Unit Operations (FSIC 325) 3
 - Applications of Geographic Information Systems to Natural Resource Management (FW 419) 3
 - Professional Internship in Technology Systems Management (TSM 493) 3

LINKED BACHELOR’S-MASTER’S DEGREE IN BIOSYSTEMS ENGINEERING

Bachelor of Science Degree in Biosystems Engineering

The department welcomes applications from Michigan State University Biosystems Engineering undergraduate students in their junior and senior year. Admission applications must be made during the prior spring semester for an anticipated spring graduation or the prior fall semester for an anticipated fall graduation to allow admission before the final semester as a Biosystems Engineering undergraduate. Admission to the program requires a minimum undergraduate grade-point average of 3.5 and an approved program of study for the Master of Science degree in Biosystems Engineering at the time of admission. Admission to the Linked Bachelor’s-Master’s program allows the application of up to 9 credits toward the master’s program for qualifying 400-level and above course work taken at the undergraduate level at Michigan State University or another postsecondary accredited institution of comparable academic quality. The number of approved credits, not to exceed 9, are applied toward the credit requirement of the master’s degree. Credits applied to the Linked Bachelor’s-Master’s program are not eligible to be applied to any other graduate degree program.

GRADUATE STUDY

The Department of Biosystems and Agricultural Engineering offers the programs listed below:

Master of Science

biosystems engineering

Doctor of Philosophy

biosystems engineering

Study for the department’s master’s and doctoral degree programs is administered by the College of Agriculture and Natural Resources.

Students who are enrolled in Master of Science degree programs in the Department of Biosystems and Agricultural Engineering may elect a Specialization in Food Safety. For additional information, refer to the statement on the specialization in the College of Veterinary Medicine section of this catalog.

BIOSYSTEMS ENGINEERING

Biosystems engineers apply the basic sciences, mathematics, engineering sciences, and technology to design sustainable solutions to problems with a critical biological component. Biosystems engineers work to ensure an adequate and safe food supply while efficiently utilizing natural resources and protecting the environment. Specific application areas include food and biomass production systems, food processing systems, processing systems for utilization and conversion of biological products, water and waste management systems, natural resource and environmental protection, and a range of other biological challenges that require engineering expertise.

The department offers both Master of Science and Doctor of Philosophy degree programs with majors in biosystems engineering.

Master of Science

The Master of Science degree program in biosystems engineering is designed to prepare graduates for advanced career opportunities that require disciplinary expertise beyond that available in the Bachelor of Science degree. The program is available under Plan A (thesis) and Plan B (without thesis). Plan A introduces the student to research methods, and the student is expected to execute, analyze, and publish an original research project under the guidance of an advisor. Plan B is suited for those who do not plan a research-related career, but desire additional skills and knowledge obtained through advanced course work.

In addition to meeting the requirements of the university and of the College of Agriculture and Natural Resources, students must meet the requirements specified below.
Admission
To be considered for admission to the Master of Science degree program in biosystems engineering, an applicant must take the Graduate Record Examination General Test and have the scores sent to the department.

Regular Status. Admission to the master's degree program in biosystems engineering with regular status may be granted by the department, subject to the availability of resources and to the approval of the dean, upon consideration of the likelihood that the applicant will be able to complete a master's degree program successfully. To be admitted to the master's program in biosystems engineering, an applicant must have:
1. A grade-point average not lower than 3.00 for the final two years of the undergraduate program, or standing in the upper quarter of the graduating class in the student's major.
2. A bachelor's degree, either:
 a. from an accredited program in engineering, or
 b. from a related science-oriented program in which the applicant has shown very high academic achievement, as certified by the department.

An applicant without an engineering degree must demonstrate the abilities and experience necessary to succeed in the core courses, Biosystems Engineering 815, 825, and 835. The student must complete, previously, or within the master's program, a significant engineering design experience.

Provisional Status. Admission to the master's degree program in biosystems engineering with provisional status may be granted by the department, subject to the approval of the dean:
1. To an applicant qualified for regular admission except that collateral courses are deemed necessary, or
2. To an applicant whose record is incomplete.

If collateral courses are required, the minimum acceptable grades and the semesters by which those courses must be completed will be specified on the admission form. Biosystems Engineering 490 and 890 may not be used to satisfy collateral course requirements.

The provisional status will be changed to regular status when the conditions specified on the admission form have been met, as certified by the department and approved by the dean.

Registration as a Professional Engineer
Students who wish to satisfy the requirements of the State Board of Registration for Professional Engineers should consult with the Department of Biosystems and Agricultural Engineering.

Program Filing
The student's program of study must be approved before the student completes 6 credits of graduate work in order for the student to continue to enroll in the master's degree program.

The subject matter and instructor must be specified for every independent study, special problems, or selected topics course that is included in the student's approved program of study.

Modification of Program
After the Plan A or Plan B option has been selected by the student and approved, the student may not pursue the other option without approval of the department.

The following changes are not permitted in a student's approved program of study:
1. Adding or deleting a course for which a grade has already been assigned under any of the three grading systems (numerical, Pass–No Grade, or Credit–No Credit).
2. Adding or deleting a course for which grading was postponed by the use of the DF–Deferred marker.
3. Adding or deleting a course which the student dropped after the middle of the semester and for which "W" or "N" or "0.0" was designated.
4. Adding or deleting a course during the final semester of enrollment in the master's degree program.

Requirements for the Master of Science Degree in Biosystems Engineering
The program is available under both Plan A (with thesis) and Plan B (without thesis).

The student's program of study must be developed in consultation with the major professor, must be approved by the department, and must meet the requirements specified below:

Requirements for Both Plan A and Plan B:
The student must complete:
1. A total of 30 credits in 400–, 800–, and 900–level courses. At least 20 of the 30 credits must be in 800–900 level courses. Not more than 4 credits of Biosystems Engineering 890 may be counted toward the requirements for the degree under Plan A. Not more than 6 credits of Biosystems Engineering 890 may be counted toward the requirements for the degree under Plan B.
2. All of the following courses:
 - BE 815 Experimentation and Instrumentation in Biosystems Engineering
 - BE 820 Research Methods in Biosystems Engineering
 - BE 835 Modeling Methods in Biosystems Engineering
 - BE 892 Biosystems Engineering Seminar

Additional Requirements for Plan A:
The student must:
1. Complete the following course:
 - BE 899 Master's Thesis Research

 Not more than 8 credits of Biosystems Engineering 899 may be counted toward the requirements for the degree under Plan A.
2. Pass a final oral examination over the written thesis administered by the department and conducted by three regular university faculty members, at least two of which must be Biosystems Engineering faculty.
3. Provide to the major professor and to the department a hard-bound copy of the thesis made from the original unbound manuscript submitted to the Office of The Graduate School. Arrangement for delivery of the copies shall be made when the original manuscript is submitted to the Office of The Graduate School.

Additional Requirements for Plan B:
The student must:
Pass the final examination administered by the department over the course work in the student's approved program of study. The examination may include both a written and an oral component. It is the student's responsibility to obtain detailed information about this examination from the department.

Academic Standards
1. Grades. The student must earn a grade of 2.0 or higher in each course in the approved program of study. The student must repeat any course in the approved program for which the grade earned was below 2.0.
2. Cumulative Grade–Point Average. The student must maintain a cumulative grade–point average of at least 3.00 in the courses in the approved program of study.
3. Probational Status. A student is placed on probation if the student's cumulative grade–point average for the courses in the approved program of study is below 3.00. A student in probational status is not allowed to carry more than 7 credits per semester or to enroll in any course the primary focus of which is independent study.
4. Retention In and Dismissal From the Program.
 a. Cumulative Grade–Point Average. Should a student's cumulative grade–point average fall below 3.00 after having completed 16 or more credits in courses in the approved program of study, the student may be enrolled in probational status in the master's degree program for one additional semester. If at the end of the additional semester the student's cumulative grade–point average is 3.00 or higher, the student may continue to enroll in the master's degree program. If at the end of the additional semester the student's cumula-
...tive grade–point average is still below 3.00, the student will be dismissed from the program.

b. Academic Progress and Professional Potential. Each student's academic progress and professional potential are evaluated by March 15 of each year. A student who in the judgment of the faculty is making satisfactory academic progress and has professional potential may continue to enroll in the master's degree program. A student who in the judgment of the faculty is not making satisfactory academic progress or lacks professional potential will be dismissed from the program.

Transfer Credits
As a member of the Michigan Coalition for Engineering Education (MCEE), Michigan State University will accept up to one less than half of the course credits required for the Master of Science degree program in Biosystems Engineering in transfer from other MCEE member institutions provided that (1) the student earned a grade of at least 3.0, or the equivalent, in the related courses; (2) the credits were not earned in research or thesis courses; and (3) the related courses are acceptable to the department.

For information about transfer credits from institutions that are not members of the MCEE, refer to the statement on MASTER'S PROGRAMS, Transfer Credits, in the Graduate Education section of this catalog.

Doctor of Philosophy
The Doctor of Philosophy degree in Biosystems Engineering is designed to prepare graduates for advanced careers that require demonstrated research skills and comprehensive knowledge of the discipline. The program is suitable only for those students who have shown outstanding ability and potential in the field, either by high quality work in a Master of Science degree or by exceptional achievement in a Bachelor of Science degree and additional technical and professional accomplishments. During teaching and training experiences, the student is expected to demonstrate in-depth and comprehensive knowledge of the discipline and skills essential to the dissemination of that knowledge. Additionally, the student must be able to plan, conduct, manage, and publish independent, original research via the dissertation and peer-reviewed manuscripts.

In addition to meeting the requirements of the university and of the College of Agriculture and Natural Resources, students must meet the requirements specified below.

Admission
To be considered for admission to the Doctor of Philosophy degree program in biosystems engineering, an applicant must take the Graduate Record Examination General Test and have the scores sent to the department.

Regular Status. Admission to the doctoral degree program in biosystems engineering with regular status may be granted by the department, subject to the availability of resources and to the approval of the dean.

To be admitted to the doctoral program in biosystems engineering, an applicant should have a master's degree and must:
1. Have either a Bachelor of Science degree in engineering or a master's degree in engineering.
2. Demonstrate evidence of ability and resolution to complete a doctoral program, as attested by the department upon review of the applicant's academic record, test scores, experience, reference statements, professional qualifications, proposed studies, and other relevant information.

Admission to the doctoral program without a master's degree, or the equivalent thereof, requires special approval by the department and the dean.

Provisional Status. Admission to the doctoral degree program in biosystems engineering with provisional status may be granted by the department, subject to the approval of the dean:
1. To an applicant qualified for regular admission except that collateral courses are deemed necessary, or
2. To an applicant whose record is incomplete.

A student who is admitted to the Doctor of Philosophy degree program without a Master of Science degree in engineering may be required to complete collateral courses, in addition to the courses that are required for the doctoral degree. If collateral courses are required, they will be specified on the admission form. Biosystems Engineering 490 and 890 may not be used to satisfy collateral course requirements.

The provisional status will be changed to regular status when the conditions specified on the admission form have been met, as determined by the department and approved by the dean.

Guidance Committee
The student's guidance committee consists of at least four regular faculty members and is appointed by the department chairperson in consultation with the student and the appropriate faculty members, and with the approval of the dean. At least two members of the guidance committee shall be from the Department of Biosystems and Agricultural Engineering and at least one member shall be from a different department preferably in the College of Agriculture and Natural Resources or the College of Engineering. The chairperson of the guidance committee will be appointed by the department chairperson after consultation with the student and the person recommended to chair the committee.

Guidance Committee Report
The student's program of study shall be submitted for approval to the Department of Biosystems and Agricultural Engineering and to the dean by no later than the end of the student's second semester of enrollment in the doctoral program. The subject matter and instructor must be specified for every independent study, special problems, or selected topics course that is included in the student's approved program of study. The student's program of study must be approved in order for the student to continue to enroll in the doctoral degree program beyond the second semester.

Modification of Program
The following changes are not permitted in a student's approved program of study:
1. Adding or deleting a course for which a grade has already been assigned under any of the three grading systems (numerical, Pass–No Grade, or Credit–No Credit).
2. Adding or deleting a course for which grading was postponed by the use of the DF–Deferred marker.
3. Adding or deleting a course which the student dropped after the middle of the semester and for which "W" or "N" or "0.0" was designated.
4. Adding or deleting a course during the final semester of enrollment in the doctoral degree program.

Requirements for the Doctor of Philosophy Degree in Biosystems Engineering
The student must:

1. Complete a minimum of 24 credits in Biosystems Engineering 999.
2. Complete a minimum of 38 additional credits (excluding Biosystems Engineering 899) beyond the bachelor's degree, in courses at the 400-, 800-, and 900-level including:
 a. All of the following courses:
 BE 815 Experimentation and Instrumentation in Biosystems Engineering 3
 BE 820 Research Methods in Biosystems Engineering .. 1
 BE 835 Modeling Methods in Biosystems Engineering 3
 BE 892 Biosystems Engineering Seminar ... 1
 b. Additional course work approved by the student's guidance committee, based on the student's prior academic background in relation to the selected area of study and research.

3. Pass the doctoral comprehensive examination within five years of the date of first enrollment and at least six months prior to the final oral examination in defense of the dissertation. The examination may be retaken once. It is the student's responsibility to obtain detailed information about this examination from the department.

4. Pass the examination in defense of the dissertation. The examination may be retaken once.

5. Provide to the major professor and to the department a hard-bound copy of the dissertation made from the original unbound manuscript submitted to the Office of The Graduate School. Arrangements for delivery of the copies shall be made when the original manuscript is submitted to the Office of The Graduate School.

Academic Standards

1. Grades. The student must earn a grade of 2.0 or higher in each course in the approved guidance committee report, including collateral courses and courses accepted in transfer. The student must repeat any course on the approved program for which the grade earned was below 2.0.

2. Cumulative Grade–Point Average. The student must maintain a cumulative grade–point average of at least 3.00 in courses in the approved guidance committee report, with the exception of collateral courses and courses accepted in transfer.

3. Deferred Grades. A student may accumulate no more than three deferred grades (identified by the DF–Deferred marker) in courses other than independent study.

4. Probational Status. A student is placed on probational status if either or both of the following conditions apply:
 a. The student's cumulative grade–point average for the courses in the approved guidance committee report is below 3.00.
 b. The student has accumulated more than three deferred grades (identified by the DF–Deferred marker) in courses other than those courses the primary focus of which is independent study.

A student in probationary status is not allowed to carry more than 7 credits per semester or to enroll in any course the primary focus of which is independent study.

5. Retention In and Dismissal From the Program.
 a. Cumulative Grade–Point Average. Should a student's cumulative grade–point average fall below 3.00 after having completed half of the courses in the approved guidance committee report, the student may be enrolled in probational status in the doctoral degree program for one additional semester. If at the end of the additional semester the student's cumulative grade–point average is 3.00 or higher, the student may continue to enroll in the doctoral degree program. If at the end of the additional semester the student's cumulative grade–point average is still below 3.00, the student will be dismissed from the program.
 b. Deferred Grades. Should a student accumulate more than three deferred grades (identified by the DF–Deferred marker) in courses other than independent study, the student may be enrolled on probationary status in the doctoral degree program for one additional semester. If at the end of the additional semester the student has no more than three deferred grades, the student may continue to enroll in the doctoral degree program. If at the end of the additional semester the student still has more than three deferred grades, the student will be dismissed from the program.

C. Academic Progress and Professional Potential. Each student's academic progress and professional potential are evaluated spring semester of each year. A student who in the judgment of the faculty is making satisfactory academic progress and has professional potential may continue to enroll in the doctoral degree program. A student who in the judgment of the faculty is not making satisfactory academic progress or lacks professional potential will be dismissed from the program.

DEPARTMENT of COMMUNITY SUSTAINABILITY

Michael D. Kaplowitz, Chairperson

The Department of Community Sustainability is an interdisciplinary department that offers programs leading to the Bachelor of Science, Master of Science, and Doctor of Philosophy degrees.

The department's faculty reflects a unique integration of the social sciences, humanities and natural sciences across its research, teaching and outreach missions. This integration advances the department's goal of educating scholars and practitioners who are able to create, integrate and harness new knowledge to protect and improve both social and natural systems. Students can focus their interests in community sustainability around majors and courses that address natural resources and the environment, food systems, recreation and tourism, education and leadership.

The department's programs reflect an understanding that how students learn is as important as what they learn. Courses, service-learning projects, internships, study abroad programs and other co-curricular activities combine academic content with the building of competencies such as fostering dialogue and action on critical issues, decision-making, leveraging diversity in communities and organizations, encouraging innovation within organizations and/or communities, and promoting and sustaining positive change.

UNDERGRADUATE PROGRAMS

AGRICULTURE, FOOD AND NATURAL RESOURCES EDUCATION

The Bachelor of Science Degree in Agriculture, Food and Natural Resources Education is designed to prepare students for careers as school-based agriculture, food and natural resources teachers at the secondary-level, careers in agricultural and natural resource education fields, or for professional or graduate studies.

Requirements for the Bachelor of Science Degree in Agriculture, Food and Natural Resources Education

1. The University requirements for bachelor’s degrees as described in the Undergraduate Education section of this catalog; 120 credits, including general elective credits, are required for the Bachelor of Science degree in Agriculture, Food and Natural Resources Education.

The University’s Tier II writing requirement for the Agriculture, Food and Natural Resources major is met by completing Community Sustainability 325 or 433. Those courses are referenced in item 3. below.
Students who are enrolled in the Agriculture, Food, and Natural Resources Education major leading to the Bachelor of Science degree in the Department of Community Sustainability may complete an alternative track to Integrative Studies in Biological and Physical Sciences that consists of the following courses: Biological Science 162 and 172, and Chemistry 141. The completion of Biological Science 172 satisfies the laboratory requirement. Biological Science 162 and 172, and Chemistry 141 may be counted toward both the alternative track and the requirements for the major referenced in item 3 below.

The completion of the College of Agriculture and Natural Resources mathematics requirement may also satisfy the University mathematics requirement.

2. The requirements of the College of Agriculture and Natural Resources for the Bachelor of Science degree. Certain courses referenced in item 3 below may be counted toward College requirements as appropriate.

3. The following requirements for the major:

CREDITS

a. All of the following courses (53 credits):

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANS 110</td>
<td>Introductory Animal Agriculture</td>
<td>4</td>
</tr>
<tr>
<td>BS 161</td>
<td>Cell and Molecular Biology</td>
<td>3</td>
</tr>
<tr>
<td>BS 162</td>
<td>Organismal and Population Biology</td>
<td>3</td>
</tr>
<tr>
<td>BS 172</td>
<td>Organismal and Population Biology Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>CSS 101</td>
<td>Introduction to Crop Science</td>
<td>3</td>
</tr>
<tr>
<td>CSS 210</td>
<td>Fundamentals of Soil Science</td>
<td>3</td>
</tr>
<tr>
<td>CEM 141</td>
<td>General Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>CSUS 200</td>
<td>Introduction to Sustainability</td>
<td>3</td>
</tr>
<tr>
<td>CSUS 300</td>
<td>Theoretical Foundations of Sustainability</td>
<td>3</td>
</tr>
<tr>
<td>CSUS 301</td>
<td>Citizen Engagement for Sustainability</td>
<td>3</td>
</tr>
<tr>
<td>CSUS 322</td>
<td>Leadership for Community Sustainability</td>
<td>3</td>
</tr>
<tr>
<td>CSUS 343</td>
<td>Community Food and Agriculture Systems</td>
<td>3</td>
</tr>
<tr>
<td>FOR 202</td>
<td>Introduction to Forestry</td>
<td>3</td>
</tr>
<tr>
<td>HRT 203</td>
<td>Principles of Horticulture</td>
<td>3</td>
</tr>
<tr>
<td>TE 150</td>
<td>Reflections on Learning</td>
<td>3</td>
</tr>
<tr>
<td>TE 250</td>
<td>Human Diversity, Power, and Opportunity in Social Institutions</td>
<td>3</td>
</tr>
<tr>
<td>ZOL 355</td>
<td>Ecology</td>
<td>3</td>
</tr>
<tr>
<td>ZOL 355L</td>
<td>Ecology Laboratory (W)</td>
<td></td>
</tr>
</tbody>
</table>

b. One of the following courses (3 credits):

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABM 100</td>
<td>Decision-making in the Agri-Food System</td>
<td>3</td>
</tr>
<tr>
<td>ABM 130</td>
<td>Farm Management I</td>
<td>3</td>
</tr>
</tbody>
</table>

c. One of the following courses (3 credits):

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSUS 464</td>
<td>Environmental and Natural Resource Policy</td>
<td>3</td>
</tr>
<tr>
<td>CSUS 465</td>
<td>Environmental Law and Policy</td>
<td>3</td>
</tr>
</tbody>
</table>

d. One of the following courses (3 credits):

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSUS 325</td>
<td>Study and Practice of Communication for Sustainability (W)</td>
<td>3</td>
</tr>
<tr>
<td>CSUS 433</td>
<td>Grant Writing and Fund Development (W)</td>
<td>3</td>
</tr>
<tr>
<td>TE 302</td>
<td>Learners and Learning in Contexts -- Secondary (W)</td>
<td>4</td>
</tr>
<tr>
<td>TE 407</td>
<td>Teaching Subject Matter to Diverse Learners -- Secondary (W)</td>
<td>5</td>
</tr>
<tr>
<td>TE 408</td>
<td>Crafting Teaching Practices -- Secondary (W)</td>
<td>6</td>
</tr>
</tbody>
</table>

f. A secondary disciplinary teaching minor chosen from a list of approved secondary education minors for teacher certification. Refer to the Teacher Certification section of the Department of Teacher Education.

g. All of the following courses for students not pursuing secondary teacher education certification (15 credits):

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSUS 493</td>
<td>Internship</td>
<td>3</td>
</tr>
</tbody>
</table>

An additional 3 credit Community Sustainability (CSUS) course.

Additional 9 credits of electives approved by the student's academic advisor.

ENVIRONMENTAL STUDIES AND SUSTAINABILITY

The Department of Community Sustainability offers a Bachelor of Science degree program with a major in Environmental Studies and Sustainability. This program of study is concerned with how uses natural resources, how they use them, and how positive outcomes of use can be enhanced and negative impacts can be mitigated. It examines resource use and allocation through the lenses of community engagement, sustainability and environmental justice. Students benefit from a broad range of interdisciplinary courses, as well as disciplinary and methods courses carefully selected to enhance students' technical knowledge. Professional internships, a legacy project and study abroad experiences are encouraged to provide students with experiences beyond the classroom and the university campus. Graduates of this program will be prepared to enter professions in environmental, natural resource, agricultural and community development fields through careers in education, government, private industry, non-profit organizations, and public relations and communications or enter a professional or graduate school program.

Requirements for the Bachelor of Science Degree in Environmental Studies and Sustainability

1. The University requirements for bachelor's degrees as described in the Undergraduate Education section of this catalog: 120 credits, including general elective credits, are required for the Bachelor of Science degree in Environmental Studies and Sustainability.

The University's Tier II writing requirement for the Environmental Studies and Sustainability major is met by completing Community Sustainability 325, 330, or 433. Those courses are referenced in item 3 below.

Students who are enrolled in the Environmental Studies and Sustainability major leading to the Bachelor of Science degree in the Department of Community Sustainability may complete an alternative track to Integrative Studies in Biological and Physical Sciences that consists of the following courses: Biological Science 162 and 172, and Chemistry 141. The completion of Biological Science 172 satisfies the laboratory requirement. Biological Science 162 and 172, and Chemistry 141 may be counted toward both the alternative track and the requirements for the major referenced in item 3 below.

The completion of the College of Agriculture and Natural Resources mathematics requirement may also satisfy the University mathematics requirement.

2. The requirements for the College of Agriculture and Natural Resources for the Bachelor of Science degree. Certain courses referenced in item 3 below may be counted toward College requirements as appropriate.

3. The following requirements for the major (51 to 62 credits):

CREDITS

a. All of the following courses: .. 27

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BS 161</td>
<td>Cell and Molecular Biology</td>
<td>3</td>
</tr>
<tr>
<td>BS 162</td>
<td>Organismal and Population Biology</td>
<td>3</td>
</tr>
<tr>
<td>BS 172</td>
<td>Organismal and Population Biology Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>CSS 101</td>
<td>Introduction to Crop Science</td>
<td>3</td>
</tr>
<tr>
<td>CSS 210</td>
<td>Fundamentals of Soil Science</td>
<td>3</td>
</tr>
<tr>
<td>CEM 141</td>
<td>General Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>CSUS 200</td>
<td>Introduction to Sustainability</td>
<td>3</td>
</tr>
<tr>
<td>CSUS 300</td>
<td>Theoretical Foundations of Sustainability</td>
<td>3</td>
</tr>
<tr>
<td>CSUS 301</td>
<td>Citizen Engagement for Sustainability</td>
<td>3</td>
</tr>
<tr>
<td>CSUS 322</td>
<td>Leadership for Community Sustainability</td>
<td>3</td>
</tr>
<tr>
<td>CSUS 343</td>
<td>Community Food and Agriculture Systems</td>
<td>3</td>
</tr>
<tr>
<td>FOR 202</td>
<td>Introduction to Forestry</td>
<td>3</td>
</tr>
<tr>
<td>HRT 203</td>
<td>Principles of Horticulture</td>
<td>3</td>
</tr>
<tr>
<td>TE 150</td>
<td>Reflections on Learning</td>
<td>3</td>
</tr>
<tr>
<td>TE 250</td>
<td>Human Diversity, Power, and Opportunity in Social Institutions</td>
<td>3</td>
</tr>
<tr>
<td>ZOL 355</td>
<td>Ecology</td>
<td>3</td>
</tr>
<tr>
<td>ZOL 355L</td>
<td>Ecology Laboratory (W)</td>
<td></td>
</tr>
</tbody>
</table>

b. One of the following courses: 3 to 12

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSUS 325</td>
<td>Study and Practice of Communication for Sustainability (W)</td>
<td>3</td>
</tr>
<tr>
<td>CSUS 330</td>
<td>Organizational Management for Community Sustainability (W)</td>
<td>3</td>
</tr>
<tr>
<td>CSUS 433</td>
<td>Grant Writing and Fund Development (W)</td>
<td>3</td>
</tr>
<tr>
<td>EEP 255</td>
<td>Ecological Economics</td>
<td>3</td>
</tr>
<tr>
<td>EEP 320</td>
<td>Environmental Economics</td>
<td>3</td>
</tr>
<tr>
<td>EEP 460</td>
<td>Natural Resource Economics</td>
<td>3</td>
</tr>
<tr>
<td>CSUS 464</td>
<td>Environmental and Natural Resource Policy in Michigan</td>
<td>3</td>
</tr>
<tr>
<td>CSUS 465</td>
<td>Environmental and Natural Resource Policy in Michigan</td>
<td>3</td>
</tr>
<tr>
<td>FOR 466</td>
<td>Natural Resource Policy</td>
<td>3</td>
</tr>
<tr>
<td>ZOL 446</td>
<td>Environmental Issues and Public Policy</td>
<td>3</td>
</tr>
<tr>
<td>CSUS 320</td>
<td>Environmental Planning and Management</td>
<td>3</td>
</tr>
<tr>
<td>CSUS 354</td>
<td>Water Resources Management</td>
<td>3</td>
</tr>
<tr>
<td>CSUS 425</td>
<td>Environmental Impact Assessment</td>
<td>3</td>
</tr>
<tr>
<td>CSUS 429</td>
<td>Program Planning and Evaluation</td>
<td>3</td>
</tr>
<tr>
<td>FW 419</td>
<td>Applications of Geographic Information Systems</td>
<td>3</td>
</tr>
<tr>
<td>GEO 325</td>
<td>Geographic Information Systems</td>
<td>3</td>
</tr>
<tr>
<td>CSUS 322</td>
<td>Leadership for Community Sustainability</td>
<td>3</td>
</tr>
<tr>
<td>CSUS 330</td>
<td>Organizational Management for Community Sustainability (W)</td>
<td>3</td>
</tr>
<tr>
<td>CSUS 473</td>
<td>Social Entrepreneurship for Community Sustainability</td>
<td>3</td>
</tr>
<tr>
<td>CSUS 476</td>
<td>Natural Resource Recreation Management</td>
<td>3</td>
</tr>
<tr>
<td>CSUS 343</td>
<td>Community Food and Agricultural Systems</td>
<td>3</td>
</tr>
<tr>
<td>CSUS 431</td>
<td>Interpretation and Visitor Information Systems</td>
<td>3</td>
</tr>
<tr>
<td>CSUS 445</td>
<td>Community-Based Environmental and Sustainability Education</td>
<td>3</td>
</tr>
<tr>
<td>CSUS 447</td>
<td>Community Economic Development</td>
<td>3</td>
</tr>
</tbody>
</table>

SUSTAINABLE PARKS, RECREATION and TOURISM

The Department of Community Sustainability offers a Bachelor of Science degree in Sustainable Parks, Recreation and Tourism. By combining a body of specialized professional knowledge with the study of natural, social, management and behavioral sciences, the program provides an opportunity for students to obtain a broad, interdisciplinary education which emphasizes a professional area of knowledge integrated with the tenets of
sustainability. The Sustainable Parks, Recreation and Tourism major is designed to prepare students for professional positions related to the management and enjoyment of the outdoors. Such positions include management of public parks, forests and protected areas, non-profit lands and facilities such as camps and commercial enterprises that provide goods and services to outdoor enthusiasts. Meeting people’s outdoor leisure needs, enhancing the quality of life, and providing sustainable economic and social development are hallmarks of the Sustainable Parks, Recreation and Tourism major.

Students in the Sustainable Parks, Recreation and Tourism major will acquire an understanding of natural resource recreation and tourism that integrates sustainability and effectively links theory with practice while engaging the community. This includes the concepts of leisure, tourism, recreation and sustainability, as well as operation of recreation delivery systems, policy, administration, management, planning and evaluation.

Requirements for the Bachelor of Science Degree in Sustainable Parks, Recreation and Tourism

1. The University requirements for bachelor’s degrees as described in the Undergraduate Education section of this catalog; 120 credits, including general elective credits, are required for the Bachelor of Science degree in Sustainable Parks, Recreation and Tourism.

2. The University’s Tier II writing requirement for the Sustainable Parks, Recreation and Tourism major is met by completing Community Sustainability 325, 330 or 433. That course is referenced in item 3 below.

3. The completion of the College of Agriculture and Natural Resources mathematics requirement may also satisfy the University mathematics requirement. That course is referenced in item 3 below.

The completion of the College of Agriculture and Natural Resources mathematics requirement may also satisfy the University mathematics requirement. That course is referenced in item 3 below.

The requirements of the College of Agriculture and Natural Resources for the Bachelor of Science degree. Certain courses referenced in requirement 3. below may be counted toward College requirements as appropriate.

MINOR IN SUSTAINABLE NATURAL RESOURCE RECREATION MANAGEMENT

The Minor in Sustainable Natural Resource Recreation Management is available as an elective to students who are enrolled in bachelor’s degree programs at Michigan State University. Focusing on the management of people, facilities, natural resources and organizations that provide natural resource recreation opportunities, it targets students considering careers in public land management, commercial recreation enterprises, non-profit resource based camps and educational facilities, rural community development, forestry, fisheries, wildlife, criminal justice (conservation/recreation law enforcement), landscape architecture, environmental policy or agriculture. The minor offers students the opportunity to integrate knowledge of social, biological and physical sciences, natural resources and ecosystems to sustainably manage for outcomes that include outdoor recreation.

With the approval of the department that administers the student’s degree program, courses that are used to satisfy the requirements for the minor may also be used to satisfy the requirements for the bachelor’s degree.

Requirements for the Minor in Sustainable Natural Resource Recreation Management

1. Both of the following courses (7 credits):
 - CSUS 276 Sustaining Our National Parks and Recreation Lands 3
 - CSUS 476 Natural Resource Recreation Management .. 4

2. One of the following courses outside the student’s course requirements for the major (3 or 4 credits):
 - ANS 110 Introductory Animal Agriculture .. 2
 - CS 101 Introduction to Crop Science .. 3
 - CSUS 200 Introduction to Sustainability ... 3
 - CSUS 273 Introduction to Travel and Tourism .. 3
 - FOR 202 Introduction to Forestry ... 3
 - FW 101 Fundamentals of Fisheries and Wildlife Ecology and Management 3

3. Two of the following courses, one of which is outside the student’s course requirements for the major (5 or 7 credits):
 - CSUS 354 Water Resources Management .. 3
 - CSUS 431 Interpretation and Visitor Information Systems 3
 - CSUS 464 Environmental and Natural Resource Policy in Michigan 3
 - CSUS 465 Environmental and Natural Resource Law 3
 - CSUS 473 Social Entrepreneurship and Community Sustainability 3
 - CSUS 474 Advanced Topics in Tourism Management 3
 - FOR 404 Forest Ecology ... 3
 - FOR 412 Wildland Fire ... 2
 - FOR 466 Natural Resource Policy ... 3
 - FW 419 Applications of Geographic Information Systems to Natural Resources Management ... 4
 - GEO 221 Introduction to Geographic Information Systems 3
 - ZOL 355 Ecology ... 3

TEACHER CERTIFICATION OPTIONS

The agriculture, food and natural resources education disciplinary major leading to the Bachelor of Science degree is available for teacher certification. Students who complete the requirements for the agriculture, food and natural resources education major, the requirements for teacher certification, and a minimum of 4000 hours of recent and relevant work experience are recommended for a career and technical endorsement in agricultural education. An agriculture, food and natural resources education disciplinary minor is available for teacher certification.

Students who elect the agriculture, food and natural resources education disciplinary major or the agriscience disciplinary minor, must contact the Department of Community Sustainability.

For additional information, refer to the statement on TEACHER CERTIFICATION in the Department of Teacher Education section of this catalog.
GRADUATE STUDY
The Department of Community Sustainability offers Master of Science and Doctor of Philosophy degree programs in Community Sustainability and Sustainable Tourism and Protected Area Management.

Graduate programs in Community Sustainability provide students the opportunity to create individualized programs that draw from several complementary areas of scholarship. These areas include: community, food and agriculture; natural resources and the environment; recreation and tourism; and, communication and leadership. Today’s communities face complex problems due to ongoing changes to our environmental, social and agricultural/food systems. To aid in meeting these challenges, students’ programs are designed to provide a thorough grounding in integrative, applied research based on multiple paradigms, disciplines and methods.

Students must select either the Master of Science in Community Sustainability or the Master of Science in Sustainable Tourism and Protected Area Management. A student may not earn a master’s degree in both programs. A student may earn a Ph.D. in only one of the two program areas: community sustainability or sustainable tourism and protected area management.

Students who are enrolled in Master of Science and Doctor of Philosophy degree programs in the Department of Community Sustainability may elect specializations in resource economics. For additional information, refer to the statement on Interdepartmental Graduate Specializations in Resource Economics.

Students who are enrolled in Master of Science degree programs in the Department of Community Sustainability may elect a Specialization in Environmental Toxicology. For additional information, refer to the Graduate Specialization in Environmental Toxicology statement.

COMMUNITY SUSTAINABILITY

Master of Science
The Master of Science in Community Sustainability provides students with opportunities to engage in integrated and applied research and acquire professional skills.

In addition to meeting the requirements of the university and of the College of Agriculture and Natural Resources, students must meet the requirements specified below. Students may not be admitted to both the Master of Science degree in Community Sustainability and the Master of Science degree in Sustainable Tourism and Protected Area Management.

Admission
Applicants must have completed a bachelor’s degree or comparable degree requirements from an educational institution. Relevant experience and strong academic backgrounds in the natural, physical, or social sciences are encouraged for applicants to the Master of Science in Community Sustainability. All applicants for admission are required to submit scores from the General Test of the Graduate Record Examination. Collateral courses may be required to overcome deficiencies in addition to the requirements for the master’s degree. Collateral course work will not count towards the master’s degree.

Requirements for the Master of Science Degree in Community Sustainability
The student may elect either Plan A (with thesis) or Plan B (without thesis). Plan A emphasizes integrated and applied research and is designed as the foundation for doctoral study. Plan B focuses on the acquisition of well-defined professional skills, appropriate for a terminal degree and for professional employment.

A minimum of 30 credits is required for the degree under Plan A and Plan B. The student’s program of study must be developed in cooperation with and approved by the student’s guidance committee and must include the requirements specified below.

CREDITS

Requirements for Plan A and Plan B
1. Both of the following courses (6 credits):
 - CSUS 800 Foundations of Community Sustainability
 - CSUS 802 Survey of Research Methods
 - 3
2. A minimum of 15 credits in course work in a focus area selected in consultation with the student’s guidance committee. At least 6 credits of this focus area must be in Community Sustainability courses.
 - 3

Additional Requirements for Plan A
1. A minimum of 3 credits of quantitative or qualitative methods to be selected in consultation with the student’s guidance committee.
 - 3
2. A minimum of 6 credits of Community Sustainability 899.
3. Completion and defense of the master’s thesis.

Additional Requirements for Plan B
1. A minimum of 3 credits of a techniques or skill-building course relevant to the student’s academic and career goals, to be selected in consultation with the student’s guidance committee.
2. Both of the following courses:
 - CSUS 895 Case Studies in Community Sustainability
 - CSUS 898 Master’s Professional Project
 - 3
3. Completion and defense of a paper based on the master’s professional project.
 - 3

Doctor of Philosophy
The Doctor of Philosophy in Community Sustainability is designed to enable students to generate new knowledge in complementary fields responsive to rapidly changing conditions in our natural environment and agricultural systems.

In addition to meeting the requirements of the university and of the College of Agriculture and Natural Resources, students must meet the requirements specified below.

Admission
To be admitted to the Doctor of Philosophy degree program in Community Sustainability, a student must have completed a master’s degree. Relevant experience and strong academic backgrounds in the natural, physical, or social sciences, including independent research experience, are strongly encouraged. All applicants are required to submit scores from the General Test of the Graduate Record Examination.

Requirements for the Doctor of Philosophy Degree in Community Sustainability
The student’s program of study must be developed in cooperation with and approved by the student’s guidance committee and must include the requirements specified below.

1. Complete Community Sustainability 800.
2. Complete 9 credits of course work in advanced research methods, to be selected in consultation with the student’s guidance committee, including at least 3 credits respectively in quantitative and qualitative methods.
3. Complete a minimum of 24 credits of course work in two focus areas. At least 9 credits and at least one course in each focus area must be selected from Community Sustainability courses.
4. Prepare a comprehensive examination program statement that presents the student’s learning and professional background and goals, and provides a rationale for the student’s declared focus areas. This statement is prepared in consultation with the student’s guidance committee and is presented to the full faculty for review.
5. Pass a comprehensive examination based on the student’s comprehensive examination program statement.

All students are encouraged to prepare at least one paper from the dissertation research suitable for submission to a professional and/or refereed academic journal.
SUSTAINABLE TOURISM AND PROTECTED AREA MANAGEMENT

Master of Science

The Master of Science degree in Sustainable Tourism and Protected Area Management provides students with opportunities to engage in integrated and applied research and to acquire professional skills for the study, management, administration and planning of tourism and protected areas under the overarching concept of community sustainability.

In addition to meeting the requirements of the university and of the College of Agriculture and Natural Resources, students must meet the requirements specified below. Students may not be admitted to both the Master of Science degree in Community, Agriculture, Recreation and Resource Studies and the Master of Science degree in Sustainable Tourism and Protected Area Management.

Admission

Applicants must have completed a bachelor’s degree or comparable degree requirements from an educational institution. Relevant experience and strong academic background in the natural, physical, or social sciences are encouraged. Applicants are required to submit scores from the General Test of the Graduate Record Examination. Collateral courses may be required to overcome deficiencies in addition to the requirements for the master’s degree. Collateral course work will not count towards the master’s degree.

Requirements for the Master of Science Degree in Sustainable Tourism and Protected Area Management

The student may elect either Plan A (with thesis) or Plan B (without thesis). Plan A emphasizes integrated and applied research and is designed as the foundation for doctoral study. Plan B focuses on the acquisition of well-defined professional skills, appropriate for a terminal degree and for professional employment and development. A minimum of 30 credits is required for the degree under Plan A or Plan B. The student’s program of study must be developed in cooperation with and approved by the student’s guidance committee and must include the requirements specified below.

Requirements for Plan A and Plan B

1. All of the following courses (9 credits):
 - CSUS 800 Foundations of Community Sustainability 3
 - CSUS 802 Survey of Research Methods 3
 - CSUS 814 Sustainable Tourism and Protected Area Management: Theories and Applications 3

2. A minimum of 12 credits in course work in a focus area selected in consultation with the student’s guidance committee. At least 6 credits of this focus area must be in Community Sustainability (CSUS) courses.

Additional Requirements for Plan A

1. A minimum of 3 credits of quantitative or qualitative methods to be selected in consultation with the student’s guidance committee.
2. A minimum of 6 credits of Community Sustainability 899.

Additional Requirements for Plan B

1. Both of the following courses (6 credits):
 - CSUS 895 Case Studies in Community Sustainability 3
 - CSUS 898 Master’s Professional Project 3

2. Completion and defense of a paper based on the master’s professional project.

Doctor of Philosophy

The Doctor of Philosophy degree in Sustainable Tourism and Protected Area Management is designed to enable students to generate new knowledge in the complementary fields of tourism and protected area management under the overarching concept of community sustainability.

In addition to meeting the requirements of the university and of the College of Agriculture and Natural Resources, students must meet the requirements specified below.

Admission

To be admitted to the Doctor of Philosophy degree program in Sustainable Tourism and Protected Area Management, a student must have completed a master’s degree in any field. Relevant experience and strong academic backgrounds in the natural, physical, or social sciences, including independent research experience, are strongly encouraged. All applicants are required to submit scores from the General Test of the Graduate Record Examination.

Requirements for the Doctor of Philosophy Degree in Sustainable Tourism and Protected Area Management

The student’s program of study must be developed in cooperation with and approved by the student’s guidance committee and must include the requirements specified below:

1. Both of the following courses (6 credits):
 - CSUS 800 Foundations of Community Sustainability 3
 - CSUS 814 Sustainable Tourism and Protected Area Management: Theories and Applications 3

2. If a student already has credit in CSUS 814, these credits must be replaced by another 3 credits of research or a course relevant to one of the student’s two focus areas.
3. Complete a minimum of 9 credits of course work in advanced research methods, to be selected in consultation with the student’s guidance committee, including at least 3 credits respectively in quantitative and qualitative methods.

4. Prepare a comprehensive examination program statement that presents the student’s learning and professional background and goals, and provides a rationale for the student’s declared focus areas. This statement is prepared in consultation with the student’s guidance committee and is presented to the full faculty for review.

5. Pass a comprehensive examination based on the student’s comprehensive examination program statement.

6. Complete 24 credits of doctoral dissertation research and successfully defend the dissertation. Present the results of the research in a public seminar during the final oral examination.

All students are encouraged to prepare at least one paper from the dissertation research suitable for submission to a professional and/or refereed academic journal.
DEPARTMENT OF ENTOMOLOGY

F. Willian Ravlin, Chairperson

Entomology is the field of biological science concerned with the study of insects and their relatives in relation to other animals, plants, and the environment. Since insects and their relatives impact many human activities, and must be studied and managed in a variety of environments, an entomologist needs a broad, basic education.

UNDERGRADUATE PROGRAM

The Department of Entomology offers a Bachelor of Science degree. The total program emphasizes developing strengths in the physical and biological sciences necessary to work effectively in modern entomology. Courses are designed to give the student an understanding of the structure, classification, identification, function, biology, ecology, and management of beneficial and harmful insects, and the communities and ecosystems where they occur. A minor in Entomology is also available.

Requirements for the Bachelor of Science Degree in Entomology

1. The University requirements for bachelor’s degrees as described in the Undergraduate Education section of this catalog. 120 credits, including general elective credits, are required for the Bachelor of Science degree in Entomology.

The University’s Tier II writing requirement for the Entomology major is met by completing Entomology 479. This course is referenced in item 3. below.

Students who are enrolled in the Entomology major concentrations may complete an alternative track to Integrative Studies in Biological and Physical Sciences by completing Entomology’s mathematics and chemistry requirements and Biological Science 161. These courses meet the laboratory requirement.

2. The requirements of the College of Agriculture and Natural Resources for the Bachelor of Science degree.

The credits earned in certain courses referenced in requirement 3. below may be counted toward College requirements as appropriate.

3. The following major requirements:

 a. All of the following courses (47 credits):
 - BS 161 Cell and Molecular Biology …………………….. 3
 - BS 162 Organismal and Population Biology ………… 3
 - BS 172 Organismal and Population Biology Laboratory ……… 2
 - CEM 141 General Chemistry ……………………. 4
 - CEM 143 Survey of Organic Chemistry …………….. 4
 - CEM 161 Chemistry Laboratory I ………………. 1
 - CSS 210 Fundamentals of Soil Science ……………. 3
 - ENT 404 Fundamentals of Entomology ……………. 3
 - ENT 479 Organic Pest Management (W) ……………… 3
 - GEO 221 Introduction to Geographic Information ………... 3
 - GEO 221L Introduction to Geographic Information Laboratory, 1
 - MTH 124 Survey of Calculus I ………………….. 3
 - PHY 231 Introductory Physics I ………………… 3
 - PHY 232 Introductory Physics II ………………… 3
 - PHY 251 Introductory Physics Laboratory ………….. 1
 - PLB 218 Plants of Michigan …………………… 3
 - ZOL 355 Ecology …………………… 3
 - ZOL 355L Ecology Laboratory (W) ……………… 1

 b. One of the following courses (3 credits):
 - MTH 126 Survey of Calculus II ………………… 3
 - STT 421 Statistics I ………………… 3

 Higher equivalent course substitutions may be made for Chemistry, Mathematics, and Physics courses with advisor approval.

 c. A minimum of 16 credits of course work in entomology as approved by the student's academic advisor.

The minor is available as an elective to students who are enrolled in bachelor’s degree programs at Michigan State University other than the Bachelor of Science Degree in Entomology. With the approval of the department and college that administers the student’s degree program, the courses that are used to satisfy the minor may also be used to satisfy the requirements for the bachelor’s degree. At least 12 unique credits counted towards the requirements for a student’s minor must not be used to fulfill the requirements for that student’s major.

Students who plan to complete the requirements for the minor should consult an undergraduate advisor in Entomology.

GRADUATE STUDY

The Department of Entomology offers Master of Science and Doctor of Philosophy degree programs in entomology. Many of the courses offered by the department are of significance to other disciplines in the biological and agricultural sciences in the College of Natural Science and College of Agriculture and Natural Resources section of this catalog.

Students who are enrolled in Master of Science degree programs in the Department of Entomology may elect a Specialization in Food Safety. For additional information, refer to the statement on the specialization in the College of Veterinary Medicine section of this catalog.

ENTOMOLOGY

Faculty and facilities are available for study in many subject areas, including apiculture and pollination, aquatic systems, behavior, insect biochemistry, biological control, biometrics, ecology, insect economics, forest entomology, medical entomology, morphology, nematology, population dynamics, insect physiology, pest management on many kinds of crops, plant disease vectors, systematics, systems science, environmental and analytical toxicology, and urban and ornamental entomology. Combinations of many of these specialized subject areas are necessary for all programs of study. Regardless of specialization, the student’s education must provide broad training in related sciences.

Graduate students in entomology look forward chiefly to college teaching; research work in some of the many areas where insects affect our crops and our lives; professional employment with state, federal, or private agencies or companies; or employment as pest management consultants.

Master of Science

In addition to meeting the requirements of the university and of the College of Agriculture and Natural Resources, students must meet the requirements specified below.

MINOR IN ENTOMOLOGY

The Minor in Entomology, which is administered by the Department of Entomology, is designed to serve students in other fields who desire additional training in the insect sciences. It provides an introduction to a range of entomological knowledge, including insect identification, ecology, and management.
Admission
A bachelor's degree with a 3.00 grade–point average for the last two years of study is required for admission to the master's program. Although the applicant need not have an undergraduate major in entomology for regular admission, training should have been received in the physical and biological sciences equivalent to that required of an undergraduate entomology major at Michigan State University. Graduate Record Examination General Test scores are required. Applicants with a good academic record but with deficiencies in physics, chemistry, mathematics, or the biological sciences may be accepted on a provisional basis until deficiencies have been rectified by collateral course work.

Requirements for the Master of Science Degree in Entomology
Both Plan A (with thesis) and Plan B (without thesis) are available, but students planning to earn a doctoral degree must follow Plan A. The student must complete a total of 30 credits for the degree under either Plan A or Plan B. Participation in the department's teaching program is also required.

Courses and thesis topics are planned on an individual basis by the student, the student's major professor, and the student's guidance committee. The following courses must be a part of the undergraduate or graduate program: a general entomology course, systematics of adults or immatures, insect physiology or molecular entomology, and 2 credits of graduate seminar, Entomology 812. A final oral examination covering course work, research, and philosophical issues is required.

Doctor of Philosophy
The Department of Entomology aspires to develop not only capable entomologists but also capable scholars. Scholarly potential is sought in the prospective student, and course and research programs are designed to round out the student's knowledge and bring it to the stage of development where the student can work creatively in the field.

In addition to meeting the requirements of the university and of the College of Agriculture and Natural Resources, students must meet the requirements specified below.

Admission
A master's degree including a thesis in an appropriate field of study is required. Subject matter training should be in the same general areas as required for admission to the Master of Science degree program in entomology. The student's past record must indicate maturity, reliability, and scholarly potential of a high order.

Requirements for the Doctor of Philosophy Degree in Entomology
A specified number of credits is not required, but early in the student's program the guidance committee, in consultation with the student, develops a list of proposed courses and a tentative dissertation subject. The student is expected to acquire a broad knowledge of entomology. The following courses must be a part of the undergraduate or graduate program: a general entomology course, systematics of adults or immatures, insect physiology or molecular entomology, insect ecology, evolution and conservation, 3 credits of Entomology 812 Graduate Seminar, and one course selected from a list of courses approved by the Department.

The student must pass a doctoral qualification examination which primarily consists of the defense of a dissertation proposal.

Written and oral doctoral comprehensive examinations are required on philosophical issues and in the three or more areas of study specified by the guidance committee. Participation in the department's teaching program is also required.

In addition to the program developed by the guidance committee for a research specialty, the student must acquire an area of knowledge separate and distinct from those research competencies. The acquisition of this knowledge means a minimum of 10 credits or its equivalent. The area selected must be agreed upon, unanimously, by the guidance committee and the student.

DEPARTMENT of FISHERIES and WILDLIFE
Scott R. Winterstein, Chairperson

UNDERGRADUATE PROGRAMS
Fisheries and wildlife management involves the maintenance and management of wild populations of fish and wildlife species and the ecosystems in which they live. Wild populations cannot be managed without an understanding of how human, social, economic, political and behavioral considerations interact in the natural world. As a fisheries and wildlife major at Michigan State University, students will acquire basic knowledge in the application of these interactions between and among the natural and social sciences.

Majors in the Department of Fisheries and Wildlife prepare for rewarding careers as fisheries and wildlife technicians, biologists, managers, naturalists, and applied ecologists. Others may choose to pursue related careers as conservation officers, environmental consultants or natural resource administrators. Employment is generally found with state and federal natural resource agencies such as the Michigan Department of Natural Resources, the U.S. Fish and Wildlife Service, and the National Park Service. There are also excellent job opportunities with private companies such as International Paper and non-profit organizations such as The Nature Conservancy or Trout Unlimited as well at many universities and colleges.

The undergraduate program in the Department of Fisheries and Wildlife at Michigan State University is nationally and internationally recognized. The program provides a strong base in the foundational and applied sciences of natural resource management. The program is designed to develop understanding of the cultural, recreational, and economic values of biological resources. The department offers a core of required courses including biology and physical sciences, math and statistics, communications, ethics and philosophy, and experiential learning in addition to a large selection of other fisheries and wildlife courses. The fisheries and wildlife undergraduate program also allows students to develop their individual interests through completion of one of six concentrations that are designed to provide additional breadth and depth, including: conservation biology, fisheries biology and management; wildlife biology and management, water sciences, fish and wildlife disease ecology and management, and prevetinary.

Conservation Biology focuses on the science of analyzing and protecting the earth’s biological diversity drawing from the biological, physical and social sciences, economics, and the practice of natural resource management.

Fisheries Biology and Management is designed for students interested in the research and management of fish, other fresh-
water and marine organisms, and the ecosystems that sustain them.

Wildlife Biology and Management is for students interested in understanding and managing terrestrial habitats and animals including game, non-game, and endangered species.

Water Sciences is designed for students interested in examining the biological, physical, chemical, geological and hydrological aspects of lakes and ponds, rivers and streams, wetlands and groundwaters including water quality. This concentration provides students with an understanding for protecting and restoring water resources around the Great Lakes and the world.

Fish and Wildlife Disease Ecology and Management is designed to provide students with an improved understanding of the emergence and spread of infectious diseases and the likely consequences that increased contact between fish and wildlife, and domestic animal and human populations have on these environmental problems.

Preventive is designed for students who are interested in careers in veterinary medicine and satisfies the course requirements for admission to Michigan State University’s College of Veterinary Medicine. Dual advising at the College of Veterinary Medicine is required.

Students who complete the requirements for the fisheries and wildlife major and choose elective courses appropriately can also satisfy requirements for certification by: The American Fisheries Society as an Associate Fisheries Scientist; by the Wildlife Society as an Associate Wildlife Biologist; or by the Society of Wetland Scientists as a Wetland Professional-in-training.

Students who are enrolled in the Bachelor of Science degree in Fisheries and Wildlife may elect to minor in any number of related relevant subject areas. For additional information available on minors, visit http://www.reg.msu.edu/AcademicPrograms/Programs.asp?Type=MNU.

Requirements for the Bachelor of Science Degree in Fisheries and Wildlife

1. The University requirements for bachelor’s degrees as described in the Undergraduate Education section of this catalog: 120 credits, including general elective credits, are required for the Bachelor of Science degree in Fisheries and Wildlife.

The University’s Tier II writing requirement for the Fisheries and Wildlife major is met by completing Fisheries and Wildlife 434 referenced in item 3. below.

Students who are enrolled in the Fisheries and Wildlife major leading to the Bachelor of Science degree in the Department of Fisheries and Wildlife may complete an alternative track to Integrative Studies in Biological and Physical Sciences by completing items 3.a. and 3. b. below. The completion of Biological Sciences 171 or 172 or Lyman Briggs 144 and Chemistry 161 or Lyman Briggs 171L satisfies the laboratory requirement. Completion of items 3.a. and 3. b. below will be counted toward both the alternative track and the requirements for the major.

The completion of the College of Agriculture and Natural Resources mathematics requirement may also satisfy the University mathematics requirement.

2. The requirements of the College of Agriculture and Natural Resources for the Bachelor of Science degree.

Certain courses referenced in requirement 3. below may be counted toward College requirements as appropriate. The completion of item 3. d. below satisfies the College's mathematics requirement.

3. The following requirements for the major:

 a. One of the following groups of courses (9 or 10 credits):

 (1) CEM 141 General Chemistry ... 4
 CEM 161 Chemistry Laboratory .. 1
 (2) CEM 151 General and Descriptive Chemistry 4
 CEM 161 Chemistry Laboratory .. 1
 (3) LB 171 Principles of Chemistry ... 4
 LB 171L Introductory Chemistry Laboratory 1
 c. One course from each group (6 to 8 credits):

 (1) PHY 231 Introductory Physics .. 3
 PHY 183 Physics for Scientists ... 4
 LB 273 Physics I .. 4
 (2) CSS 210 Fundamentals of Soil Science 3
 GLG 201 The Dynamic Earth ... 4
 GEO 203 Introduction to Meteorology 3
 GEO 206 Physical Geography .. 3
 ENT 319 Introduction to Earth System Science 3
 d. One course from each group (6 or 7 credits):

 (1) MTH 124 Survey of Calculus .. 3
 MTH 132 Calculus I ... 4
 (2) STT 231 Statistics for Scientists .. 3
 STT 224 Introduction to Probability and Statistics for Ecologists 3
 STT 421 Statistics I ... 3
 e. Two of the following courses (6 credits):

 COM 100 Human Communication ... 3
 COM 225 Introduction to Interpersonal Communication 3
 COM 275 Effects of Mass Communication 3
 CSUS 325 Study and Practice of Communication for Sustainability .. 3
 CSUS 433 Grant Writing and Fund Development (W) 3
 FW 435 Integrated Communications for the Fisheries and Wildlife Professional ... 3
 JRN 472 Laboratory in Environmental Reporting 3
 WRA 320 Technical Writing (W) .. 3
 WRA 331 Writing in the Public Interest (W) 3
 WRA 341 Nature, Environmental, and Travel Writing 3
 WRA 453 Grant and Proposal Writing 3
 f. One of the following courses (3 credits):

 FW 438 Philosophy of Ecology (W) ... 3
 FW 439 Conservation Ethics ... 3
 PHL 340 Ethics ... 3
 PHL 342 Environmental Ethics .. 3
 PHL 380 Nature of Science ... 3
 PHL 484 Philosophy of Biological Science 3
 432 Environmental Ethics (W) ... 3
 g. One of the following courses (3 or 4 credits):

 FW 493 Professional Internship in Fisheries and Wildlife 3
 FW 490 Independent Study in Fisheries and Wildlife 3
 FW 480 International Studies in Fisheries and Wildlife 3
 FW 499 Senior Thesis in Fisheries and Wildlife 4
 h. All of the following courses (17 credits):

 FW 101 Fundamentals of Fisheries and Wildlife Ecology and Management ... 3
 FW 293 Undergraduate Seminar in Fisheries and Wildlife 3
 FW 364 Ecological Problem Solving ... 3
 FW 424 Population Analysis and Management 4
 FW 434 Human Dimension of Fisheries and Wildlife Management (W) ... 3
 ZOL 355 Ecology ... 3
 i. One of the following courses (2 or 3 credits):

 FW 101L Fundamentals of Fisheries and Wildlife Ecology and Management Laboratory ... 2
 FW 238 Introductory Fisheries and Wildlife Field Experience 3
 j. One of the following concentrations:

 Conservation Biology (27 to 29 credits):

 (1) All of the following courses (12 credits):

 FW 444 Conservation Biology ... 3
 FW 445 Biodiversity Conservation Policy and Practice 3
 FW 443 Restoration Ecology .. 3
 ZOL 445 Evolution (W) ... 3
 (2) One of the following courses (3 credits):

 FOR 404 Forest Ecology ... 3
 PLB 441 Plant Ecology ... 3
 ZOL 485 Tropical Biology .. 3
 (3) One of the following courses (3 or 4 credits):

 CSS 350 Introduction to Plant Genetics 3
 ZOL 341 Fundamental Genetics ... 4
 (4) One of the following courses (3 credits):

 FW 410 Upland Ecosystem Management 3
 FW 414 Aquatic Ecosystem Management 3
 FW 416 Marine Ecosystem Management 3
 FW 417 Wetland Ecology and Management 3
 FW 454 Environmental Hydrology for Watershed Management 3
 FW 479 Fisheries Management ... 3
 (5) One of the following courses (3 credits):

 CSUS 464 Environmental and Natural Resource Policy in Michigan 3
 CSUS 465 Environmental Law and Policy 3
 EEP 255 Ecological Economics .. 3
 FW 481 Global Issues in Fisheries and Wildlife 3
 FOR 466 Natural Resource Policy ... 3
Fisheries Biology and Management (25 to 28 credits):

1. One of the following courses (3 credits):
 - FW 472 Limnology
 - FW 420 Stream Ecology
 - FW 474 Field and Laboratory Techniques for Aquatic Studies

2. All of the following courses (10 credits):
 - FW 471 Ichthyology
 - FW 479 Fisheries Management
 - FW 474 Field and Laboratory Techniques for Aquatic Studies

3. One of the following courses (3 or 4 credits):
 - FW 414 Aquatic Ecosystem Management
 - FW 416 Marine Ecosystem Management
 - FW 417 Wetland Ecology and Management
 - FW 454 Environmental Hydrology for Watershed Management

4. One of the following courses (3 or 4 credits):
 - ENT 404 Fundamentals of Entomology
 - ENT 422 Aquatic Entomology
 - ZOL 306 Invertebrate Biology
 - ZOL 436 Biology of Mammals
 - ZOL 384 Biology of Amphibians and Reptiles (W)

5. One of the following courses (3 or 4 credits):
 - CSS 350 Introduction to Plant Genetics
 - FW 431 Ecophysiology and Toxicology of Fishes
 - ZOL 328 Comparative Anatomy and Biology of Vertebrates (W)
 - ZOL 341 Fundamental Genetics
 - ZOL 483 Environmental Physiology (W)

Wildlife Biology and Management (26 or 27 credits):

1. All of the following courses (9 credits):
 - FW 410 Upland Ecosystem Management
 - FW 417 Wetland Ecology and Management
 - FW 413 Wildlife Research and Management Techniques

2. Two of the following courses (6 credits):
 - ZOL 360 Biology of Birds
 - ZOL 365 Biology of Mammals
 - ZOL 384 Biology of Amphibians and Reptiles (W)

3. One of the following courses (3 credits):
 - FOR 204 Forest Vegetation
 - PLB 218 Plants of Michigan
 - PLB 418 Plant Systematics

4. One of the following courses (3 credits):
 - FOR 404 Forest Ecology
 - PLB 105 Plant Biology
 - PLB 203 Biology of Plants
 - PLB 335 Plants Through Time
 - PLB 441 Plant Ecology

5. One of the following courses (3 or 4 credits):
 - CSS 350 Introduction to Plant Genetics
 - ZOL 328 Comparative Anatomy and Biology of Vertebrates (W)
 - ZOL 341 Fundamental Genetics
 - ZOL 483 Environmental Physiology (W)

Water Sciences (24 to 28 credits):

1. Two of the following courses (6 credits):
 - FW 417 Wetland Ecology and Management
 - FW 420 Stream Ecology
 - FW 472 Limnology

2. The following course (3 credits):
 - FW 474 Field and Laboratory Techniques for Aquatic Studies

3. One of the following courses (3 credits):
 - FW 414 Aquatic Ecosystem Management
 - FW 416 Marine Ecosystem Management
 - FW 454 Environmental Hydrology for Watershed Management
 - FW 479 Fisheries Management

4. One of the following courses (3 or 4 credits):
 - ENT 404 Fundamentals of Entomology
 - ENT 422 Aquatic Entomology
 - FW 471 Ichthyology
 - ZOL 306 Invertebrate Biology
 - ZOL 483 Environmental Physiology (W)

5. One of the following courses (3 or 4 credits):
 - PLB 218 Plants of Michigan
 - PLB 418 Plant Systematics
 - PLB 424 Algal Biology

6. Two of the following courses (6 to 8 credits):
 - CSS 350 Introduction to Plant Genetics
 - FW 431 Ecophysiology and Toxicology of Fishes
 - GLG 421 Environmental Geochemistry
 - ZOL 341 Fundamental Genetics
 - ZOL 384 Biology of Amphibians and Reptiles (W)

MINOR IN CONSERVATION, RECREATION AND ENVIRONMENTAL ENFORCEMENT

The Minor in Conservation, Recreation and Environmental Enforcement is designed to combine the natural resource expertise of the fisheries and wildlife, forestry, parks, recreation and tourism, and environmental sustainability programs, with the law enforcement expertise of the criminal justice program to serve those students with career interests in conservation, recreation or environmental law enforcement. The minor is available as an elective to students who are enrolled in bachelor’s degree programs in criminal justice, fisheries and wildlife, forestry, parks, recreation and tourism and environmental studies and sustainability. The minor is administered by the Department of Fisheries and Wildlife.

Students who are interested in enrolling should apply to the Department of Fisheries and Wildlife for acceptance.

With the approval of the department and college that administers the student’s degree program, courses that are used to satisfy the requirements for the minor may also be used to satisfy the requirements for the bachelor’s degree.
AGRICULTURE AND NATURAL RESOURCES
Department of Fisheries and Wildlife

Requirements for the Minor in Conservation, Recreation and Environmental Enforcement

The student must complete (19 to 20 credits):

CREDITS
1. Complete both of the following courses (4 credits):
 - CJ 110 Introduction to Criminal Justice 3
 - CSUS 278 Introduction to Conservation, Recreation and Environmental Enforcement 1

2. One of the following courses (3 credits):
 - CSUS 200 Introduction to Sustainability 3
 - CSUS 276 Sustaining our National Parks and Recreation Lands 3
 - FDR 202 Introduction to Forestry 3
 - FW 101 Fundamentals of Fisheries and Wildlife 3

3. Two of the following courses (3 or 4 credits):
 - CSUS 320 Environmental Planning and Management 3
 - CSUS 476 Natural Resource Recreation Management 4
 - FW 444 Conservation Biology 3
 - FW 481 Global Issues in Fisheries and Wildlife 3

Environmental Attitudes, Policy and Law

1. One of the following courses (3 credits):
 - CSUS 484 Environmental and Natural Resource Policy in Michigan 3
 - CSUS 485 Environmental and Natural Resource Law 3
 - CSR 330 Introduction to Fisheries and Wildlife Management 3
 - FW 434 Human Dimensions of Fisheries and Wildlife Management 3
 - FW 445 Biodiversity: Conservation Policy and Practice 3
 - MC 450 International Environmental Law and Policy 3
 - SOC 452 Environment and Society 3
 - ZOL 446 Environmental Issues and Public Policy 3

2. Two of the following courses (6 credits):
 - CJ 210 Introduction to Forensic Science 4
 - CJ 220 Criminology 4
 - CJ 235 Investigation Procedures 3
 - CJ 275 Criminal Procedure 3
 - CJ 335 Policing 3
 - CJ 432 Community Policing 3

GRADUATE STUDY

The graduate program in the Department of Fisheries and Wildlife at Michigan State University is nationally and internationally recognized as a leader in research and teaching. Our faculty are among the top professionals in their fields, and our programs are at the forefront of teaching management policy, conservation biology, human dimensions of natural resources management, as well as fish and wildlife biology, ecology, and management.

Scientists from throughout the world regularly visit the department, interacting with the faculty and students, and presenting seminars. Graduate students are encouraged to attend regional, national, and international professional meetings such as the annual Midwest Fish and Wildlife Conference, the American Fisheries Society Conference, the Wildlife Society Conference, the North American Wildlife and Natural Resources Conference, the Society for Conservation Biology Conference, Ecological Society of America Conference, and the International Association of Landscape Ecology Conference in addition to local professional meetings such as the Michigan Chapters of the American Fisheries Society and The Wildlife Society.

The Department of Fisheries and Wildlife brings together a diverse group of related basic and applied sciences. Faculty and graduate students are actively engaged in teaching, research, and outreach. Major areas of interest include: wildlife ecology and management; fisheries science and management; limnology (including water quality and water pollution biology); conservation biology; environmental management; aquaculture; human dimensions of resource management; wetland ecology and management; stream ecology; wildlife disease ecology and conservation medicine; and ecosystem and population modeling.

In addition to the major areas of interest, fisheries and wildlife graduate students can develop their own program of study under the direction of major professors and guidance committees within the department. For students who wish to pursue programs in the social, economic, geographic, or education-related aspects of fisheries and wildlife management, interdisciplinary programs are offered. Interaction with many related departments and colleges at Michigan State University, as well as with state and federal agencies, allow for both depth and breadth in research and academic programs.

The Department of Fisheries and Wildlife offers Master of Science and Doctor of Philosophy degree programs in fisheries and wildlife, a Doctor of Philosophy degree program in fisheries and wildlife—environmental toxicology, and a Graduate Certificate in Conservation Law.

Students in the Master of Science degree program in fisheries and wildlife are eligible for the dual JD program with Michigan State University - College of Law.

Students who are enrolled in Master of Science and Doctor of Philosophy degree programs in the Department of Fisheries and Wildlife may elect specializations in environmental and resource economics, fish and wildlife disease ecology and conservation medicine, and gender, justice and environmental change. For additional information, refer to the statements on Interdepartmental Graduate Specializations in Environmental and Resource Economics, Graduate Specialization in Fish and Wildlife Disease Ecology and Conservation Medicine, and the Graduate Specialization in Gender, Justice, and Environmental Change in this catalog.

MINOR IN MARINE ECOSYSTEM MANAGEMENT

The Minor in Marine Ecosystem Management is designed to provide students with a fundamental background in ecosystem management of marine natural resources. Students gain insight and experience in marine management issues relative to estuarine, coastal, and open-water marine ecosystems from the perspective of habitat, biota and human resource users. Students are also exposed to the management skills necessary to recognize and use effective techniques to conserve, preserve and restore marine ecosystem integrity for the benefit of society. This unique management emphasis serves the career interests of students well as they pursue positions in the marine sciences.

The Minor in Marine Ecosystem Management is available as an elective to students who are enrolled in Bachelor of Science degree programs with majors in Fisheries and Wildlife, and Zoology. The minor is administered by the Department of Fisheries and Wildlife. With the approval of the department and college that administer the student’s degree program, courses that are used to satisfy the requirements for the minor may also be used to satisfy the requirements for the bachelor’s degree.

Students who plan to complete the requirements for the marine ecosystem management minor should contact the undergraduate advisor for fisheries and wildlife in the Department of Fisheries and Wildlife.

Requirements for the Minor in Marine Ecosystem Management

The student must complete:

CREDITS
Marine Ecosystem Management
All of the following courses: 14
- FW 110 Conservation and Management of Marine Resources 3
- FW 416 Marine Ecosystem Management 3
- ZOL 303 Oceanography 4
- ZOL 353 Marine Biology (W) 4

Biodiversity
One of the following courses: 4
- FW 471 Ichthyology 4
- PLB 424 Algal Biology 4

ZOL 306 Invertebrate Biology 4

FW 480 International Studies in Fisheries and Wildlife 3
FW 493 Professional Internships in Fisheries and Wildlife 2 or 3
ZOL 496 Internship in Zoology 4
ZOL 498 Internship in Zoology and Aquatic Science 4
FISHERIES AND WILDLIFE

Programs of study are based on the academic preparation, interests, and career goals of individual students. Although individual students' programs vary, all graduate programs in fisheries and wildlife are designed to provide:

1. Broad fundamental preparation in the ecological sciences.
2. Preparation in one of the areas of specialization within the field of fisheries and wildlife.
3. A foundation for careers in administration, research, management, teaching, or extension.

The department offers the following areas of specialization within the field of fisheries and wildlife: conservation biology, restoration ecology, human dimensions, fisheries ecology and management, wildlife ecology and management, population dynamics and modeling, limnology, aquaculture, environmental management, environmental education, and environmental toxicology.

In cooperation with other colleges and departments, graduate students in the Department of Fisheries and Wildlife may be involved in research in the nutrition, pathology, and physiology of fish and wildlife.

Master of Science

In addition to meeting the requirements of the university and of College of Agriculture and Natural Resources, the student must meet the requirements specified below.

Admission

Admission to a master's program requires prior completion of an undergraduate major in a biological or other appropriate science with course work appropriate to support the graduate program. Students lacking sufficient courses may be admitted provisionally until such deficiencies are removed by completing collateral courses. Scores on the Graduate Record Examination General Test are required. The Subject Test in Biology is recommended.

Requirements for the Master of Science Degree in Fisheries and Wildlife

The student may elect either Plan A (with thesis) or Plan B (without thesis). A total of 30 credits is required for the degree under either Plan A or Plan B. The student and the major professor plan a program of study that includes courses related to one of the areas of specialization within the field of fisheries and wildlife referenced above and three credits of Fisheries and Wildlife 893. The program must be approved by the student's guidance committee.

Doctor of Philosophy

In addition to meeting the requirements of the university and of College of Agriculture and Natural Resources, the student must meet the requirements specified below.

Admission

Applicants for a doctoral program should have completed a Bachelor of Science degree and a Master of Science degree in a biological or other appropriate science. Additional background in mathematics, chemistry, botany, and zoology is desirable. Scores on the Graduate Record Examination General Test are required. The Subject Test in Biology is recommended.

Requirements for the Doctor of Philosophy Degree in Fisheries and Wildlife

The student and the major professor plan a program of study that includes courses related to one of the areas of specialization within the field of fisheries and wildlife referenced above and three credits of Fisheries and Wildlife 893. The program must be approved by the student's guidance committee.

FISHERIES AND WILDLIFE—ENVIRONMENTAL TOXICOLOGY

Doctor of Philosophy

For information about the Doctor of Philosophy degree program in fisheries and wildlife—environmental toxicology, refer to the statement on Doctoral Program in Environmental and Integrative Toxicological Sciences in the Graduate Education section of this catalog.

GRADUATE CERTIFICATE IN CONSERVATION LAW

The Graduate Certificate in Conservation Law provides students an opportunity to explore conservation law by gaining familiarity with the language, theory and practices of the law discipline to better integrate their core education with their respective environmental or conservation-related disciplinary field.

The graduate certificate is available as an elective to students who are enrolled in master’s or doctoral degree programs at Michigan State University.

Requirements for the Graduate Certificate in Conservation Law

Students must complete both of the following courses (9 credits):

- LAW 630M Conservation Law Clinic I 6
- LAW 630N Conservation Law Clinic II 3

DEPARTMENT of FOOD SCIENCE and HUMAN NUTRITION

Frederik Derksen, Chairperson

The mission of the department of Food Science and Human Nutrition is to advance human health through excellent teaching, research, and outreach programs in the disciplines of food science and human nutrition. Our faculty address contemporary issues related to global food safety, food quality, food processing and product development, and production as well as nutrition in the context of human health, chronic disease prevention, and food security.

UNDERGRADUATE PROGRAMS

The department offers Bachelor of Science degree programs with majors in dietetics, food science, and nutritional sciences. Minors in Nutritional Sciences, Beverage Science and Technology, and Food Processing and Technology are also available.

Students who are enrolled in the Bachelor of Science degree program with a major in food science may elect a Minor in Plant,
Animal, and Microbial Biotechnology. For additional information, refer to the Minor in Plant, Animal, and Microbial Biotechnology statement.

DIETETICS

The undergraduate program in dietetics has been approved by the Academy of Nutrition and Dietetics Accreditation Council for Education in Nutrition and Dietetics (ACEND) as a Didactic Program that meets the minimum academic requirements for professionally qualified dietitians.

The undergraduate program in dietetics is designed so that supporting disciplines provide a knowledge base prerequisite to the professional courses. Course offerings are sequenced to build upon previous knowledge and provide increasingly complex experiences. The student is expected to acquire approximately equal expertise in nutritional assessment and care and in foodservice management systems.

Verification of successful completion of the ACEND-approved minimum academic requirements is the responsibility of the Dietetic Program Director in the Department of Food Science and Human Nutrition.

Persons who wish to receive a final Verification Statement for the fulfillment of ACEND-approved minimum academic requirements from Michigan State University, but who have not completed a Bachelor of Science degree with a Dietetics major at Michigan State University, must complete a minimum of 10 credits in 300—400 level courses in dietetics at Michigan State University with a minimum grade of 2.0 or better in each course.

Eligibility for the Registration Examination for Dietitians is determined by verification of successful completion of an ACEND-approved Didactic Program in Dietetics and one of the following supervised practice experiences: ACEND-approved Dietetic Internship, or ACEND-approved Accredited Coordinated Program. Dietetic registration, as administered by the Commission on Dietetic Registration, is a requirement of most positions for professional dietitians.

Admission as a Junior

Enrollment in the dietetics major is limited. The Bachelor of Science Degree in Dietetics is a professional degree, which requires acceptance into a competitive internship in order to complete the requirements for eligibility to take the registered dietitian examination. A minimum cumulative grade-point average of 2.5 is necessary to be considered for admission.

Requirements for the Bachelor of Science Degree in Dietetics

1. The University requirements for bachelor’s degrees as described in the Undergraduate Education section of this catalog.

 The University’s Tier II writing requirement for the Dietetics major is met by completing Human Nutrition and Foods 300, 471 and 472. Those courses are referenced in item 3. a. below.

 Students who are enrolled in the Dietetics major leading to the Bachelor of Science degree in the Department of Food Science and Human Nutrition may complete an alternative track to Integrative Studies in Biological and Physical Sciences that consists of the following courses: Biochemistry 200 or Physiology 250; Chemistry 141, 143, and 161. The completion of Chemistry 143 and 161 satisfies the laboratory requirement.

2. The requirements of the College of Agriculture and Natural Resources for Bachelor of Science and Bachelor of Arts degrees.

3. The following requirements for the major:

 a. All of the following courses in the Department of Food Science and Human Nutrition: CREDITS

 HNF 150 Introduction to Human Nutrition 3

 HNF 300 Experimental Approaches to Foods 4

 HNF 320 Professional Practice of Dietetics and Nutrition 3

 HNF 377 Applied Community Nutrition 3

 HNF 400 Art and Science of Food Preparation 2

 HNF 406 Global Foods and Culture 3

 HNF 444 The Business of Nutrition Services 3

 HNF 445 Foodservice Management Program 2

 HNF 453 Nutrition and Human Development 3

 HNF 461 Advanced Human Nutrition: Carbohydrates, Lipids and Proteins 3

 HNF 462 Advanced Human Nutrition: Vitamins and Minerals 3

 HNF 471 Medical Nutrition Therapy I 4

 HNF 472 Medical Nutrition Therapy II 4

 b. The following courses outside the Department of Food Science and Human Nutrition: 39 to 42

(1) All of the following courses (30 credits):

 ANTR 350 Human Gross Anatomy for Pre-Health Professionals 3

 BMB 200 Introduction to Biochemistry 4

 CEM 141 General Chemistry 4

 CEM 143 Survey of Organic Chemistry 4

 CEM 161 Chemistry Laboratory I 1

 FSC 342 Food Safety and Hazard Analysis Critical Control Point Program 3

 MGT 325 Management Skills and Processes 3

 PSL 250 Introductory Physiology 4

 PSY 101 Introductory Psychology 4

(2) One of the following courses (3 or 5 credits):

 MTH 103 College Algebra 3

 MTH 116 College Algebra and Trigonometry 5

(3) One of the following courses (3 or 4 credits):

 STT 200 Statistical Methods 3

 STT 201 Statistical Methods 4

(4) The following course (3 credits):

 CSE 101 Computing Concepts and Competencies 3

Students who pass a waiver examination will not be required to complete Computer Science and Engineering 101.

FOOD SCIENCE

Graduates with a Bachelor of Science degree in food science may be employed by food and allied industries, federal and state governments, and universities to work at the interface between the production and delivery of food. The program also prepares students for advanced study in graduate and professional schools. The required courses stress the principles of food safety and preservation and the application of scientific principles to control and enhance the flavor, color, texture, and nutritive value.

In addition to the core program, students in food science must complete one of the following interdisciplinary concentrations that are designed to provide additional breadth and depth: basic food science, food business and industry, food packaging, or food technology.

Basic Food Science. This concentration is designed for students with an interest in integrating in-depth study of basic sciences with the core of their food science education. Advanced courses in chemistry, microbiology, food safety, toxicology and pharmacology are among the fields students may elect to strengthen their bachelor’s degree. Students interested in professional post-graduate education such as medicine and dentistry may elect to take a series of courses that meets the admission standards for most professional colleges.

Food Business and Industry. This concentration is designed for students who are interested in working for food or food-related businesses, where a knowledge of both food science and of food business management, economics, and marketing is important. Students who complete this concentration may pursue careers in manufacturing management, technical sales, food product marketing, or similar areas or may pursue graduate study in business.

Food Packaging. This concentration is designed to prepare students for careers in the food industry with an emphasis in food packaging. The concentration focuses on the design, use, and evaluation of food packaging materials and the effect of packaging materials on the shelf life of food. Students who complete this concentration may pursue graduate study in packaging or food science.

Food Technology. This concentration focuses on food processing methods and their effect on food quality and process characteristics. Students who complete this concentration may pursue careers in production supervision, quality assurance, in-
Requirements for the Bachelor of Science Degree in Food Science

1. The University requirements for bachelor's degrees as described in the Undergraduate Education section of this catalog, 120 credits, including general elective credits, are required for the Bachelor of Science degree in Food Science.

 The University’s Tier II writing requirement for the Food Science major is met by completing all of the following courses: Food Science 402, 440, 441, 455, 470. Those courses are referenced in item 3.b below.

 Students who are enrolled in the Food Science major leading to the Bachelor of Science degree in the Department of Food Science and Human Nutrition may complete an alternative track in Integration of Biological and Physical Sciences that consists of the following courses: Biological Science 161, Chemistry 161 and 162, and Physics 231. The completion of Chemistry 161 and 162 satisfies the laboratory requirement. Biological Science 161, Chemistry 161 and 162 and Physics 231 may be counted toward both the alternative track and the requirements for the major referenced in item 3.b below.

 The completion of the College of Agriculture and Natural Resources mathematics requirement may also satisfy the University mathematics requirement.

2. The requirements of the College of Agriculture and Natural Resources for the Bachelor of Science degree.

 Certain courses referenced in requirement 3.b below may be counted toward College requirements as appropriate. The completion of Mathematics 124 satisfies the College's mathematics requirement.

3. The following requirements for the major:

 a. All of the following courses:
 - BE 429 Fundamentals of Food Engineering ... 3
 - BS 161 Cell and Molecular Biology .. 3
 - CEM 141 General Chemistry ... 4
 - CEM 142 General and Inorganic Chemistry ... 3
 - CEM 161 Chemistry Laboratory I ... 1
 - CEM 162 Chemistry Laboratory II ... 1
 - FSC 211 Principles of Food Science ... 3
 - FSC 222 Professional Development and Career Planning in Food Science 1
 - FSC 325 Food Processing: Unit Operations ... 3
 - FSC 401 Food Chemistry ... 3
 - FSC 402 Food Chemistry Laboratory ... 1
 - FSC 410 Sensory Analysis and Consumer Research ... 3
 - FSC 422 Advanced Professional Seminar in Food Science 1
 - FSC 440 Food Microbiology .. 3
 - FSC 441 Food Microbiology Laboratory ... 2
 - FSC 455 Food and Nutrition Laboratory ... 3
 - FSC 470 Integrated Approaches to Food Product Development 3
 - HNF 260 Principles of Human Nutrition ... 3
 - MMG 301 Introductory Microbiology .. 3
 - MTH 124 Survey of Calculus I ... 3
 - PHY 231 Introductory Physics I ... 3

 b. Two of the following courses (6 credits):
 - FSC 430 Food Processing: Fruits and Vegetables .. 3
 - FSC 431 Food Processing: Cereals ... 3
 - FSC 432 Food Processing: Dairy Foods .. 3
 - FSC 433 Food Processing: Muscle Foods ... 3

 c. One of the following concentrations:
 - Basic Food Science (25 credits):
 1. All of the following courses (16 credits):
 - BMB 401 Comprehensive Biochemistry .. 4
 - CEM 251 Organic Chemistry I .. 3
 - CEM 252 Organic Chemistry II ... 3
 - CEM 255 Organic Chemistry Laboratory .. 2
 - STT 201 Statistical Methods ... 4
 2. Nine credits from the following courses (9 credits):
 - ANS 407 Food and Animal Toxicology .. 3
 - CEM 262 Quantitative Analysis ... 3
 - CEM 333 Instrumental Methods and Applications ... 3
 - CEM 383 Introductory Physical Chemistry I ... 3
 - FSC 421 Food Laws and Regulations .. 3
 - MMG 409 Eukaryotic Cell Biology ... 3
 - MMG 425 Microbial Ecology ... 3
 - MMG 431 Microbial Genetics ... 3
 - MMG 445 Microbiological Toxicology (W) .. 3
 - MMG 451 Immunology ... 3
 - PHM 350 Introductory Human Pharmacology .. 3
 - PHM 450 Introduction to Chemical Toxicology .. 3
 - PHY 232 Introductory Physics II ... 3

 - The Basic Food Science concentration fills many, but not all, of the minimum requirements for admission to professional schools. Students interested in preparing for postgraduate professional programs should consult with a preprofessional advisor in the College of Natural Science. Admission requirements of professional schools vary and the student is responsible for reviewing the requirements of each school of interest and consulting regularly with an advisor.

Food Business and Industry (23 credits):

1. All of the following courses (17 credits):
 - ACC 230 Survey of Accounting Concepts .. 3
 - BMB 200 Introduction to Biochemistry ... 4
 - CEM 143 Survey of Organic Chemistry ... 4
 - MKT 327 Introduction to Marketing ... 3
 - STT 315 Introduction to Probability and Statistics for Business 3

 2. Two of the following courses (6 credits):
 - ABM 100 Decision-making in the Agri-Food System ... 3
 - ABM 222 Agribusiness and Food Industry Sales (W) ... 3
 - ABM 435 Financial Management in the Agri-Food System 3
 - FIM 335 Food Marketing Management ... 3
 - MKT 302 Consumer and Organizational Buyer Behavior 3
 - Either Finance 311 or Agribusiness Management 435, but not both of these courses, may be used to satisfy requirement (2) for the Food Business and Industry concentration.

Food Packaging (26 credits):

1. All of the following courses:
 - BMB 200 Introduction to Biochemistry ... 4
 - CEM 143 Survey of Organic Chemistry ... 4
 - PKG 101 Principles of Packaging ... 3
 - PKG 221 Packaging with Glass and Metal ... 3
 - PKG 322 Packaging with Paper and Paperboard .. 4
 - PKG 323 Packaging with Plastics ... 4
 - STT 201 Statistical Methods .. 4

Food Technology (23 credits):

1. All of the following courses (14 credits):
 - BMB 200 Introduction to Biochemistry ... 4
 - CEM 143 Survey of Organic Chemistry ... 4
 - FSC 420 Quality Assurance .. 2
 - STT 201 Statistical Methods .. 4

 2. Nine credits from the following courses (9 credits):
 - CEM 482 Science and Technology of Wine Production 3
 - CHE 483 Brewing and Distilled Beverage Technology ... 3
 - FSC 430 Food Processing: Fruits and Vegetables .. 3
 - FSC 431 Food Processing: Cereals ... 3
 - FSC 432 Food Processing: Dairy Foods .. 3
 - FSC 421 Food Laws and Regulations .. 3
 - FSC 433 Food Processing: Muscle Foods ... 3
 - FSC 481 Fermented Beverages ... 3
 - HB 100 Introduction to Hospitality Business ... 2
 - HB 265 Food Management: Safety and Nutrition .. 3
 - HB 267 Management of Food and Beverage Systems ... 3
 - HB 409 Introduction to Wine .. 3
 - HNF 350 Experimental Approaches to Food ... 4
 - HRT 403 Handling and Storage of Horticultural Crops .. 3
 - HRT 430 Exploring Wines and Vines ... 3

 Courses selected to meet this requirement may not be used to fulfill requirement 3.b above.

NUTRITIONAL SCIENCES

The nutritional sciences major emphasizes intensive study in biological and physical sciences as a basis for understanding the science of nutrition and the relationships between nutrients and human health. Core course requirements emphasize human nutrition with areas of study in energy metabolism, proteins, vitamins, minerals, and nutrition in the prevention and treatment of disease. Issues and techniques involved in nutrition research, and a food and nutrition laboratory course are included in the core courses. Supporting discipline courses emphasize biochemistry, biology, chemistry, mathematics, microbiology, physics and physiology.

This major is designed to meet the admissions requirements of most colleges of medicine, dentistry and paramedical colleges while the student pursues a bachelor's degree in a clinically related area. The major also prepares students to enter graduate school programs in nutrition and other life sciences. Graduates in nutritional sciences qualify for positions in the food industry, corporate wellness and health promotion programs, public health programs, pharmaceutical sales and similar occupations.

Requirements for the Bachelor of Science Degree in Nutritional Sciences

1. The University requirements for bachelor's degrees as described in the Undergraduate Education section of this catalog.
AGRICULTURE AND NATURAL RESOURCES
Department of Food Science and Human Nutrition

The University’s Tier II writing requirement for the Nutritional Sciences major is met by completing Food Science 455 and Human Nutrition and Foods 464. Those courses are referenced in item 3. a. below.

Students who are enrolled in the Nutritional Sciences major leading to the Bachelor of Science degree in the Department of Food Science and Human Nutrition may complete an alternative track to Integrative Studies in Biological and Physical Sciences that consists of the following courses: Chemistry 141, 161, 162, Physiology 310 or 431. The completion of Chemistry 161 and 162 satisfies the laboratory requirement.

2. The requirements of the College of Agriculture and Natural Resources for the Bachelor of Science degree

The credits earned in certain courses referenced in item 3. below may be counted toward college requirements as appropriate.

The completion of Mathematics 124 or 132 or Lyman Briggs 118 satisfies the college mathematics requirement.

3. The following requirements for the major:

a. The following courses in the Department of Food Science and Human Nutrition: ... 22 or 23

 (1) All of the following courses (19 credits):
 FSC 211 Principles of Food Science 3
 FSC 455 Food and Nutrition Laboratory 3
 HNF 260 Principles of Human Nutrition 3
 HNF 461 Advanced Human Nutrition: Carbohydrates, Lipids and Proteins 3
 HNF 462 Advanced Human Nutrition: Vitamins and Minerals ... 3
 HNF 464 Nutrition in the Prevention and Treatment of Disease ... 4

 (2) One of the following courses (2 to 4 credits):
 HNF 375 Community Nutrition 2
 HNF 406 Global Foods and Culture 3
 STT 471 Medical Nutrition Therapy I 4

 (3) The following courses outside the Department of Food Science and Human Nutrition: 53 to 63

 (1) One of the following, either (a) or (b) (4 or 6 credits):
 (a) BMB 401 Comprehensive Biochemistry 4
 (b) BMB 461 Advanced Biochemistry I 3
 BMB 462 Advanced Biochemistry II 3

 (2) One of the following, either (a) or (b) (5 credits):
 (a) BS 161 Cell and Molecular Biology 3
 BS 171 Cell and Molecular Biology Laboratory 2
 (b) LB 145 Biology II: Cellular and Molecular Biology ... 5

 (3) One of the following, either (a) or (b) (8 credits):
 (a) LB 273 Physics I ... 4
 LB 274 Physics II ... 4
 (b) PHY 231 Introductory Physics I 3
 PHY 232 Introductory Physics II 3
 PHY 251 Introductory Physics I Laboratory 1
 PHY 252 Introductory Physics II Laboratory 1

 (4) All of the following courses (12 credits):
 CEM 251 Organic Chemistry I 3
 CEM 252 Organic Chemistry II 3
 CEM 255 Organic Chemistry Laboratory 3
 MMG 301 Introductory Microbiology 3
 MMG 302 Introductory Laboratory for General and Allied Health Professions 1

 (5) One of the following, either (a) or (b) (6 to 8 credits):
 (a) The following course:
 MTH 124 Survey of Calculus I 3
 One of the following courses:
 MTH 125 Survey of Calculus II 3
 STT 201 Statistical Methods 4
 STT 231 Statistics for Scientists 3
 STT 421 Statistics I ... 3

 (b) One of the following courses:
 LB 118 Calculus I ... 4
 MTH 132 Calculus II .. 3
 One of the following courses:
 LB 119 Calculus II ... 4
 MTH 133 Calculus II .. 4
 STT 201 Statistical Methods 4
 STT 231 Statistics for Scientists 3
 STT 311 Statistics I ... 3

 (6) One course from each of the following groups
 (9 to 12 credits):

 (a) One of the following (9 credits):
 CEM 141 General Chemistry 4
 CEM 151 General and Descriptive Chemistry 4
 CEM 181H Honors Chemistry I 4
 LB 171 Principles of Chemistry I 4

 (b) One of the following (3 to 4 credits):
 CEM 142 General and Inorganic Chemistry 3
 CEM 152 Principles of Chemistry 3
 CEM 182H Honors Chemistry II 3
 LB 172 Principles of Chemistry II 4

 (c) One of the following (9 credits):
 CEM 161 Chemistry Laboratory I 1
 CEM 183H Honors Chemistry Laboratory 1
 LB 171L Introductory Chemistry Laboratory I 1

 (d) One of the following (9 credits):
 DCM 162 Chemistry Laboratory II 1
 DCM 184H Honors Chemistry Laboratory 1
 LB 172L Principles of Chemistry II- Reactivity Laboratory ... 1

 (7) One of the following, either (a) or (b) (9 to 12 credits):
 (a) One of the following (9 credits):
 PSL 310 Physiology for Pre-Health Professionals 3

 (b) One of the following (3 credits):

 MINOR IN NUTRITIONAL SCIENCES

The Minor in Nutritional Sciences, which is administered by the Department of Food Science and Human Nutrition, will broaden students’ understanding of the science of nutrition and the relationships between food and health.

The minor is available as an elective to students who are enrolled in bachelor’s degree programs at Michigan State University other than the Bachelor of Sciences Degree in Nutritional Sciences or the Bachelor of Science Degree in Dietetics. With the approval of the department and college that administers the student’s degree program, the courses that are used to satisfy the minor may also be used to satisfy the requirements for the bachelor’s degree.

Students who plan to complete the requirements for the minor should consult a Nutritional Sciences undergraduate advisor in Department of Food Science and Human Nutrition.

Requirements for the Minor in Nutritional Sciences

Complete a 16 credits from the following:

1. One of the following courses (3 credits):
 HNF 150 Introduction to Human Nutrition 3
 HNF 260 Principles of Human Nutrition 3

2. All of the following courses (13 credits):
 HNF 375 Community Nutrition 3
 HNF 461 Advanced Human Nutrition: Carbohydrates, Lipids and Proteins 3
 HNF 462 Advanced Human Nutrition: Vitamins and Minerals 3
 HNF 464 Nutrition in the Prevention and Treatment of Disease 4

MINOR IN BEVERAGE SCIENCE AND TECHNOLOGY

The Minor in Beverage Science and Technology is designed to provide students with fundamental knowledge of the production of fermented beverages. Certain courses in this minor are only offered at off-campus wineries or breweries. The minor is available as an elective to students who are enrolled in bachelor’s degree programs at Michigan State University. The minor is administered by the Department of Food Science and Human Nutrition.

With the approval of the department and college that administers the student’s degree program, the courses that are used to satisfy the requirements for the minor may also be used to satisfy the requirements for the bachelor’s degree.

Requirements for the Minor in Beverage Science and Technology

Students must complete 15 credits from the following:

Complete a 15 credits from the following courses (3 credits):

1. One of the following courses (3 credits):
 FSC 342 Food Safety and Hazard Analysis Critical Control Point Program 3
 MMG 201 Fundamentals of Microbiology 3

2. One of the following courses (3 credits):

 CREDITS
MINOR IN FOOD PROCESSING AND TECHNOLOGY

The Minor in Food Processing and Technology is available as an elective to students who are enrolled in bachelor’s degree programs in the College of Agriculture and Natural Resources other than the Bachelor of Science degree program with a major in food science, The School of Hospitality Business, and the Department of Microbiology and Molecular Genetics and to students who are enrolled in the Environmental Biology/Microbiology and Microbiology coordinate majors in Lyman Briggs College. The Department of Food Science and Human Nutrition administers the minor.

The primary educational objective of the minor is to provide students with basic knowledge of food processing. The undergraduate coordinator for food science in the Department of Food Science and Human Nutrition is available to assist students in planning their programs of study for the minor.

With the approval of the college and department that administer the student’s degree program, the courses that are used to satisfy the requirements for the minor may also be used to satisfy the requirements for the bachelor’s degree.

Requirements for the Minor in Food Processing and Technology

The student must complete:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE 350</td>
<td>Heat and Mass Transfer in Biosystems</td>
<td>3</td>
</tr>
<tr>
<td>BE 429</td>
<td>Fundamentals of Food Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CHE 311</td>
<td>Fluid Flow and Heat Transfer</td>
<td>3</td>
</tr>
<tr>
<td>FSC 325</td>
<td>Food Processing: Unit Operations</td>
<td>3</td>
</tr>
<tr>
<td>ME 410</td>
<td>Heat Transfer</td>
<td>3</td>
</tr>
<tr>
<td>CEM 482</td>
<td>Science and Technology of Wine Production</td>
<td>3</td>
</tr>
<tr>
<td>CHE 483</td>
<td>Brewing and Distilled Beverage Technology</td>
<td>3</td>
</tr>
<tr>
<td>FSC 481</td>
<td>Fermented Beverages</td>
<td>3</td>
</tr>
</tbody>
</table>

GRADUATE STUDY

The department offers Master of Science and Doctor of Philosophy degree programs with majors in food science and a Doctor of Philosophy degree program with a major in food science—environmental toxicology. Those programs are described below. The department also offers Master of Science and Doctor of Philosophy degree programs with majors in human nutrition and a Doctor of Philosophy degree program with a major in human nutrition—environmental toxicology. Those programs are also described below. In addition, the department offers programs for postdoctoral research.

Each graduate program in the Department of Food Science and Human Nutrition is designed to prepare the student to become a specialist in food science or human nutrition. Programs of study and research are flexible and are designed to meet the needs and objectives of individual students. Emphasis is placed on a sound educational program to develop a high degree of professional competence in a specific program area. Attendance and participation at seminars and participation in the teaching programs where appropriate are designed to broaden the student's background for future careers.

Students who are enrolled in Master of Science degree programs in the Department of Food Science and Human Nutrition may elect a Specialization in Environmental Toxicology. For additional information, refer to the Graduate Specialization in Environmental Toxicology statement.

Students who are enrolled in Master of Science and Doctor of Philosophy degree programs in the Department of Food Science and Human Nutrition may elect specializations in Infant and Early Childhood. For additional information, refer to the statement on Interdepartmental Graduate Specializations in Infant and Early Childhood in the College of Social Science section of this catalog.

FOOD SCIENCE

In addition to meeting the requirements of the university and of the College of Agriculture and Natural Resources, students who are admitted to the master’s and doctoral degree programs in food science must meet the requirements specified below.

A student who is admitted to a graduate program in food science is expected to have general, quantitative, and organic chemistry and biochemistry. In addition, preparation for graduate work should include courses in the biological and agricultural sciences, mathematics, physics, nutrition, engineering, or economics. A student with insufficient academic background may be required to complete collateral courses in addition to the courses that are required for the degree.

For the master’s degree in food science, the student may elect either Plan A (with thesis) or Plan B (without thesis). A total of 30 credits is required for the degree under Plan A or Plan B.

FOOD SCIENCE—ENVIRONMENTAL TOXICOLOGY

Doctor of Philosophy

For information about the Doctor of Philosophy degree program in food science—environmental toxicology, refer to the statement on Doctoral Program in Environmental and Integrative Toxicological Sciences in the Graduate Education section of this catalog.

HUMAN NUTRITION

Master of Science

The Master of Science degree in Human Nutrition includes research, course work in advanced nutrition, statistics, seminars, and appropriate selections from one or more of the following areas: biochemistry, physiology, anthropology, immunology, epidemiology, psychology, or sociology. Students in this program must meet the requirements of the university and of the College of Agriculture and Natural Resources.

Admission

To be considered for admission to the Master of Science degree program in Human Nutrition an applicant must:

1. Have completed a bachelor’s degree with courses in nutrition, including upper-level macro-and micronutrients, com-
quirements for the Master of Science Degree in Human Nutrition

The program is available under either Plan A (with thesis) or Plan B (without thesis). The student must complete at 30 credits.

The student must complete:
1. All of the following courses (10 credits):
 - HNF 820 Advanced Biochemical Nutrition 3
 - HNF 821 Advanced Vitamins and Minerals 2
 - HNF 823 Research Methods in Human Nutrition 1
 - HNF 824 Nutrition Policies and Programs 1
 - HNF 825 Nutritional Immunology 1
 - HNF 826 Obesity and Chronic Disease 1
 - HNF 892 Nutrition Seminar 1

2. A minimum of 10 credits (Plan A) or 20 credits (Plan B) in course work in one or more focus areas selected in consultation with the student’s guidance committee.

Additional Requirements for Plan A

1. The following course (6 credits):
 - HNF 899 Master’s Thesis Research 6
 - Students may not earn more than 10 credits in HNF 899.

Additional Requirements for Plan B

1. Completion of a final examination or evaluation.

Doctor of Philosophy

The Doctor of Philosophy degree in Human Nutrition is designed to prepare graduates for advanced careers that require demonstrated research skills, comprehensive knowledge of the discipline, and skills essential to the dissemination of that knowledge. Through their research and course work in advanced nutrition and related areas, the student will plan, conduct, manage, and publish independent, original research via the dissertation and peer-reviewed manuscripts. Students in the program must meet the requirements of the university and of the College of Agriculture and Natural Resources.

Admission

To be considered for admission to the Doctor of Philosophy degree program in Human Nutrition an applicant must:
1. have completed a bachelor’s degree or master’s degree with courses in nutrition, including upper-level macro- and micro-nutrients, community or lifespan nutrition, general and organic chemistry, biology, physiology, biochemistry, and statistics;
2. be proficient in written and spoken English;
3. have a prior grade-point average of 3.0 or higher;
4. submit scores on the Graduate Record Examination General Test;
5. submit a personal letter of intent, research experience, and letters of reference.

Collateral course work may be required to overcome deficiencies, but will not count towards the degree requirements.

Requirements for the Doctor of Philosophy Degree in Human Nutrition

The student must:
1. Complete all of the following courses (11 credits):

Doctor of Philosophy

For information about the Doctor of Philosophy degree program in human nutrition—environmental toxicology, refer to the statement on Doctoral Program in Environmental and Integrative Toxicological Sciences in the Graduate Education section of this catalog.

DEPARTMENT of FORESTRY

Richard K. Kobe, Chairperson

Forest ecosystems, from wilderness areas to forested cities, play a central role in regulating the earth’s environmental quality and in providing for human well-being. Forests harbor two-thirds of the world’s biodiversity and contain most of the Earth’s terrestrial biomass. Forests contain more carbon than there is in the atmosphere, and thus play a major role in the global climate system. Forest ecosystems are a key player in biosphere functioning as they modulate and link atmospheric, terrestrial and hydrological processes. Forests comprise about one-third of land area globally and in the United States. They provide a myriad of benefits to the earth’s human population, including renewable wood products and energy, food, medicine, shelter, places for outdoor recreation, and inspiration for cultural and spiritual values. Forest ecosystems regulate air temperature and enhance the water cycle and precipitation to ensure productive agriculture and they stabilize stream flow to reduce soil erosion and flooding.

The Bachelor of Science degree program in Forestry is focused on educating forestry science professionals. It integrates ecology, biology, economics, and social science to help educate students to solve some of the world’s most pressing natural resource, environmental, and energy issues. Our graduate programs include a Certificate Program in Forest Carbon Science, Policy and Management, as well as course and research-based master’s programs, and a doctoral program. Departmental research encompasses both discovery in fundamental science and problem-oriented applied research.

UNDERGRADUATE PROGRAMS

Forestry is the interdisciplinary science that studies forested ecosystems and the myriad of services they provide. Forest science professionals apply this knowledge to promote forest protection and enhancement and to resolve forest-centered environmental and natural resource issues. Understanding forests requires an integrated interdisciplinary perspective because forests affect and are affected by numerous physical, biological, sociological
The University requirements for bachelor’s degrees as described in the Undergraduate Education section of this catalog; 120 credits, including general elective credits, are required for the Bachelor of Science degree in Forestry.

The University’s Tier II writing requirement for the Forestry major is met by completing Forestry 330, 404L, 405, 406L, 414, and 462. Those courses are referenced in item 3. a. below.

Students who are enrolled in the Forestry major leading to the Bachelor of Science degree in the Department of Forestry may complete an alternative track of Integrative Studies in Biological and Physical Sciences that consists of the following courses: Plant Biology 105 and 106 combined, and Chemistry 141 and 161. The completion of Chemistry 161 and Plant Biology 106 satisfies the laboratory requirement. Plant Biology 105 and 106 combined, and Chemistry 141 and 161 may be counted toward both the alternative track and the requirements for the major referenced in item 3. below.

The completion of the College of Agriculture and Natural Resources mathematics requirement may also satisfy the University mathematics requirement.

2. The requirements of the College of Agriculture and Natural Resources for the Bachelor of Science degree.

Certain courses referenced in requirement 3. below may be counted toward College requirements as appropriate. The completion of Mathematics 124 or 132 satisfies the College’s mathematics requirement.

3. The following requirements for the major:

<table>
<thead>
<tr>
<th>COURSE</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. All of the following courses:</td>
<td>61</td>
</tr>
<tr>
<td>CEM 141 General Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>CEM 161 Chemistry Laboratory I</td>
<td>1</td>
</tr>
<tr>
<td>CSS 210 Fundamentals of Soil Science</td>
<td>3</td>
</tr>
<tr>
<td>E 201 Introduction to Microeconomics</td>
<td>3</td>
</tr>
<tr>
<td>FOR 110 Seminar on Contemporary Issues in Forests and the Environment</td>
<td>1</td>
</tr>
<tr>
<td>FOR 204 Forest Vegetation</td>
<td>3</td>
</tr>
<tr>
<td>FOR 222 Forest Field Methods</td>
<td>2</td>
</tr>
<tr>
<td>FOR 330 Human Dimensions of Forests</td>
<td>3</td>
</tr>
<tr>
<td>FOR 404 Forest Ecology</td>
<td>3</td>
</tr>
<tr>
<td>FOR 404L Forest Ecology Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>FOR 405 Forest Ecosystem Services</td>
<td>3</td>
</tr>
<tr>
<td>FOR 406 Applied Forest Ecology: Silviculture</td>
<td>3</td>
</tr>
<tr>
<td>FOR 406L Applied Forest Ecology: Silviculture Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>FOR 412 Wildland Fire</td>
<td>2</td>
</tr>
<tr>
<td>FOR 414 Renewable Wood Products</td>
<td>3</td>
</tr>
<tr>
<td>FOR 420 Forest Field Studies</td>
<td>3</td>
</tr>
<tr>
<td>FOR 462 Forest Resource Economics and Management</td>
<td>4</td>
</tr>
<tr>
<td>FOR 466 Natural Resource Policy</td>
<td>3</td>
</tr>
<tr>
<td>FOR 472 Ecological Monitoring and Data Analysis</td>
<td>3</td>
</tr>
<tr>
<td>FW 419 Applications of Geographic Information Systems to Natural Resources</td>
<td>4</td>
</tr>
<tr>
<td>PLB 105 Plant Biology</td>
<td>3</td>
</tr>
<tr>
<td>PLB 106 Plant Biology Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>PLP 407 Diseases and Insects of Forest and Shade Trees</td>
<td>4</td>
</tr>
<tr>
<td>b. One of the following courses (3 credits):</td>
<td></td>
</tr>
<tr>
<td>MTH 124 Survey of Calculus I</td>
<td>3</td>
</tr>
<tr>
<td>MTH 132 Calculus I</td>
<td>3</td>
</tr>
<tr>
<td>c. One of the following courses (3 or 4 credits):</td>
<td></td>
</tr>
<tr>
<td>STT 201 Statistical Methods</td>
<td>4</td>
</tr>
<tr>
<td>STT 224 Introduction to Probability and Statistics for Ecologists</td>
<td>3</td>
</tr>
<tr>
<td>STT 231 Statistics for Scientists</td>
<td>3</td>
</tr>
<tr>
<td>STT 421 Statistics I</td>
<td>3</td>
</tr>
<tr>
<td>d. One of the following courses (3 credits):</td>
<td></td>
</tr>
<tr>
<td>FW 410 Upland Ecosystem Management</td>
<td>3</td>
</tr>
<tr>
<td>FW 443 Restoration Ecology</td>
<td>3</td>
</tr>
<tr>
<td>FW 444 Conservation Biology</td>
<td>3</td>
</tr>
<tr>
<td>e. One of the following courses (3 credits):</td>
<td></td>
</tr>
<tr>
<td>WRA 320 Technical Writing</td>
<td>3</td>
</tr>
<tr>
<td>WRA 331 Writing in the Public Interest</td>
<td>3</td>
</tr>
<tr>
<td>WRA 341 Nature, Environmental, and Travel Writing</td>
<td>3</td>
</tr>
<tr>
<td>WRA 453 Grant and Proposal Writing</td>
<td>3</td>
</tr>
</tbody>
</table>

GRADUATE STUDY

The Department of Forestry offers Master of Science and Doctor of Philosophy degree programs in forestry, and plant breeding, genetics, and biotechnology—forestry. The department also offers a Doctor of Philosophy degree program in forestry—environmental toxicology and a Graduate Certificate in Forest Carbon Science, Policy and Management, and a Graduate Certificate in Spatial Ecology.

Students in the Master of Science degree program in forestry are eligible for the dual Juris Doctor (JD) program with Michigan State University - College of Law.

Students who are enrolled in Master of Science and Doctor of Philosophy degree programs in the Department of Forestry may elect specializations in resource economics. For additional infor-
AGRICULTURE AND NATURAL RESOURCES
Department of Forestry

For information, refer to the statement on Interdepartmental Graduate Specializations in Resource Economics.

FORESTRY

Master of Science

The Master of Science degree may be earned either in a professional program in forest management or administration or in a forestry specialty program.

The professional program in forest management or administration is viewed as an extension of general forestry, and, therefore, requires a bachelor’s degree with a major in forestry as a prerequisite or a collateral program of study in undergraduate forestry courses. There is, however, considerable flexibility in the program to meet individual student needs and objectives.

A forestry specialty program, on the other hand, is as readily open to nonforesters as to foresters. It includes some forestry courses but draws mainly from other departments in the university to provide courses appropriate to forestry specialties: forest biometrics, tree physiology, forest soils, forest recreation, forest management, forest business management, forest economics, forest influences, forest ecology, forest genetics, forest entomology, forest hydrology, and wood science and technology.

Qualified students with undergraduate degrees in forestry can usually complete the requirements for the Master of Science degree in forestry in one year. The student must meet the requirements of the university and of the College of Agriculture and Natural Resources. The student must also complete additional requirements for the program as specified by the student’s academic advisor. The student may elect either Plan A (with thesis) or Plan B (without thesis). A total of 30 credits is required for the degree under Plan A or Plan B.

Doctor of Philosophy

The Doctor of Philosophy degree program with a major in forestry is open to nonforesters as well as foresters. Forestry specialties are studied in depth.

Qualified students with undergraduate degrees in forestry can usually complete the requirements for the Doctor of Philosophy degree in forestry in six semesters. The student must meet the requirements of the university and of the College of Agriculture and Natural Resources. The student must also complete additional requirements for the program as specified by the student’s academic advisor.

Program requirements are highly variable, depending on the student’s background of study and experience. In all cases, the student must complete an acceptable dissertation incorporating the results of original research.

FORESTRY—ENVIRONMENTAL TOXICOLOGY

Doctor of Philosophy

For information about the Doctor of Philosophy degree program in forestry—environmental toxicology, refer to the statement on Doctoral Program in Environmental and Integrative Toxicological Sciences in the Graduate Education section of this catalog.

PLANT BREEDING, GENETICS and BIOTECHNOLOGY—FORESTRY

The Department of Forestry offers Master of Science and Doctor of Philosophy degree programs in plant breeding, genetics and biotechnology—forestry. Students meet the requirements for admission and the requirements for the degree as specified in the statement on Interdepartmental Graduate Programs in Plant Breeding, Genetics and Biotechnology.

Additional information about graduate study may be obtained by writing to the Department of Forestry.

GRADUATE CERTIFICATE IN FOREST CARBON SCIENCE, POLICY AND MANAGEMENT

The Graduate Certificate in Forest Carbon Science, Policy and Management provides students with interdisciplinary training necessary to plan, manage, monitor and evaluate climate change mitigation projects that seek to retain or sequester carbon in forest ecosystems. Students will gain specific expertise needed internationally to participate in market-based, climate change mitigation activities such as the United Nations Collaborative Programme on Reducing Emissions from Deforestation and Forest Degradation (REDD+). The graduate certificate is available online only.

Admission

To be considered for admission into the Graduate Certificate in Forest Carbon Science, Policy and Management, applicants must have completed a bachelor’s degree in forestry, natural resources, environmental sciences, or a related field. For additional information, refer to the Admission section in the Graduate Education section of this catalog.

Requirements for the Graduate Certificate in Forest Carbon Science, Policy and Management

Students must complete all of the following courses (12 credits):

- FOR 831 Forest Biogeochemistry and Global Climate Change 3
- FOR 833 Human Dimensions of Forest Carbon Management 3
- FOR 835 Forest Carbon Policy, Economics and Finance 3
- FOR 837 Measurement and Monitoring of Forest Carbon 3

GRADUATE CERTIFICATE IN SPATIAL ECOLOGY

The Graduate Certificate in Spatial Ecology provides interdisciplinary training necessary to develop inference about ecological phenomena using appropriate spatial theory, statistics, modeling approaches, and data management tools. Students gain the necessary skills to address tomorrow’s complex ecological challenges.

The graduate certificate is available as an elective to students who are enrolled in master’s or doctoral degree programs at Michigan State University.
The following course (4 credits):

GEO 866 Spatial Data .. 4

- One of the following courses (3 credits):
 - **FOR 870 Spatial Ecology** ... 3
 - **FW 840 Landscape Ecology** ... 3

- One of the following courses (3 or 4 credits):
 - **CSS 921 Geostatistics** ... 3
 - **FOR 870 Spatial Ecology** ... 3
 - **FW 840 Landscape Ecology** ... 3
 - **GEO 865 Advanced Quantitative Methods in Geography** 4
 - **GEO 869 Geosimulation** ... 3

Forestry 870 and Fisheries and Wildlife 840 may not be used to fulfill this requirement if used to fulfill requirement 2. above.

DEPARTMENT of HORTICULTURE

William Vance Baird, Chairperson

The Department of Horticulture at Michigan State University was established in 1883 as the first university horticulture department in the United States, and remains a leader in the field and the industry to this day. Horticulture is a complex and diversified, yet fully integrated discipline that encompasses the biological, molecular and physical sciences, business management, and the arts. Horticulturists work to improve the production of nutritious, high-quality and safe food, advance the development and use of new specialty crops, enhance human health and well-being, and positively impact the natural and built environments. As such, horticultural crops (fruits, vegetables, and landscape ornamentals) and their utilization establish the important connection between plant scientists, growers, consumers, society and the environment.

For students seeking a bachelor’s degree, we offer concentrations in horticultural science; sustainable and organic horticulture; and landscape design, construction and management. Additionally, multiple two-year certificate programs are offered both on-campus in East Lansing, as well as off-campus in Northwest, West, and Southwest Michigan. The two-year programs offer a fast track for students interested in the landscape, nursery, greenhouse, fruit, vegetable, and organic horticulture industries. All of our programs require a professional internship experience with an industry or academic employer, typically during the summer months. Our curriculum integrates theoretical, practical and hands-on experiences to help students develop problem-solving skills in science, technology, production, design and management.

Students are extensively involved in professional and social activities beyond the classroom and design studio: gaining experience in research laboratories; assisting in field-based projects (landscape, greenhouse, nursery, fruit, vegetable, and organic operations); managing the Horticulture Club’s spring show and plant sale; working with the Ecological Food and Farm Stewardship Club; and training for and participating in academic and field events associated with the Professional Landcare Network (PLANET).

Our classrooms and laboratory facilities are housed in the Plant and Soil Sciences Building but also include the nationally recognized Horticultural Demonstration Gardens, 4-H Children’s Gardens, and the Clarence E. Lewis Arboretum, in addition to the Horticulture Teaching and Research Center (HTRC). The Student Organic Farm is located at the HTRC where students gain practical, non-credit experiences and produce food for a Community Supported Agriculture program as well as MSU’s residential housing service. In addition, participants can apply to and earn a certificate of completion in our 9-month intensive Organic Farmer Training program.

UNDERGRADUATE PROGRAM

Horticulture is the science and art concerned with the culture, production, marketing, and utilization of high-value intensively cultivated plants. Horticultural crops are diverse, including annual and perennial species, food and ornamental plants, and plants grown outdoors and in controlled environments. Horticultural foods and food products, flowers, and landscapes sustain and enrich our lives. The primary horticulture discipline areas include floriculture, landscape horticulture, olériculture (vegetables), and pomology (fruits).

Graduates with a major in horticulture may enter a broad range of challenging and rewarding professional careers in production, management, marketing, education, consulting and service industries, or research. In addition, graduates frequently become entrepreneurs or obtain employment in horticultural business enterprises (e.g., commercial production operations, landscape design/build and maintenance companies, nurseries, retail flower shops, or fruit and vegetable markets). Graduates may also pursue careers in nontraditional areas that require a knowledge of horticulture such as secondary education, the publication industry, or international development.

The study of horticulture is highly integrative combining scientific and technical knowledge, and problem-solving skills for application in various professions related to horticulture. Students in horticulture combine diverse fundamental disciplines in physical science (chemistry), biological sciences (botany, genetics, plant physiology, entomology, and plant pathology), environmental science (soil science), with horticultural crop production, and business (economics, management, and marketing). Communication and computer skills are also cultivated within the horticulture curriculum. Students complete one of three concentrations: Horticultural Science, Sustainable and Organic Horticulture, or Horticulture Landscape Design, Construction, and Management. In all concentrations, students obtain hands-on experiences through laboratory exercises in the greenhouses, in the horticulture gardens, or at the farms. Field trips expose students to successful horticultural businesses, industries, and support services within Michigan. Students may gain professional work experience through internships, independent study, and part-time employment in research and extension programs within the Department of Horticulture.

Students who are enrolled in the Bachelor of Science degree program with a major in horticulture may elect a Specialization in Agricultural and Natural Resources Biotechnology. For additional information, refer to the Specialization in Agricultural and Natural Resources Biotechnology statement.

Requirements for the Bachelor of Science Degree in Horticulture

1. The University requirements for bachelor’s degrees as described in the Undergraduate Education section of this catalog; 120 credits, including general elective credits, are required for the Bachelor of Science degree in Horticulture.

 The University's Tier II writing requirement for the Horticulture major is met by completing Horticulture 404. That course is referenced in item 3. a. below.

 Students who are enrolled in the Horticulture major leading to the Bachelor of Science degree in the Department of Horticulture may complete an alternative track to Integrative Studies in Biological and Physical Sciences that consists of the following courses: Plant Biology 105 and 106 and Chemistry 141, 143, and 161. The completion of Plant Biology 106 and Chemistry 161 satisfies the laboratory requirement. Plant Biology 105 and 106 and Chemistry 141, 143, and 161 may be counted toward both the alternative track and the requirements for the major referenced in item 3. below.
AGRICULTURE AND NATURAL RESOURCES
Department of Horticulture

The requirements of the College of Agriculture and Natural Resources for the Bachelor of Science degree are as follows:

1. The completion of Mathematics 116 or its equivalent in fulfillment of the College of Agriculture and Natural Resources mathematics requirement which also may satisfy the University mathematics requirement.
2. The requirements of the College of Agriculture and Natural Resources for the Bachelor of Science degree. Certain courses referenced in requirement 3. below may be counted toward College of Agriculture and Natural Resources requirements as appropriate.
3. The following requirements for the major:

 a. All of the following courses (12 credits):

 CEM 141 General Chemistry 4
 CEM 143 Survey of Organic Chemistry 4
 CSS 161 Chemistry Laboratory I 3
 CSS 210 Fundamentals of Soil Science 3
 HRT 203 Principles of Horticulture 3
 HRT 204 Plant Propagation 2
 HRT 205 Plant Mineral Nutrition 1
 HRT 206 Training and Pruning Plants 1
 HRT 207 Horticulture Career Development 1
 HRT 361 Applied Plant Physiology 3
 HRT 362 Applied Crop Improvement 3
 HRT 404 Horticulture Management (W) 3
 HRT 493 Professional Internship in Horticulture 1
 PLB 105 Plant Biology 3
 PLB 106 Plant Biology Laboratory 2

 b. One of the following concentrations:

 Horticultural Science (33 credits):
 (1) All of the following courses (12 credits):

 ENT 404 Fundamentals of Entomology 3
 HRT 211 Landscape Plants I 3
 HRT 212 Landscape Plants II 3
 HRT 218 Irrigation Systems for Horticulture 3
 HRT 242 Passive Solar Greenhouses for Protected Cultivation 1
 CSS 350 Introduction to Plant Genetics 3
 CSS 451 Biotechnology Applications for Plant Breeding and Genetics 3
 HRT 401 Advanced Horticultural Crop Physiology 3
 HRT 403 Handling and Storage of Horticultural Crops 2
 HRT 407 Horticulture Marketing 3
 HRT 486 Biotechnology in Agriculture: Applications and Ethical Issues 3

 Sustainable and Organic Horticulture (34 credits):
 (1) All of the following courses (16 credits):

 ENT 479 Organic Pest Management (W) 3
 HRT 211 Landscape Plants I 3
 HRT 253 Compost Production and Use 1
 HRT 258 Study a Farm 1
 PLP 405 Plant Pathology 3

 Complete 3 credits from the following:

 CSS 302 Principles of Weed Management 3
 HRT 221 Greenhouse Structures and Management 3
 HRT 242 Passive Solar Greenhouses for Protected Cultivation 1
 HRT 243 Organic Transplant Production 3
 HRT 244 Culinary and Medicinal Herbs 1
 HRT 253 Compost Production and Use 2
 HRT 310 Nursery Management 3
 HRT 490 Independent Study 1 or 2 1
 HRT 491 Landscape Design and Management Specifications 4
 HRT 492 Sustainable Sites and Environmental Landscape Practices 3
 HRT 417 Natural Landscape, Native Plants, and Landscape Restoration 3

MINOR IN HORTICULTURE

The Minor in Horticulture, which is administered by the Department of Horticulture, is designed to provide an opportunity for students to gain a fundamental understanding of the science of horticulture and tailor their studies to food production, greenhouse and nursery crops, landscape design and management, or plant breeding and genetics.

The minor is available as an elective to students who are enrolled in bachelor's degree programs at Michigan State University other than the Bachelor of Science Degree in Horticulture. With the approval of the department and college that administers the student's degree program, the courses that are used to satisfy the minor may also be used to satisfy the requirements for the bachelor's degree. At least 12 unique credits counted towards the requirements for a student's minor must not be used to fulfill the requirements for that student's major.

Students who plan to complete the requirements for the minor should consult an undergraduate adviser in Horticulture.

Requirements for the Minor in Horticulture

Complete 17 credits from the following:

1. Both of the following courses (5 credits):
 HRT 203 Principles of Horticulture 3
 HRT 204 Plant Propagation 2

2. Complete 12 credits from the following:
 HRT 205 Plant Mineral Nutrition 1
 HRT 206 Training and Pruning Plants 1
 HRT 211 Landscape Plants I 3
 HRT 212 Landscape Plants II 3
 HRT 213 Landscape Maintenance 2
 HRT 218 Irrigation Systems for Horticulture 1
 HRT 219 Landscape Computer Aided Design 2
 HRT 220 Annual and Aquatic Landscape Plants 3
 HRT 310 Nursery Management 3
 HRT 323 Floriculture Production: Heraceous Perennials and Annuals 3
 HRT 401 Advanced Horticultural Crop Physiology 3
 HRT 407 Horticulture Marketing 3
 HRT 415 Natural Landscapes, Native Plants, and Landscape Restoration 3
 HRT 460 Green Roofs and Walls 1

CREDITS

3
3
3
3
3
3
3
3
3
3
MINOR IN PLANT, ANIMAL AND MICROBIAL BIOTECHNOLOGY

The Minor in Plant, Animal and Microbial Biotechnology is available as an elective to students who are enrolled in Bachelor of Science degree programs with majors in animal science, biosystems engineering, fisheries and wildlife, food science, forestry, horticulture, and plant, soil and microbial sciences. The minor is administered by the Department of Horticulture.

The minor provides the opportunity for students who are enrolled in biological science-related undergraduate programs to become familiar with the concepts, techniques, and issues related to modern biotechnology. The minor is designed for students who may be planning to pursue graduate study in biotechnology-related disciplines or who may be interested in careers with corporations or agencies for which a basic familiarity with biotechnology is a prerequisite.

With the approval of the department and college that administer the student’s degree program, courses that are used to satisfy the requirements for the minor may also be used to satisfy the requirements for the bachelor’s degree.

Requirements for the Minor in Plant, Animal and Microbial Biotechnology

The student must complete:

1. All of the following courses (8 credits):
 - BMB 401 Comprehensive Biochemistry ... 4
 - HRT 486 Biotechnology in Agriculture: Applications and Ethical Issues ... 3

2. One of the following courses (3 credits):
 - ANS 314 Genetic Improvement of Domestic Animals 4
 - CSS 350 Introduction to Plant Genetics .. 3
 - ZOL 341 Fundamental Genetics .. 4

3. One of the following courses (3 credits):
 - ANS 425 Animal Biotechnology .. 3
 - BE 360 Microbial Systems Engineering 3
 - CSS 451 Biotechnology Applications for Plant Breeding and Genetics ... 3
 - MMG 445 Microbial Biotechnology (W) 3

4. One of the following courses (1 credit):
 - ANS 490 Independent Study .. 1
 - BE 490 Independent Study ... 1
 - CSS 490 Independent Study ... 1
 - HRT 492 Undergraduate Research ... 1

AGRICULTURE AND NATURAL RESOURCES
Department of Horticulture

GRADUATE STUDY

The Department of Horticulture offers graduate study leading to the Doctor of Philosophy and Master of Science degrees in horticulture, plant breeding, and genetics and biotechnology - horticulture. Faculty members in the Department of Horticulture possess an array of interdisciplinary plant science expertise ranging from breeding, genetics, genomics, molecular biology, bioinformatics, and biochemistry, to developmental/environmental/reproductive physiology, sustainable and organic cropping systems, and marketing of horticultural/specialty crops. These integrated approaches foster new discoveries in the plant sciences and technological innovations in the sustainable production of food, floral, and landscape crops. Faculty and graduate students engage in scholarly research, teaching, and outreach programs that are recognized nationally and internationally by our peer institutions and horticultural industries. Numerous fellowships and grant-funded assistantships are available on a career interest and competitive basis. Contact faculty members directly to explore the potential to earn an advanced degree working in their research and outreach programs.

Students who are enrolled in Master of Science degree programs in the Department of Horticulture may elect a Specialization in Food Safety. For additional information, refer to the statement on the specialization in the College of Veterinary Medicine section of this catalog.

HORTICULTURE

Master of Science

In addition to meeting the requirements of the university and of the College of Agriculture and Natural Resources, students must meet the requirements specified below.

Admission

Students must have completed a Bachelor of Science degree or its equivalent in a plant related field, a basic course in horticulture, 15 credits in plant or soil sciences including plant physiology, and one course each in trigonometry, physics, and organic chemistry. Exceptions must be approved by the departmental Graduate Affairs Committee. Applicants lacking the necessary undergraduate background will be required to complete either collateral courses in addition to the requirements for the master's degree or a second Bachelor of Science degree with a major acceptable to the department.

Requirements for the Master of Science Degree in Horticulture

The student may elect either Plan A (with thesis) or Plan B (without thesis). A total of 30 credits is required for the degree under Plan A or Plan B.

The program of study for the Master of Science degree will include courses from departments other than the Department of Horticulture, but it should include at least 3 credits in the 800 series in horticulture in addition to research. For Plan A, at least 6 but not more than 10 credits of master's thesis research (Horticulture 899) is required. For Plan B, at least 2 but not more than 5 credits of research (Horticulture 898) is required. All programs of study are subject to departmental review.

A final oral examination on courses and research pursued during the program will be scheduled at the end of the student's final semester of enrollment.

Doctor of Philosophy

In addition to meeting the requirements of the university and of the College of Agriculture and Natural Resources, students must meet the requirements specified below.

Requirements for the Doctor of Philosophy Degree in Horticulture

An oral qualifying examination may be conducted by the guidance committee shortly after the student begins advanced graduate study to determine his or her qualifications and to provide a basis for developing the program of study.

At least 6 credits in the 800 series in horticulture are recommended. Three of the six credits may have been completed as part of master's degree requirements.
PLANT BREEDING, GENETICS and BIOTECHNOLOGY—HORTICULTURE

The Department of Horticulture offers Master of Science and Doctor of Philosophy degree programs in plant breeding, genetics and biotechnology—horticulture. Students meet the requirements for admission and the requirements both for Horticulture, as specified above, and for Plant Breeding, Genetics and Biotechnology, as specified in the statement on Interdepartmental Graduate Programs in Plant Breeding, Genetics and Biotechnology.

SCHOOL of PACKAGING

Susan E. Selke, Director

UNDERGRADUATE PROGRAMS

The School of Packaging offers a program of instruction leading to the Bachelor of Science degree. The program combines basic principles of physics, chemistry, mathematics, and materials science with a cognate in business to prepare students for rewarding careers in the manufactured products industries. Career opportunities are plentiful since some form of packaging is involved in the production and movement to market of nearly every item of consumption in today’s economy. In addition to careers in companies that use packaging, attractive opportunities are also available in the package supply industries. Package supplier industries include companies that print and convert paper and flexible plastic materials as well as manufacturers of such diverse items as bottles, cans, folding cartons, corrugated boxes, drums, wooden containers, pallets, pails, tubes, vials, and jars. Packaging impacts most functions in manufacturing firms so graduates may work in package development, production, quality control, research, sales, purchasing, marketing, testing, distribution, or technical services.

In its flexibility, the program allows students to leverage their personal skills and interests and to make individualized choices. Elective courses provide for broad, general preparation or for focused study in food packaging, medical packaging, pharmaceutical packaging, automotive packaging, distribution, robotics, and other areas.

Admission as a Junior

Enrollments in the School of Packaging are limited. To be considered for admission to the major, the student must have:
1. Completed at least 56 credits.
2. Completed the following courses with a minimum grade of 2.0 in each course:
 a. Chemistry 141.
 b. Mathematics 124 or 133.
 c. Physics 231.

The student’s cumulative grade–point average for all courses completed is considered in the admission decision. Factors such as work experience, personal experience, and diversity may also be considered.

For additional information about admissions criteria and procedures, students should contact the School of Packaging.

Requirements for the Bachelor of Science Degree in Packaging

1. The University requirements for bachelor’s degrees as described in the Undergraduate Education section of this catalog; 120 credits, including general elective credits, are required for the Bachelor of Science degree in Packaging.

2. The University’s Tier II writing requirement for the Packaging major is met by completing Packaging 490 and 492. Up to three credits in a packaging course may be counted toward both the alternative track and the requirements for the major referenced in item 3. below.

3. The completion of the College of Agriculture and Natural Resources mathematics requirement may also satisfy the University mathematics requirement.

4. The requirements of the College of Agriculture and Natural Resources for the Bachelor of Science degree.

Certain courses referenced in requirement 3. below may be counted toward College requirements as appropriate.

5. The following requirements for the major:

 a. All of the following courses:.. 57
 ACC 230 Survey of Accounting Concepts.......................... 3
 CEM 141 General Chemistry.. 4
 CEM 143 Survey of Organic Chemistry............................. 4
 CEM 161 Chemistry Laboratory I.. 1
 MTH 132 Calculus I... 3
 MTH 133 Calculus II... 4
 PKG 101 Principles of Packaging.. 3
 PKG 221 Packaging with Glass and Metal......................... 3
 PKG 315 Packaging Decision Systems (W)......................... 3
 PKG 322 Packaging with Paper and Paperboard................ 4
 PKG 323 Packaging with Plastics...................................... 4
 PKG 410 Distribution Packaging Dynamics........................ 3
 PKG 411 Package Development Technology....................... 3
 PKG 432 Packaging Processes.. 3
 PKG 485 Packaging Development (W)................................. 4
 PHY 231 Introductory Physics I... 3
 PHY 232 Introductory Physics II....................................... 3

 b. One of the following courses:... 3
 BS 161 Cell and Molecular Biology.................................. 3
 FSC 342 Food Safety and Hazard Analysis Critical Control Point Program... 3
 MMG 201 Fundamentals of Microbiology............................ 3

 c. One of the following courses:... 3 or 4
 STT 200 Statistical Methods.. 3
 STT 201 Statistical Methods.. 4
 STT 315 Introduction to Probability and Statistics for Business... 3

 d. Three of the following courses:.. 9
 ADV 205 Principles of Advertising................................... 1
 FI 320 Introduction to Finance.. 3
 GBL 323 Introduction to Business Law.............................. 3
 GMB 325 Management Skills and Process......................... 3
 MKT 327 Introduction to Marketing.................................. 3
 SCM 303 Introduction to Supply Chain Management............ 3

 e. Nine additional credits in Packaging courses excluding
 Packaging 490 and 492. Up to three credits in a packaging
 internship completed under Packaging 493 and up to 3 credits
 in a packaging overseas study program completed under
 Packaging 491 may be counted toward this requirement. 6

GRADUATE STUDY

The School of Packaging offers graduate programs leading to the degrees of Master of Science and Doctor of Philosophy in packaging. Facilities and instrumentation are available for advanced study and research in the following areas: product and/or package damage in the physical distribution environment, barrier characteristics of packaging systems and materials, quality preservation and storage stability of packaged products, and mechanical properties of packaging materials and systems. Other areas of study include medical packaging, automatic identification, logistics, environmental impact and recycling of packaging materials, human factors in packaging, and packaging systems development and optimization. Programs of study and research are flexible and are designed to meet the needs of individual students.

Students who are enrolled in Master of Science degree programs in the School of Packaging may elect a Graduate Special-
ization in Food Safety. For additional information, refer to the statement on the specialization in the College of Veterinary Medicine section of this catalog.

Master of Science

Emphasis is placed upon a broad education in packaging that includes an area of study referenced above. Student participation in seminars and in the teaching program, where appropriate, is designed to broaden the student’s background for future career activities.

In addition to meeting the requirements of the university and of the College of Agriculture and Natural Resources, students must meet the requirements specified below.

Admission

Entering graduate students are expected to have a bachelor’s degree in packaging or a related undergraduate field. Students lacking the equivalent of a bachelor’s degree in packaging may be admitted provisionally and be required to complete collateral courses to make up any deficiencies. These collateral courses will not count toward degree requirements.

Requirements for the Master of Science Degree in Packaging

The master’s degree program in packaging is available under either Plan A (with thesis) or Plan B (without thesis). A total of 30 credits is required for the degree under Plan A or Plan B. The student’s program of study must be approved by either the student’s guidance committee (Plan A) or the student’s major professor (Plan B).

Requirements for Both Plan A and Plan B

The student must:
1. Complete 15 credits in Packaging courses at the 400-level or above. More than half of the 30 credits required for the degree must be at the 800-level or above.
2. Demonstrate an understanding of basic statistics.

Additional Requirements for Plan A

1. Packaging 827.
2. Packaging 805 or 815.
3. An additional 3 credits in 800-900 level Packaging courses excluding Packaging 888, 890, and 899.
4. At least six, but not more than eight, credits of Packaging 899.

Additional Requirements for Plan B

1. Packaging 805, 815, and 827.
2. An additional 6 credits in 800-900 level Packaging courses excluding Packaging 888, 890, and 899.

Doctor of Philosophy

In addition to meeting the requirements of the university and of the College of Agriculture and Natural Resources, the student must meet the requirements specified below.

Admission

To be considered for admission to the Doctor of Philosophy degree program in packaging, an applicant must submit scores on the Graduate Record Examination (GRE) General Test.

To be admitted to the Doctor of Philosophy degree program in packaging on regular status, a student must have:

1. Completed a master’s degree program in packaging, or in a related science or engineering area, for which a thesis was required.
2. A grade-point average of at least 3.40 for the master’s degree program.
3. Acceptable scores on the GRE General Test.

Provisional admission may be granted to an applicant who does not meet the above requirements but shows outstanding potential.

Guidance Committee

At least three members of the student’s guidance committee must be faculty members in the School of Packaging, and at least one member must be a faculty member from outside the school.

Requirements for the Doctor of Philosophy Degree in Packaging

The student must:

1. Complete both of the following courses:
 PKG 885 Analytical Solutions to Packaging Design 3
 PKG 992 Packaging Seminar ... 2
2. Complete additional 800–900 level courses related to the student’s dissertation research as specified by the student’s guidance committee.
3. Pass both a written and an oral comprehensive examination.
4. Complete a dissertation in one of the following areas of packaging: material science applications in packaging, food packaging, mass transport applications, or the dynamics and physical distribution aspects of packaging.

SCHOOL of PLANNING, DESIGN and CONSTRUCTION

Scott G. Witter, Director

The School of Planning, Design, and Construction is jointly administered by the College of Agriculture and Natural Resources and the College of Social Science. The College of Agriculture and Natural Resources is the primary administrative unit. The school includes the academic programs that affect the various components of the built environment – construction management, landscape architecture, interior design, and urban and regional planning. Its educational discovery and engagement programs enhance the quality of life in a sustainable manner. The school serves the needs of students, the public, and the built environment via its undergraduate and graduate programs, research, conferences, and workshops offered through various outreach programs.

The school and its programs advance the university’s boldy by design mission by creating, disseminating and applying knowledge to improve the quality of life in urban, regional and international communities. It accomplishes this mission, in part, by implementing, evaluating and disseminating innovative approaches developed through multidisciplinary research and collaborative community partnerships. The school provides a collaborative learning environment for faculty and students at Michigan State University to participate in a scholarship of engagement in generating and applying knowledge to address the contemporary challenges of communities.

The school also offers a dual degree program which provides an opportunity for students who are currently accepted into the Bachelor of Landscape Architecture program to enroll in graduate
courses required in the Master of Arts Degree in Environmental Design while completing the last year and a half (three semesters) of their bachelor’s degree program. Students interested in pursuing the dual degree of Bachelor of Landscape Architecture in Landscape Architecture and the Master of Arts in Environmental Design should contact the School of Planning, Design and Construction. Students are eligible to apply for admission to the dual degree program after completion of the first two years of curriculum requirements in the Bachelor of Landscape Architecture in Landscape Architecture.

UNDERGRADUATE PROGRAMS

The School of Planning, Design, and Construction exists to educate individuals for professional careers in areas impacting the built environment, spanning the life of a constructed edifice or entity, from planning, to design, and construction management. The school offers Bachelor of Science, Bachelor of Arts and Bachelor of Landscape Architecture degree programs. Individuals meeting the general University requirements for admission shown in the Undergraduate Education section of this catalog are enrolled in the Undergraduate University Division but may declare a major preference in the School of Planning, Design, and Construction. Refer to the specific degree program for further details regarding junior-level admission requirements and program curriculum.

The school offers programs leading to bachelor’s degrees in the following fields:

- Construction Management
- Interior Design
- Landscape Architecture
- Urban and Regional Planning

The Bachelor of Science degree program with a major in urban and regional planning is offered through the College of Social Science. For information about this program, refer to the statement on the School of Planning, Design, and Construction in the College of Social Science section of this catalog.

CONSTRUCTION MANAGEMENT

The program is designed to provide a student with a background in managerial, technological, economic, social, political, and environmental aspects of residential and commercial construction. A systems approach is used and includes project management, construction science, land acquisition and development, real estate, finance, management, and marketing. Career opportunities include supervisory and managerial employment within commercial and residential contracting, land development, and real estate organizations; material distribution systems; financial institutions; and governmental agencies.

Admission as a Junior

Construction management builds upon a basic understanding of mathematics, physics, statistics, and economics to develop the skills necessary to manage construction projects. Prior to enrollment in the major, students must have demonstrated this basic understanding by a minimum performance in the courses listed and a minimum overall grade point average.

Enrollment in the construction management major is limited. Those seeking admission must at least meet the criteria listed below.

1. Completion of at least 56 credits with a cumulative University grade-point average of at least 2.3.
2. Completion of the following courses with a minimum grade-point average of 2.0:
 a. MTH 214 Survey of Calculus I 3

Requirements for the Bachelor of Science Degree in Construction Management

1. The University requirements for bachelor’s degrees as described in the Undergraduate Education section of this catalog: 120 credits, including general elective credits, are required for the Bachelor of Science degree in Construction Management.

The University’s Tier II writing requirement for the Construction Management major is met by completing Construction Management 385 or 435 or 436. Those courses are referenced in item 3. b. below.

Students who are enrolled in the Construction Management major leading to the Bachelor of Science degree may complete an alternative track to Integrative Studies in Biological and Physical Sciences that consists of Physics 231 and 251 and one of the following choices: Biological Science 161 and 171 or Biological Science 162 and 172 or Plant Biology 105 and 106 or Microbiology and Molecular Genetics 205 and 206. The completion of Physics 251 and Biological Science 171 or 172 or Plant Biology 106 or Microbiology and Molecular Genetics 206 satisfies the laboratory requirement. With advisor approval, for this laboratory requirement, Biological Science 171 or 172, Plant Biology 106 and Microbiology and Molecular Genetics 206 may be waived if the student completes another chemistry laboratory course or a physics laboratory course beyond Physics 251.

2. The requirements of the College of Agriculture and Natural Resources mathematics requirement may also satisfy the University mathematics requirement.

3. The following requirements for the major:

 a. All of the following courses: ... 64

 ACC 230 Survey of Accounting Concepts 3
 CMP 101 Principles of Building Construction Management 2
 CMP 124 Residential Construction Materials and Methods 3
 CMP 210 Commercial Construction Methods 3
 CMP 211 Building Codes .. 3
 CMP 230 Utility Systems ... 4
 CMP 305 Site Construction and Measurement 3
 CMP 311 Construction Quantity Surveying 3
 CMP 322 Structural Systems .. 3
 CMP 325 Real Estate Principles and Construction Finance 4
 CMP 328 Construction Presentation Graphics and Building Information Modeling .. 2
 CMP 385 Construction Documents and Contracts (W) 3
 CMP 401 Construction Safety Management 3
 CMP 415 Cost Estimating and Analysis 3
 CMP 423 Construction Project Management 3
 COM 100 Human Communication .. 3
 CSE 101 Computing Concepts and Competencies 3
 GBL 323 Introduction to Business Law 3
In addition, transfer students must have previous design work evaluated by the department prior to placements in required courses.

Selective admissions are made at the end of spring semester for Michigan State University and transfer students from those students who have met the criteria referenced above and who have completed Interior Design 252. The final selection of students to be admitted to the major is based on the cumulative grade–point average of all courses taken and a grade–point average calculated for selected courses. In addition, factors such as diversity and residency may be considered.

Requirements for the Bachelor of Arts Degree in Interior Design

1. The University requirements for bachelor’s degrees as described in the Undergraduate Education section of this catalog; 120 credits, including general elective credits, are required for the Bachelor of Arts degree in Interior Design.

The University’s Tier II writing requirement for the Interior Design major is met by completing Interior Design 340, 440, 442, and 452. Those courses are referenced in Item 3.a. below.

The completion of the College of Agriculture and Natural Resources’ mathematics requirement may also satisfy the University’s mathematics requirement.

2. The completion of the requirements of the College of Agriculture and Natural Resources for the Bachelor of Arts degree.

3. The following requirements for the major:

 CREDITS
 a. All of the following courses in the School of Planning, Design and Construction: 62
 HED 231 Textile Materials 4
 IDES 140 Design for Living 3
 IDES 142 Design Theory Studio 3
 IDES 150 Interior Design Drafting 3
 IDES 152 Interior Environments 4
 IDES 240 Computer–Aided Design for Designers 3
 IDES 250 CAD and Structural Systems 3
 IDES 252 Interior Design Synthesis I 4
 IDES 340 Interior Design Specifications and Workroom Practice .. 3
 IDES 342 Interior Design: Human Dimensions 3
 IDES 343 Interior Design Presentation and Media 3
 IDES 344 History of Interior Design: Ancient Through Rococo .. 3
 IDES 350 Interior Design Lighting and Environmental Systems .. 3
 IDES 352 Interior Design Synthesis II 4
 IDES 354 History of Interior Design: Neo–Classical Through Modern ... 3
 IDES 393 Introduction to Professional Practice 1
 IDES 441 Interior Design Open Office Systems 1
 IDES 442 Interior Design Programming 3
 IDES 451 Interior Design Professional Practice 2
 IDES 452 Interior Design Synthesis III 4
 b. The following course: .. 3
 CSE 101 Computing Concepts and Competencies 3
 Students who pass a waiver examination will not be required to complete Computer Science and Engineering 101.
 c. One of the following courses: 5
 MTH 110 Finite Mathematics and Elements of College Algebra .. 5
 MTH 116 College Algebra and Trigonometry 6
 d. One of the following courses: 3
 EC 201 Introduction to Microeconomics 3
 EC 202 Introduction to Macroeconomics 3
 e. Any two of the following History of Art courses (6 to 8 credits): .. 4
 HA 120 Perspectives on World Art: What is Art? 4
 HA 209 Ancient Art .. 3
 HA 210 Medieval Art .. 3
 HA 220 Renaissance Art ... 3
 HA 232 Baroque and Rococo Art 3
 HA 250 American Art .. 3

INTERIOR DESIGN

This major provides academic preparation designed to enable the graduate to enter the profession of interior design. The program has been accredited by the Foundation for Interior Design Education Research (F.I.D.E.R.).

Emphasis is placed on learning the means of satisfying functional and aesthetic requirements appropriate for a variety of specific interior spatial uses. Consideration is given to the human being and the micro–environment in the total complex of environmental relationships. The combination of courses and experiences provides students an opportunity to develop knowledge, skills, and insights needed to solve design problems creatively and effectively.

Students meeting the university admissions requirements are enrolled as freshmen and sophomores in the Undergraduate University Division but may declare a major preference for Interior Design.

Admission as a Junior

The number of students admitted as juniors to the major in interior design is limited. To be considered for admission, a student must have:

1. An all–university grade–point average of 2.50 or better.
2. A grade–point average of 3.00 or better in selected interior design courses.

LANDSCAPE ARCHITECTURE

The undergraduate Bachelor of Landscape Architecture program provides a diverse learning experience which strives for a balance among philosophy, theory, and application of concepts related to past, present, and future problem–solving in landscape architecture and allied environmental planning and design professions.

The program includes professional courses in design theory and graphic communications, environmental perception, history,
and plant materials and their uses; technical aspects of site development, design applications for representative land uses; site planning for typical projects; community planning, housing and recreational development; and urban and regional design and planning.

The program offers meaningful design opportunities and challenges within the classroom and on community projects, which prepare the student to communicate through writing, speech and graphics. These objectives are met in group and in individual assignments where independent study and growth are encouraged.

The program in landscape architecture at Michigan State University has been accredited by the Landscape Architecture Accreditation Board (LAAB) since 1952.

Honors Study

Students interested in honors programs in landscape architecture should consult with an academic advisor.

Admission as a Junior

The number of students who can be admitted as juniors to the landscape architecture major is limited. To be considered for admission as a junior, a student must have completed the core courses referenced in item 2.b. Students who have been admitted as juniors are entitled to enroll in upper-level landscape architecture courses required for the Bachelor of Landscape Architecture degree.

To be admitted to the Bachelor of Landscape Architecture program, the following factors will be taken into consideration: (1) overall MSU grade-point average; (2) grade-point average in all landscape architecture courses; (3) evidence of creative works and service; and (4) a written essay.

Admissions are determined by the faculty on the basis of the relative qualifications of applicants and the enrollment capacity in the program. Admission is competitive.

Detailed information regarding admission requirements and procedures is available from the School of Planning, Design and Construction, Associate Director.

Requirements for the Bachelor of Landscape Architecture Degree in Landscape Architecture

1. The University requirements for bachelor’s degrees as described in the Undergraduate Education section of this catalog: 130 credits, including general elective credits, are required for the Bachelor of Landscape Architecture degree in Landscape Architecture.

Students who are enrolled in the Landscape Architecture major leading to the Bachelor of Landscape Architecture degree in the School of Planning, Design and Construction may complete an alternative track to Integrative Studies in Biological and Physical Sciences that consists of the following courses: Plant Biology 105 and 106, and Chemistry 141 and 161. The completion of Plant Biology 106 and Chemistry 161 satisfies the laboratory requirement. Plant Biology 105 and 106, and Chemistry 141 and 161 may be counted toward both the alternative track and the requirements for the major referenced in item 2.b.

The completion of Mathematics 116 referenced in requirement 2.b. below may also satisfy the University mathematics requirement.

The University’s Tier II writing requirement for the Landscape Architecture major is met by completing Landscape Architecture 480. That course is referenced in item 2.c. below.

2. The following requirements for the major:

 a. A minimum grade-point average of 2.00 in the 42 credits required in 300–400 level Landscape Architecture courses referenced in requirement 2.c. below.
 b. Collateral Courses: \[
 \text{CREDITS} \]

 \[
 \begin{align*}
 \text{CEM} & \quad 141 \quad \text{General Chemistry} & \quad 4 \\
 \text{CEM} & \quad 151 \quad \text{Chemistry Laboratory} \quad 1 \\
 \text{HRT} & \quad 211 \quad \text{Landscape Plants I} & \quad 3 \\
 \text{HRT} & \quad 212 \quad \text{Landscape Plants II} & \quad 3 \\
 \text{HRT} & \quad 311 \quad \text{Landscape Design and Management} & \quad 3 \\
 \text{ISS} & \quad 310 \quad \text{People and the Environment} & \quad 4 \\
 \text{MTH} & \quad 116 \quad \text{College Algebra and Trigonometry} & \quad 5 \\
 \text{PDC} & \quad 120 \quad \text{Planning and Design Digital Graphics} & \quad 2 \\
 \end{align*}
 \]
 \[
 \text{(1)} \text{ All of the following courses (33 credits):} \]

36

(2) Students must demonstrate AutoCAD proficiency through transfer credit, waiver or completion of the following course (0 to 3 credits):

<table>
<thead>
<tr>
<th>PLB 105 Plant Biology</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLB 106 Plant Biology Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>UP 424 Geographic Information Systems and Design Tools for Planning</td>
<td>3</td>
</tr>
</tbody>
</table>

(3) All of the following courses (33 credits):

LA 110 Graphics and Two-Dimensional Design Studio	4
LA 141 Graphics and Three-Dimensional Design Studio	4
LA 200 Introduction to Landscape Architecture	3
LA 230 Site Construction Materials and Methods	4
LA 231 Landscape Site Engineering	4
LA 242 Creating Space Studio	4
LA 243 Place Making Studio	4
LA 332 Advanced Landscape Site Engineering	4
LA 344 Connections of Scale Studio	5
LA 345 Design Development Studio	5
LA 390 Landscape Architecture Field Studies	3
LA 421 Drawing as Knowing	4
LA 447 Juried Design Studio	3
LA 448 Regional Environmental Design Studio	2
LA 449 Landscape Architecture Design Studio	3
LA 480 Professional Practice (W)	3

(4) One of the following courses:

| EC 201 Introduction to Microeconomics | 3 |
| EC 202 Introduction to Macroeconomics | 3 |

(5) Directed Electives: 14

A minimum of 14 additional credits in courses approved by the student’s academic advisor. Courses that are used to satisfy the University Integrative Studies and writing requirements may not be used to satisfy this requirement. Courses used to satisfy the AutoCAD proficiency requirement referenced in item 2.b. (2) above may not be used to satisfy this requirement.

1. Core course that must be completed in order for a student to be considered for admission to the major.

School of Planning, Design and Construction Dual Degree Program: Bachelor of Landscape Architecture in Landscape Architecture and Master of Arts in Environmental Design

The dual degree program provides an opportunity for students who are currently accepted into the Bachelor of Landscape Architecture program to enroll in graduate courses required in the Master of Arts Degree in Environmental Design while completing the last year and a half (three semesters) of their bachelor’s degree program.

Students interested in pursuing the dual degree of Bachelor of Landscape Architecture in Landscape Architecture and the Master of Arts in Environmental Design should contact the School of Planning, Design and Construction, Associate Director.

Students are eligible to apply for admission to the dual degree program after completion of the first two years of curriculum requirements in the Bachelor of Landscape Architecture and the Master of Arts in Environmental Design must be approved before beginning graduate-level course work in the fourth year of the bachelor’s degree program. Upon completion of the requirements for both the Bachelor of Landscape Architecture degree and the Master of Arts degree, both degrees are awarded simultaneously. The Master of Arts degree will not be awarded until the student has completed the requirements for the Bachelor of Landscape Architecture degree.

To be admitted to the dual degree program, the following factors will be taken into consideration:

1. Overall MSU grade-point average.
2. Grade-point average in all landscape architecture courses.
3. Evidence of creative works and service.
4. A written essay.

Admission is competitive and enrollment is limited for each entering class. Students who are not selected for admission into the dual degree program will be advised of other degree options. Stu-
GRADUATE STUDY

Graduate study may lead to a Master of Arts, Master of Science, Master of Urban and Regional Planning or Doctor of Philosophy degree. The School has expertise and facilities available for advanced study and research in the following areas: Construction Management, Environmental Design, Planning, Design and Construction, and Urban and Regional Planning. The School offers programs leading to graduate degrees in the following fields:

Master of Arts
- Environmental Design

Master of Science
- Construction Management

Master of International Planning Studies
- International Planning Studies

Master of Urban and Regional Planning
- Urban and Regional Planning

Doctor of Philosophy
- Planning, Design and Construction

The Master of International Planning Studies degree program with a major in international planning studies and the Master of Urban and Regional Planning degree program with a major in urban and regional planning are offered through the College of Social Science. For information about those programs, refer to the statement on the School of Planning, Design, and Construction in the College of Social Science section of this catalog.

CONSTRUCTION MANAGEMENT

The Master of Science degree program with a major in construction management is designed to provide breadth in the managerial, technological, economic, and environmental aspects of construction. The program is also designed to provide depth through a systems approach encompassing project management, estimating, scheduling and project controls, land acquisition and development, architectural and engineering design, construction technology, real estate, finance, business management, and marketing.

The master’s program in construction management is available under either Plan A (with thesis) or Plan B (without thesis). Students who anticipate careers in teaching, consulting, or research, or who plan to pursue a doctoral program, are encouraged to select Plan A. After the student’s academic advisor has approved the student’s program of study under Plan A, the student may not pursue the program under Plan B without the approval of the school.

Students who are enrolled in the master’s program in construction management often take courses in business management, labor and industrial relations, civil engineering, human environment and design, resource development, urban planning, statistics, or education, in addition to courses in the major. Students may work directly with one or more faculty members on an independent basis to cover material that is not available through regular courses.

Master of Science

In addition to meeting the requirements of the university and of the College of Agriculture and Natural Resources, students must meet the requirements specified below.

Admission

To be considered for admission to the master’s degree program in construction management, an applicant must take the Graduate Record Examination General Test and have the scores submitted to the department.

To be admitted to the program on regular status, an applicant must:

1. Have a Bachelor of Science degree in construction management or in a related area such as architecture, business, design, engineering, management, or urban planning.
2. Have a cumulative grade–point average of at least 3.0 (on a 4.00 scale) for the undergraduate program.
3. Have experience in the construction industry acceptable to the department.
4. Have completed as part of the undergraduate program 3 semester credits of introductory calculus (MTH 124 Survey of Calculus I or its equivalent); 3 semester credits of introductory physics (PHY 231 Introductory Physics I or its equivalent).

Applicants who have not completed the credits referenced in item 4. above may be admitted on provisional status. In addition, students may be required to complete specified collateral courses, from the following list, with a grade-point average of at least 3.00. These courses will not count toward the degree. The guidance committee will determine which courses are required as collateral courses for each applicant.

One of the following courses:
- CMP 124 Residential Construction Materials and Methods
- CMP 210 Commercial Construction Methods

One of the following courses:
- CMP 305 Site Construction and Measurements
- CMP 315 Construction Quantity Surveying

One or more of the following courses:
- CMP 222 Statics and Strengths of Materials
- CMP 322 Structural Systems
- CSE 101 Computing Concepts and Competencies

Business, management or economics course

Requirements for the Master of Science Degree in Construction Management

The student must complete a total of 30 credits for the degree under Plan A (with thesis) or 33 credits for the degree under Plan B (without thesis). For students who elect independent study courses, including Construction Management 890, no more than 6 credits under Plan A and 9 credits under Plan B may be counted toward the requirements for the degree. The student’s program of study must be approved by the student’s academic advisor and must meet the requirements specified below.

CREDITS

Requirements for Plan A

1. A minimum of 18 credits in 800–900 level courses.
2. All of the following courses:
 - CMP 817 Construction Management Information Systems 3
 - CMP 822 Legal Issues in Construction .. 3
 - CMP 892 Construction Management Research Seminar 2
3. One additional 800-level Construction Management courses, excluding Construction Management 890. 898, and 899. Students without a background in construction project scheduling and estimating must complete
AGRICULTURE AND NATURAL RESOURCES
School of Planning, Design and Construction

Construction Management 811 and 815 in partial fulfillment of this requirement.
4. One graduate course in research methods.
5. One 400-level course or above in statistics.

Additional Requirements for Plan A
1. Complete 6 credits of Construction Management 899. No more than 6 credits may be counted toward the requirements for the degree under Plan A.
2. Complete and defend a master’s thesis acceptable to the student’s guidance committee.

Requirements for Plan B
1. A minimum of 24 credits in 800-900 level courses.
2. All of the following courses:
 - CMP 817 Construction Management Information Systems 3
 - CMP 822 Legal Issues in Construction .. 3
 - CMP 852 Construction Management Research Seminar 2
3. One additional 800-level Construction Management course, excluding Construction Management 890, 898, and 899. Students without a background in construction project scheduling and estimating must complete Construction Management 811 and 815 in partial fulfillment of this requirement.
4. One 400-level course or above in statistics.

Additional Requirements for Plan B
1. Successful completion of a final examination given by the guidance committee.

Transfer Credits
No more than 9 semester credits of graduate course work (excluding research and thesis credits) may be transferred from other recognized educational institutions.

ENVIRONMENTAL DESIGN

Master of Arts
The College of Agriculture and Natural Resources in cooperation with the Landscape Architecture program and the Interior Design program in the School of Planning, Design and Construction and the Departments of Horticulture and Community, Agriculture, Recreation and Resource Studies participate in the Master of Arts degree in Environmental Design. The College of Agriculture and Natural Resources is the primary administrative unit.

The purpose of this master’s degree is to train prospective or practicing professionals to address the complex interdisciplinary nature of environmental design. Students will develop a highly individualized plan of study with a focus in a relevant design area such as golf course architecture, landscape reclamation, visual quality modeling, landscape restoration, interiorscapes, wellness/therapeutic garden design, landscape development systems, plant management systems, adaptive reuse of facilities for tourism and recreation, park safety design and development, and park and tourism development and design within ecological systems.

The Master of Arts Degree in Environmental Design addresses four areas of professional development. These include:
1. acquisition of in-depth knowledge in the area of environmental design theory;
2. development of problem-solving skills within an interdisciplinary professional context;
3. development of technological expertise and a knowledge base in a selected area of environmental design; and
4. a greater command of graphic, written, and oral communication skills.

All students will take a core of three courses in environmental design (theory, seminar, and studio), in addition to either a Plan A (with thesis) or Plan B (without thesis). Students will elect relevant courses in fields which pertain to their design area of interest.

The program is planned to provide an alternative to traditional professional degrees by addressing the needs of students with undergraduate design backgrounds who wish to work in an interdisciplinary setting while pursuing an area of individual interest.

Admission
To be considered for admission to the Master of Arts in Environmental Design, the applicant must have:
1. completed a bachelor’s degree in a design related field such as horticulture, park and recreation, interior design, landscape architecture, or architecture;
2. a cumulative grade-point average of at least 3.0 in design and technology courses with an academic background sufficiently to indicate probable success in the program;
3. satisfactory scores on the Graduate Record Examination General Test (GRE) as judged by the environmental design faculty. No substantive area GRE examinations are required;
4. acceptance as an advisee by a participating environmental design faculty member.

In addition to meeting the requirements of the university and the College of Agriculture and Natural Resources, students must meet the requirements specified below.

Requirements for the Master of Arts Degree in Environmental Design
Students in the Master of Arts in Environmental Design must complete a total of 33 credits for the degree under either Plan A (with thesis) or Plan B (without thesis). A minimum of 17 of those credits must be at the 800-level or above, distributed as follows:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDES 891 Topics in Interior Design and Human Environment</td>
<td>3</td>
</tr>
<tr>
<td>LA 816 Environmental Design Theory</td>
<td>3</td>
</tr>
<tr>
<td>LA 817 Environmental Design Studio</td>
<td>3</td>
</tr>
<tr>
<td>LA 883 Environmental Design Seminar</td>
<td>3</td>
</tr>
</tbody>
</table>

1. All of the following core courses (12 credits):
2. Guided elective courses related to the student’s area of design interest, chosen in consultation with the student’s academic advisor.

For Plan A, students must complete a minimum of 6 and a maximum of 9 credits of Master’s Thesis Research (899) in one of the following departments: Planning, Design and Construction; Horticulture; or Community, Agriculture, Recreation and Resource Studies. They must also prepare a written thesis and pass an oral examination.

For Plan B, students must complete 6 credits of Master’s Research (898) in one of the following departments: Planning, Design and Construction; Horticulture; or Community, Agriculture, Recreation and Resource Studies. They must also complete either a major planning or design project or pass a comprehensive examination.

INTERIOR DESIGN AND FACILITIES MANAGEMENT

Master of Arts
The program is designed to provide students with advanced knowledge in one of three major areas of specialization: facilities design and management, human shelter, and interior design preservation and conservation. Internships are available.

Admission
Students must have undergraduate preparation and competencies in the areas of interior design, architecture, business, history, housing, or other areas as appropriate to their chosen specialty within the M.A. degree program.

Requirements for the Degree
Students must complete required core courses, the requirements for one of the major areas of concentration referenced above, a required research component, and the requirements for a minor area.
PLANNING, DESIGN AND CONSTRUCTION

Doctor of Philosophy

The many aspects of our built and natural environment – buildings, facilities, interior spaces, infrastructure, neighborhoods, and communities – are an integral part of our society. Every new space and structure serves to define and shape a community's personality. Poor planning design and/or construction can compromise a community’s appearance and drain its resources. Conversely, well-planned, designed and constructed environments sustain and enrich a community.

The Doctor of Philosophy in Planning, Design and Construction with a concentration in construction management, environmental design, or urban and regional planning will enable students to meet future challenges. Graduates of this program will possess the knowledge and skills necessary to understand the effects of plans, regulations, design, materials, project management techniques, and construction systems on the economic, environmental, and social concerns of stakeholders and society.

Admission

To be considered for regular admission to the Doctor of Philosophy degree program in Planning, Design and Construction, an applicant must have all of the following:

1. A master's degree in a related field.
2. A cumulative grade-point average of 3.5 on a 4.0 scale.
3. GRE scores no lower than 301 in combined verbal and quantitative and at least 4.0 analytical.
4. TOEFL scores (for international applicants):
 a. Paper-based – no lower than 575 (with no sub scores below 52)
 b. Computer-based – no lower than 235 (with no sub scores below 19)
 c. Internet-based – no lower than 90 (with no sub scores below 19 for reading, listening, and speaking, and no writing sub score below 22)

Additionally, students are encouraged to submit a sample of scholarly work or a portfolio of design work. Depending on the proposed area of concentration, the school may ask for additional background information.

Provisional admission may be granted to an applicant who does not meet the above requirements but demonstrates outstanding potential. Collateral course work will not count towards degree requirements.

In addition to meeting the requirements of the university and of the College of Agriculture and Natural Resources and the College of Social Science, the student must meet the requirements specified below.

Guidance Committee

The guidance committee should be comprised of at least four faculty members. The chairperson and one other committee member should be from the student’s area of concentration within the School, a third member can be from the student’s area of concentration or another area of concentration within the School, and a fourth member must be from outside the school.

Requirements for the Doctor of Philosophy Degree in Planning, Design and Construction

The student must:

1. Complete 9 credits in the following core courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDC 901</td>
<td>Integrated Approach to Planning, Design and Construction</td>
<td>3</td>
</tr>
<tr>
<td>PDC 992</td>
<td>Advanced Research Methods in Planning, Design and Construction</td>
<td>3</td>
</tr>
</tbody>
</table>

An advanced statistics course or other related course is required.

2. Complete a minimum of four additional courses related to the area of concentration as specified by the student’s guidance committee.

3. Pass both a written and oral comprehensive examination.

5. Complete and successfully defend a dissertation in an area related to area of concentration.

DEPARTMENT of PLANT, SOIL and MICROBIAL SCIENCES

James J. Kells, Chairperson

UNDERGRADUATE PROGRAMS

The department offers a Bachelor of Science degree in Crop and Soil Sciences, with three concentrations: agronomic sciences, turfgrass management, and advanced studies. The undergraduate curriculum is designed to prepare students to apply scientific principles of crop and soil management for careers in agriculture, agribusiness, turfgrass management, government agencies, and related areas.

Students in agronomic science study the close relationship between crop science and soil science. The goal of the crop scientist is to increase plant production, grain quality, and profit by utilizing genetics, breeding, physiology, and pest management. The goal of the soil scientist is to improve soil fertility and the chemical, physical, and microbial characteristics of the soil. These two subjects are combined in agronomic sciences to develop an integrated approach to the management of crops and soils. Demands for new applications are constantly emerging. There are many complex interactions in plant growth and genetics; the physical, chemical, and biological factors involved in improving crop yields; and the soil-plant-animals relationships that determine the sustainability of cropping systems. Department faculty are nationally and internationally recognized for excellence in both the basic and applied plant and soil sciences and work as partners with agricultural industries to serve agriculture, the citizens of Michigan, the nation, and the world. Students are well prepared for employment in various positions within the food production industry to help feed a burgeoning human population, while understanding the importance of agricultural sustainability. They are highly sought by agribusinesses and governmental agencies to help address food production issues for the future.

The Turfgrass Management concentration encompasses many of the same agronomic principles and applies them to the management of grasses for use on golf courses, athletic fields, home lawns, and recreational areas. Turfgrass adds beauty to the landscape, minimizes sound and air pollution, stabilizes the soil, and reduces the heat load on homes through transpiration.

Students in the advanced studies concentration are fully prepared to accept employment upon graduation, but take additional courses to prepare them for graduate study. These include additional mathematics, chemistry, biochemistry, and statistics courses.

The department also offers minors in international agriculture, sustainable agriculture and food systems, and in agronomy.
AGRICULTURE AND NATURAL RESOURCES
Department of Plant, Soil and Microbial Sciences

CROP and SOIL SCIENCES

The Crop and Soil Sciences major is based upon the continuously expanding knowledge base of the biological and physical sciences and the utilization of those sciences to produce food and fiber of high quality on a competitive basis to promote sustainability, and to obtain increased nutrient--use efficiency, proper land use, increased plant adaptation to environmental and other stresses, decreased soil erosion, and decreased environmental pollution. Crop and soil scientists utilize the principles of genetics, plant breeding, crop physiology, weed science, turfgrass science, soil physics, soil fertility, soil genesis and classification, and soil chemistry.

Majors complete a common core of courses and one concentration: Agronomic Sciences, Turfgrass Management or Advanced Study. Students enrolled in this degree program, based on the agreement of cooperation between Michigan State University and Beijing Forestry University, Northeast Agricultural University, Sichuan Agricultural University, and Suzhou Polytechnic Institute of Agriculture in China must complete the concentration in Turfgrass Management.

1. Agronomic Sciences is designed to prepare students to work as agronomists. These scientists have career opportunities in agricultural business and in government agencies such as chiefs of departments of agriculture and directors of natural resource conservation agencies. Students complete the Agronomic Sciences major by completing all of the courses listed in the concentration.

2. Turfgrass Management is designed to prepare students for the rapidly expanding area of urban agriculture. Graduates have career opportunities in the industries involved with management of golf courses, athletic fields, lawns and park and grounds management.

3. Advanced Study is specifically designed for those students who plan to pursue graduate studies. Although students who complete the other concentrations may pursue graduate study, this concentration requires the completion of advanced levels in the basic sciences.

Students may also complete a specialization in international agriculture, agribusiness management, agriculture and natural resources biotechnology, connecting learning, environmental economics, food industry management, or environmental studies. Students may qualify to teach agriscience in high school under a plan of study cooperatively developed by the student's faculty advisor and the Department of Community, Agriculture, Recreation and Resource Studies. For additional information on any of the specializations, refer to the General Index section in this publication or visit http://www.reg.msu.edu/UCC/specializations.asp.

Requirements for the Bachelor of Science Degree in Crop and Soil Sciences

1. The University requirements for bachelor's degrees as described in the Undergraduate Education section of this catalog; 120 credits, including general elective credits, are required for the Bachelor of Science degree in Crop and Soil Sciences.

The University's Tier II writing requirement for the Crop and Soil Sciences major is met by completing two courses as specified below:

Agronomic Sciences: Both of the following courses: Crop and Soil Sciences 488 and 492. Those courses are referenced in items 3.a. and 3.b. below.

Turfgrass Management: Both of the following courses: Crop and Soil Sciences 382 and 492. Those courses are referenced in items 3.a. and 3.b. below.

Advanced Study: Both of the following courses: Crop and Soil Sciences 488 and 492. Those courses are referenced in items 3.a. and 3.b. below.

Students who are enrolled in the Agronomic Sciences or Turfgrass Management concentrations of the Crop and Soil Sciences major leading to the Bachelor of Science degree in the Department of Plant, Soil and Microbial Sciences, may complete an alternative track to Integrative Studies in Biological and Physical Sciences that consists of the following courses: Plant Biology 105 and 106 and Chemistry 141, 143, and 161.

The completion of Plant Biology 106 and Chemistry 161 satisfies the laboratory requirement. Plant Biology 105 and Chemistry 141, 143, and 161 may be counted toward both the alternative track and the requirements for the major referenced in item 3 below.

Students who are enrolled in the Advanced Study concentration of the Crop and Soil Sciences major leading to the Bachelor of Science degree in the Department of Plant, Soil and Microbial Sciences, may complete an alternative track to Integrative Studies in Biological and Physical Sciences that consists of the following courses: Plant Biology 105 and Chemistry 151, 152, and 161. The completion of Chemistry 161 satisfies the laboratory requirement. Plant Biology 105 and Chemistry 151, 152, and 161 may be counted toward both the alternative track and the requirements for the major referenced in item 3 below.

The completion of the College of Agriculture and Natural Resources mathematics requirement may also satisfy the University mathematics requirement.

2. The requirements of the College of Agriculture and Natural Resources for the Bachelor of Science degree.

3. The following requirements for the major:

a. All of the following courses: (53 credits):

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEM 141 General Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>CEM 143 Survey of Organic Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>CSS 101 Introduction to Crop Science</td>
<td>3</td>
</tr>
<tr>
<td>CSS 101L Introduction to Crop Science Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>CSS 192 Professional Development Seminar</td>
<td>1</td>
</tr>
<tr>
<td>CSS 285 Principles of Weed Management</td>
<td>3</td>
</tr>
<tr>
<td>CSS 330 Soil Chemistry</td>
<td>2</td>
</tr>
<tr>
<td>CSS 340 Applied Soil Physics</td>
<td>2</td>
</tr>
<tr>
<td>CSS 350 Introduction to Plant Genetics</td>
<td>3</td>
</tr>
<tr>
<td>CSS 360 Soil Biology</td>
<td>3</td>
</tr>
<tr>
<td>CSS 470 Soil Resources</td>
<td>3</td>
</tr>
<tr>
<td>CSS 480 Soil Fertility and Management</td>
<td>3</td>
</tr>
<tr>
<td>CSS 488 Agricultural Cropping Systems: Integration and Problem Solving</td>
<td>3</td>
</tr>
<tr>
<td>CSS 493 Professional Internship in Crop and Soil Sciences</td>
<td>3</td>
</tr>
<tr>
<td>ENT 404 Fundamentals of Entomology</td>
<td>3</td>
</tr>
<tr>
<td>MTH 116 College Algebra and Trigonometry</td>
<td>5</td>
</tr>
<tr>
<td>PLB 105 Plant Biology</td>
<td>3</td>
</tr>
<tr>
<td>PLB 106 Plant Biology Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>PLP 405 Plant Pathology</td>
<td>3</td>
</tr>
<tr>
<td>HRT 361 Applied Plant Physiology</td>
<td>3</td>
</tr>
<tr>
<td>PLB 301 Introductory Plant Physiology</td>
<td>3</td>
</tr>
<tr>
<td>CSS 222 New Horizons in Biotechnology</td>
<td>2</td>
</tr>
<tr>
<td>CSS 441 Plant Breeding and Biotechnology</td>
<td>3</td>
</tr>
<tr>
<td>CSS 451 Biotechnology Applications for Plant Breeding and Genetics</td>
<td>3</td>
</tr>
</tbody>
</table>

b. One of the following three concentrations: (58 to 69 credits)

1. Agronomic Sciences (58 or 59 credits): (1) All of the following courses (53 credits):

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEM 141 General Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>CEM 143 Survey of Organic Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>CSS 101 Introduction to Crop Science</td>
<td>3</td>
</tr>
<tr>
<td>CSS 101L Introduction to Crop Science Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>CSS 192 Professional Development Seminar</td>
<td>1</td>
</tr>
<tr>
<td>CSS 285 Principles of Weed Management</td>
<td>3</td>
</tr>
<tr>
<td>CSS 330 Soil Chemistry</td>
<td>2</td>
</tr>
<tr>
<td>CSS 340 Applied Soil Physics</td>
<td>2</td>
</tr>
<tr>
<td>CSS 350 Introduction to Plant Genetics</td>
<td>3</td>
</tr>
<tr>
<td>CSS 360 Soil Biology</td>
<td>3</td>
</tr>
<tr>
<td>CSS 470 Soil Resources</td>
<td>3</td>
</tr>
<tr>
<td>CSS 480 Soil Fertility and Management</td>
<td>3</td>
</tr>
<tr>
<td>CSS 488 Agricultural Cropping Systems: Integration and Problem Solving</td>
<td>3</td>
</tr>
<tr>
<td>CSS 493 Professional Internship in Crop and Soil Sciences</td>
<td>3</td>
</tr>
<tr>
<td>ENT 404 Fundamentals of Entomology</td>
<td>3</td>
</tr>
<tr>
<td>MTH 116 College Algebra and Trigonometry</td>
<td>5</td>
</tr>
<tr>
<td>PLB 105 Plant Biology</td>
<td>3</td>
</tr>
<tr>
<td>PLB 106 Plant Biology Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>PLP 405 Plant Pathology</td>
<td>3</td>
</tr>
<tr>
<td>HRT 361 Applied Plant Physiology</td>
<td>3</td>
</tr>
<tr>
<td>PLB 301 Introductory Plant Physiology</td>
<td>3</td>
</tr>
</tbody>
</table>

2. Turfgrass Management (67 credits): (1) All of the following courses (64 credits):

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEM 141 General Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>CEM 143 Survey of Organic Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>CSS 178 Turf Irrigation</td>
<td>3</td>
</tr>
<tr>
<td>CSS 181 Pesticide and Fertilizer Application Technology</td>
<td>3</td>
</tr>
<tr>
<td>CSS 232 Turfgrass Management</td>
<td>4</td>
</tr>
<tr>
<td>CSS 262 Turfgrass Management Seminar</td>
<td>1</td>
</tr>
<tr>
<td>CSS 267 Performance Turf Design and Construction</td>
<td>2</td>
</tr>
<tr>
<td>CSS 269 Turfgrass Strategies: Integration and Synthesis</td>
<td>2</td>
</tr>
<tr>
<td>CSS 272 Turfgrass Soil Fertility</td>
<td>2</td>
</tr>
<tr>
<td>CSS 292 Management of Turfgrass Weeds</td>
<td>3</td>
</tr>
<tr>
<td>CSS 330 Soil Chemistry</td>
<td>2</td>
</tr>
<tr>
<td>CSS 340 Applied Soil Physics</td>
<td>2</td>
</tr>
<tr>
<td>CSS 350 Introduction to Plant Genetics</td>
<td>3</td>
</tr>
<tr>
<td>CSS 360 Soil Biology</td>
<td>3</td>
</tr>
<tr>
<td>CSS 282 Turfgrass Physiology</td>
<td>2</td>
</tr>
<tr>
<td>CSS 470 Soil Resources</td>
<td>3</td>
</tr>
<tr>
<td>CSS 493 Professional Internship in Crop and Soil Sciences</td>
<td>3</td>
</tr>
<tr>
<td>EC 201 Introduction to Microeconomics</td>
<td>3</td>
</tr>
<tr>
<td>ENT 364 Turfgrass Entomology</td>
<td>3</td>
</tr>
<tr>
<td>MTH 116 College Algebra and Trigonometry</td>
<td>5</td>
</tr>
<tr>
<td>PLB 105 Plant Biology</td>
<td>3</td>
</tr>
<tr>
<td>PLB 106 Plant Biology Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>PLP 405 Plant Pathology</td>
<td>3</td>
</tr>
<tr>
<td>HRT 361 Applied Plant Physiology</td>
<td>3</td>
</tr>
<tr>
<td>PLB 301 Introductory Plant Physiology</td>
<td>3</td>
</tr>
</tbody>
</table>

3. Advanced Study (69 credits): (1) All of the following courses (68 credits):

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMB 401 Comprehensive Biochemistry</td>
<td>4</td>
</tr>
<tr>
<td>CEM 151 General and Descriptive Chemistry</td>
<td>4</td>
</tr>
</tbody>
</table>
ENVIROMENTAL SOIL SCIENCE

Requirements for the Bachelor of Science Degree in Environmental Soil Science

1. The University requirements for bachelor’s degrees as described in the Undergraduate Education section of this catalog; 120 credits, including general elective credits, are required for the Bachelor of Science degree in Environmental Soil Science. The University’s Tier II writing requirement for the Environmental Soil Science major is met by completing all of the following courses: Crop and Soil Sciences 455 and 492. These courses are referenced in item 3a. below. Students who are enrolled in the Environmental Soil Science major may choose to attend graduate programs (state, national and international), as well as for graduate study in plant pathology and numerous other fields in agriculture and natural science. The Bachelor of Science in Plant Pathology major enables students to take a substantial number of fundamental sciences courses as well as a large number of more applied courses related to plant diseases and agriculture. Course work in this vigorous curriculum offers a balance between fundamental and applied study. Those students who take a large number of fundamental courses may choose to attend graduate school. The actual numbers of fundamental versus applied courses that qualify a student for career or graduate opportunities vary greatly.

2. The requirements of the College of Agriculture and Natural Resources mathematics requirement also satisfies the University mathematics requirement.

3. The requirements of the College of Agriculture and Natural Resources for the Bachelor of Science degree. Certain courses referenced in requirement 3 may be counted toward College requirements as appropriate. The completion of Mathematics 132 satisfies the College’s mathematics requirement.

4. The following requirements for the major:

 CREDITS
 74 to 76

 a. All of the following courses (60 credits):

 BMB 200 Introduction to Biochemistry 4
 BS 111 Cells and Molecules .. 3
 CE 280 Principles of Environmental Engineering 3
 CEM 141 General Chemistry .. 3
 CEM 142 General and Inorganic Chemistry 3
 CEM 143 Survey of Organic Chemistry 4
 CEM 161 Chemistry Laboratory I 1
 CEM 162 Chemistry Laboratory II 1
 CEM 262 Quantitative Analysis 1
 CSS 192 Professional Development Seminar I 1
 CSS 210 Fundamentals of Soil Science 1
 CSS 300 Soil Chemistry ... 1
 CSS 340 Applied Soil Physics 2
 CSS 455 Pollutants in the Soil Environment 3
 CSS 470 Soil Resources .. 3
 CSS 492 Professional Development Seminar II 1
 EC 201 Introduction to Microeconomics 1
 GLG 411 Hydrogeology ... 3
 MGG 301 Introductory Microbiology 3
 MGG 425 Microbial Ecology 3
 MTH 132 Calculus I .. 3

 b. One course from each of the following five groups (14 to 16 credits):

 (1) CE 485 Landfill Design, Solving 3
 CE 491 Civil Engineering Design Project 3

 (2) STT 201 Statistical Methods 3
 STT 231 Statistics for Scientists 3
 STT 421 Statistics I ... 3

 (3) ANS 427 Environmental Toxicology and Society 3
 PHM 450 Introduction to Chemical Toxicology 3
 NSC 448 Ecology, Law and Economics 3
 RD 430 Law and Resources 3
 CE 101 Computing Concepts and Competencies 3
 Students who pass a waiver examination for Computer Science and Engineering 101 will not be required to complete Computer Science and Engineering 101 or Crop and Soil Sciences 110.

Plan PATHOLOGY

Earning a Bachelor of Science degree in Plant Pathology will prepare graduates for careers in agricultural industries, government programs (state, national and international), as well as for graduate study in plant pathology and numerous other fields in agriculture and natural science. The Bachelor of Science in Plant Pathology major enables students to take a substantial number of fundamental sciences courses as well as a large number of more applied courses related to plant diseases and agriculture. Course work in this vigorous curriculum offers a balance between fundamental and applied study. Those students who take a large number of fundamental courses may choose to attend graduate school. The actual numbers of fundamental versus applied courses that qualify a student for career or graduate opportunities vary greatly.

Requirements for the Bachelor of Science Degree in Plant Pathology

1. The University requirements for bachelor’s degrees as described in the Undergraduate Education section of this catalog; 120 credits, including general elective credits, are required for the Bachelor of Science degree in Plant Pathology. The University’s Tier II writing requirement for the Plant Pathology major is met by completing Plant Pathology 405 and 406.

2. The requirements of the College of Agriculture and Natural Resources for the Bachelor of Science degree.

 Certain courses referenced in requirement 3 may be counted toward College requirements as appropriate.

3. The following requirements for the major:

 a. All of the following courses: 48 or 50

 CEM 141 General Chemistry 4
 CEM 143 Survey of Organic Chemistry 4
 CEM 251 Organic Chemistry I 3
 CEM 161 Chemistry Laboratory I 1
 CEM 162 Chemistry Laboratory II 1
 CEM 262 Quantitative Analysis 1
 CSS 192 Professional Development Seminar I 1
 CSS 210 Fundamentals of Soil Science 1
 CSS 300 Soil Chemistry .. 1
 CSS 340 Applied Soil Physics 2
 CSS 455 Pollutants in the Soil Environment 3
 CSS 470 Soil Resources .. 3
 CSS 492 Professional Development Seminar II 1
 EC 201 Introduction to Microeconomics 1
 GLG 411 Hydrogeology ... 3
 MGG 301 Introductory Microbiology 3
 MGG 425 Microbial Ecology 3
 MTH 132 Calculus I .. 3

 b. One course from each of the following five groups (3 credits)

 (1) CE 485 Landfill Design, Solving 3
 CE 491 Civil Engineering Design Project 3

 (2) STT 201 Statistical Methods 3
 STT 231 Statistics for Scientists 3
 STT 421 Statistics I ... 3

 (3) CSS 210 Fundamentals of Soil and Landscape Science .. 3
 CSS 402 Principles of Weed Science 3
 ENT 404 Insects: Success in Biodiversity 3
 ZOL 355 Ecology .. 3

 d. One of the following courses (4 credits):

 49
Minor in International Agriculture

This minor is available as an elective to students who are enrolled in bachelor’s degree programs and is designed for students who have an interest in international agriculture. It seeks to increase student understanding of global agriculture, particular agriculture-related problems and issues in developing and developed nations, and issues related to sustainability and stewardship of the Earth. Students who complete this specialization will be prepared for effective employment in the arena of international agriculture and/or multinational firms.

The College of Agriculture and Natural Resources in cooperation with the Departments of Agricultural, Food, and Resource Economics, Animal Science, Food Science and Human Nutrition, Plant, Soil and Microbial Sciences, and Forestry, and the College of Social Science in cooperation with the Department of Geography participate in the Minor in International Agriculture. The Department of Plant, Soil and Microbial Sciences is the primary administrative unit.

The student’s program of study for the specialization must be approved by the Department of Plant, Soil and Microbial Sciences in advance and in writing. With the approval of the department that administers the student’s degree program, courses that are used to satisfy the requirements for the minor may also be used to satisfy the requirements for the bachelor’s degree.

Requirements for the Minor in International Agriculture

The student must meet the requirements specified below:

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Foreign Language</td>
<td>0 to 8</td>
</tr>
<tr>
<td>Complete the equivalent of one year of a foreign language. The requirement may be met by completing two semesters of a foreign language at MSU or by obtaining a sufficient score on the appropriate foreign language placement test to place into a 200-level course in that language.</td>
<td></td>
</tr>
<tr>
<td>2. Study Abroad Experience</td>
<td>6 to 12</td>
</tr>
<tr>
<td>Complete at least one study abroad experience that has a minimum duration of five weeks or two experiences of shorter duration.</td>
<td></td>
</tr>
<tr>
<td>3. Both of the following courses:</td>
<td>4</td>
</tr>
<tr>
<td>CSS 294 Issues in International Agriculture</td>
<td>1</td>
</tr>
<tr>
<td>CSS 431 International Agricultural Systems</td>
<td>3</td>
</tr>
</tbody>
</table>

Minor in Sustainable Agriculture and Food Systems

The Minor in Sustainable Agriculture and Food Systems is designed to foster active learning about agriculture and food systems for undergraduate students from different disciplinary backgrounds. Contemporary agriculture and food systems issues will be considered in biological, ecological, social, and economic contexts.

The minor is available as an elective to students who are enrolled in bachelor’s degree programs at Michigan State University. With the approval of the department and college that administers the student’s degree program, the courses that are used to satisfy the minor may also be used to satisfy the requirements for the bachelor’s degree. The student’s program of study must be

CSS 451 Cellular and Molecular Principles and Techniques for Plant Sciences 4
PLB 416 Experiments in Plant Physiology and Molecular Biology ... 4
e. One of the following courses (3 or 4 credits):
ENT 470 Soil Management II: Biological Components of Management Systems (W) 3
PLP 362 Management of Turfgrass Pests ... 3
f. One of the following courses or pair of courses (3 to 6 credits):
BMB 401 Basic Biochemistry .. 4
BMB 461 Biochemistry I .. 3
and
BMB 462 Biochemistry II .. 3

d. One of the following courses (3 or 4 credits):
CSS 340 Applied Soil Physics ... 2
CSS 360 Soil Biology ... 3
CSS 470 Soil Resources ... 3

Minor in Agronomy

The Minor in Agronomy, which is administered by the Department of Plant, Soil and Microbial Sciences, is designed to serve students with majors in fields other than Crop and Soil Sciences who are interested in agronomy and who plan to pursue careers in agriculture for which a basic familiarity with the science of cropping systems is important. The minor will provide an opportunity for students to gain a fundamental understanding of the science of food production, including crop management, soil management, and plant breeding and biotechnology.

This minor is available as an elective to students who are enrolled in bachelor’s degree programs at Michigan State University other than the Bachelor of Science Degree in Crop and Soil Sciences or the Bachelor of Science Degree in Environmental Soil Science. With the approval of the department and college that administer the student’s degree program, the courses that are used to satisfy the minor may also be used to satisfy the requirements for the bachelor’s degree.

Students who plan to complete the requirements of the minor should consult the Department of Plant, Soil and Microbial Sciences and have their program of study approved in advance and in writing.

Requirements for the Minor in Agronomy

Complete 16 to 19 credits from the following:

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. All of the following courses (10 credits):</td>
<td></td>
</tr>
<tr>
<td>CSS 101 Introduction to Crop Science ..</td>
<td>3</td>
</tr>
<tr>
<td>CSS 101L Introduction to Crop Science Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>CSS 210 Fundamentals of Soil Science ..</td>
<td>3</td>
</tr>
<tr>
<td>CSS 488 Agricultural Cropping Systems: Integration and Problem Solving</td>
<td>3</td>
</tr>
<tr>
<td>2. One of the following courses (2 or 3 credits):</td>
<td></td>
</tr>
<tr>
<td>CSS 222 New Horizons in Biotechnology ..</td>
<td>2</td>
</tr>
<tr>
<td>CSS 350 Introduction to Plant Genetics ..</td>
<td>2</td>
</tr>
<tr>
<td>CSS 441 Plant Breeding and Biotechnology ..</td>
<td>3</td>
</tr>
<tr>
<td>3. One of the following courses (2 or 3 credits):</td>
<td></td>
</tr>
<tr>
<td>CSS 135 Crop Scouting and Investigation ..</td>
<td>2</td>
</tr>
<tr>
<td>CSS 151 Seed and Grain Quality ...</td>
<td>2</td>
</tr>
<tr>
<td>CSS 201 Forage Crops ...</td>
<td>2</td>
</tr>
<tr>
<td>CSS 212 Advanced Crop Production ..</td>
<td>3</td>
</tr>
<tr>
<td>CSS 251 Organic Farming Principles and Practices ..</td>
<td>3</td>
</tr>
<tr>
<td>CSS 280 Principles of Weed Management ..</td>
<td>3</td>
</tr>
<tr>
<td>CSS 424 Sustainable Agriculture and Food Systems: Integration and Synthesis ...</td>
<td>3</td>
</tr>
</tbody>
</table>

Minor in Sustainable Agriculture and Food Systems

The Minor in Sustainable Agriculture and Food Systems is designed to foster active learning about agriculture and food systems for undergraduate students from different disciplinary backgrounds. Contemporary agriculture and food systems issues will be considered in biological, ecological, social, and economic contexts.

The minor is available as an elective to students who are enrolled in bachelor’s degree programs at Michigan State University. With the approval of the department and college that administers the student’s degree program, the courses that are used to satisfy the minor may also be used to satisfy the requirements for the bachelor’s degree. The student’s program of study must be
approved by the Department of Plant, Soil and Microbial Sciences in advance and in writing.

Requirements for the Minor in Sustainable Agriculture and Food Systems

The student must complete 15 credits from the following:

1. All of the following courses (6 credits):
 - CSS 124 Introduction to Sustainable Agriculture and Food Systems 2
 - CSS 224 Sustainable Farm and Food Systems Field Studies 1
 - CSS 424 Sustainable Agriculture and Food Systems: Integration and Synthesis 3

2. One or two of the following courses (3 to 6 credits):
 - Agricultural Sciences
 - CSS 101 Introduction to Crop Science .. 3
 - CSS 360 Soil Biology ... 3
 - CSS 431 International Agricultural Systems 3
 - CSS 442 Agricultural Ecology .. 3
 - ENT 479 Organic Pest Management (W) 3
 - HNF 150 Introduction to Human Nutrition 3
 - HRT 203 Principles of Horticulture ... 3
 - HRT 251 Organic Farming Principles and Practices 3
 - HRT 341 Vegetable Production and Management 3
 - HRT 486 Biotechnology in Agriculture: Applications and Ethical Issues .. 3

3. One or two of the following courses (3 to 6 credits):
 - Social Sciences
 - ABM 400 Public Policy Issues in the Agri-Food System 3
 - CSUS 343 Community Food and Agricultural Systems 3
 - EEP 255 Ecological Economics .. 3
 - EEP 260 World Food, Population and Poverty 3
 - GEO 410 Geography of Food and Agriculture 3
 - HNF 406 Global Foods and Culture .. 3
 - RCAH 292B Engagement and Reflection 3

GRADUATE STUDY

The Department of Plant, Soil and Microbial Sciences offers programs leading to Master of Science and Doctor of Philosophy degrees in crop and soil sciences, plant breeding, genetics and biotechnology—crop and soil sciences, and in plant pathology. The department also offers a Doctor of Philosophy degree program in crop and soil sciences—environmental toxicology.

Students enrolled in the Doctor of Philosophy degree program may elect a Specialization in Biotechnology. For additional information, refer to the statement on the specialization.

Students who are enrolled in Master of Science degree programs in the Department of Plant, Soil and Microbial Sciences may elect a Specialization in Food Safety. For additional information, refer to the statement on the specialization in the College of Veterinary Medicine section of this catalog.

CROP AND SOIL SCIENCES

The department offers the following areas of specialization within the field of crop and soil sciences: plant breeding and genetics; crop physiology, ecology, and management; weed science; turfgrass management; soil genesis and classification; soil microbiology and biochemistry; soil physics; soil chemistry; soil biophysics; soil fertility; and environmental and pollution aspects of soil science, including the study of waste disposal on land. Graduate programs of study are designed to reflect the individual needs and interests of students.

Master of Science

In addition to meeting the requirements of the university and of the College of Agriculture and Natural Resources, students must meet the requirements specified below.

Admission

Applicants for admission to the master's degree program should have a bachelor's degree in crop and soil sciences or in a related field such as botany or chemistry. Applicants should also have substantial academic background in the physical sciences (including chemistry and physics), in the biological sciences (including botany), and in mathematics. The completion of an undergraduate crop and soil sciences major with an agricultural science specialization would be considered ideal. Students with deficiencies in their backgrounds will be required to complete collateral courses in addition to the courses that are required for the master's degree.

Requirements for the Master of Science Degree in Crop and Soil Sciences

The student may elect either Plan A (with thesis) or Plan B (without thesis). A total of 30 credits is required for the degree under either Plan A or Plan B. In addition to courses in the major, a minor or study in areas related to crop and soil sciences is required. Students are encouraged to select such courses as botany, biochemistry, chemistry, geology, plant pathology, and statistics. The student is required to complete satisfactorily one semester of teaching.

Doctor of Philosophy

In addition to meeting the requirements of the university and of the College of Agriculture and Natural Resources, students must meet the requirements specified below.

Requirements for the Doctor of Philosophy Degree in Crop and Soil Sciences

In addition to courses in the major, a minor or study in areas related to crop and soil sciences is required. Students are encouraged to select such courses as botany, biochemistry, chemistry, geology, plant pathology, and statistics. The student is required to complete satisfactorily one semester of teaching.

CROP AND SOIL SCIENCES—ENVIRONMENTAL TOXICOLOGY

Doctor of Philosophy

For information about the Doctor of Philosophy degree program in crop and soil sciences—environmental toxicology, refer to the statement on Doctoral Program in Environmental and Integrative Toxicological Sciences in the Graduate Education section of this catalog.

PLANT BREEDING, GENETICS and BIOTECHNOLOGY—CROP and SOIL SCIENCES

The Department of Plant, Soil and Microbial Sciences offers Master of Science and Doctor of Philosophy degree programs in plant breeding, genetics and biotechnology—crop and soil sciences. The requirements for admission and the requirements for the degree are specified in the statement on Interdepartmental Graduate Programs in Plant Breeding, Genetics and Biotechnology.
PLANT PATHOLOGY

Master of Science

Plant pathology graduate students may study in one or more emphasis areas, including phytobacteriology, mycology, virology, epidemiology, host parasite interactions, soil microbiology, disease management and molecular biology. Commodity-oriented strategic research areas in which the above emphasis areas may be studied include vegetable crops, fruit crops, nursery, landscape and ornamentals, field crops, turf crops, and forest and tree pathology. Students are urged to take courses which provide a broad background in biological and physical sciences in addition to training in specialized areas.

In addition to meeting the requirements of the university and the College of Agriculture and Natural Resources, students must meet the requirements specified below.

Admission

Regular admission may be granted to those students who have a bachelor’s degree or its equivalent, a 3.00 grade point average, and appropriate training in the biological and physical sciences and mathematics.

Provisional admission may be granted to those students who do not meet the requirements for regular admission.

Requirements for the Master of Science Degree in Plant Pathology

The master’s degree program in plant pathology is available under either Plan A (with thesis) or Plan B (without thesis). The student’s program of study is arranged by a guidance committee which includes the major professor.

For both Plan A and Plan B, students must:
1. Complete at least 30 credits including at least two graduate-level seminar courses in the biological sciences, one of which must be Plant Pathology 894.
2. Acquire teaching experience by assisting in at least one course.
3. Demonstrate a reading knowledge of a foreign language if required by the guidance committee.

Additional Requirement for Plan A:
Pass a final oral examination in defense of the thesis.

Additional Requirement for Plan B:
Pass a final examination or evaluation.

Doctor of Philosophy

The objective of this program is to provide a high quality plant pathology graduate experience to equip students with the skills necessary for research, teaching and extension, or other agriculture-related positions that require the Doctor of Philosophy degree.

In addition to meeting the requirements of the university and the College of Agriculture and Natural Resources, students must meet the requirements specified below.

Admission

Regular admission may be granted to those students having a master’s degree or its equivalent, a 3.00 grade point average, and appropriate training in the biological and physical sciences and mathematics. Outstanding students without a master’s degree may be accepted.

Requirements for the Doctor of Philosophy Degree in Plant Pathology

All doctoral students in plant pathology must meet the requirements specified below:
1. Pass a preliminary examination.
2. Acquire teaching experience by assisting in two courses.
3. Complete:

 a. All of the following courses:
 PLP 405 Introductory Plant Pathology 3
 PLP 810 Current Concepts in Plant Pathology 3
 PLP 894 Seminar in Plant Pathology 2
 b. One of the following courses:
 PLP 812 Epidemiology of Plant Diseases 3
 PLP 881 Molecular and Biochemical Plant Pathology 3
 PLP 885 Plant Diseases in the Field 2
 c. Two of the following courses:
 ENT 870 Nematode Management in Crop Systems 3
 PLP 847 Advanced Mycology ... 4
 PLP 880 Plant Virology ... 4
 PLP 884 Prokaryotic Diseases of Plants 4
 4. Additional requirements such as reading knowledge of a foreign language may be required by the guidance committee.
 5. Pass a comprehensive examination.

GRADUATE SPECIALIZATION IN ECOLOGICAL FOOD AND FARMING SYSTEMS

The Graduate Specialization in Ecological Food and Farming Systems is designed to foster an understanding of biogeochemical, socioeconomic, and policy concepts using experiential learning within the individual’s program of study as a venue for multidisciplinary work. For global perspectives, students are encouraged to participate in either a study abroad course with ecological food and farming systems content, or in a course with international focus.

The specialization is available as an elective to students who are enrolled in master’s or doctoral degree programs at Michigan State University. With the approval of the department and college that administers the student’s degree program, the courses that are used to satisfy the specialization may also be used to satisfy the requirements for the master’s or doctoral degree. The students program of study must be approved by the advisor for the specialization.

Requirements for the Graduate Specialization in Ecological Food and Farming Systems

The student must complete 13 to 14 credits from the following:

1. All of the following courses (7 credits):
 ACR 811 Community, Food and Agriculture: A Survey 3
 CSS 442 Agricultural Ecology ... 3
 CSS 892B Ecological Food and Farming Systems Seminar 1
2. One of the following courses (3 credits):
 CSS 424 Sustainable Agriculture and Food Systems: Integration and Synthesis ... 3
 CSS 431 International Agricultural Systems 3
 CSS 893 Special Topics .. 3
 ENT 479 Organic Pest Management 3
 ENT 846 Biological Control of Insects and Weeds 3
 An international course approved by the student’s advisor for the specialization.
3. One of the following courses (3 or 4 credits):
 ACR 823 Contemporary Issues in Animal-Human Relationships 3
 ACR 853 The Industrialization of American Agriculture 3
 ACR 854 Agriculture and Social Movements 3
 ACR 891B Advanced Topics in Community, Food, and Agriculture .. 2
 AEC 861 Agriculture in Economic Development 3
 FW 858 Gender, Justice, and Environmental Change: Issues and Concepts ... 3
 GEO 410 Geography of Food and Agriculture 3
 An international course approved by the student’s advisor for the specialization.
to the Institute of Agricultural Technology, Michigan State University, Agriculture Hall, 446 W. Circle Drive, Room 120, East Lansing, MI 48824-1039.

PROGRAMS

Agricultural Industries

The Agricultural Industries program is designed to provide students in gaining in-depth agricultural industry and business knowledge to apply to their own operation or to launch a career in the industry. Students have the flexibility to focus on agronomy, horticulture, animal science or agricultural business through integration of hands-on laboratory learning and classroom formats. Students who are interested may be eligible to transfer into a four-year degree program at MSU upon completion of the certificate.

Requirements for Agricultural Industries

The student must complete 48 credits from the following:

1. All of the following courses (30 to 34 credits):
 - ABM 100 Decision-making in the Agri-Food System 3
 - ABM 130 Farm Management I 3
 - AT 045 Agricultural Communications 2
 - AT 055 Agricultural Finance 3
 - AT 071 Technical Mathematics 2
 - AT 291 Selected Topics in Agricultural Technology 2
 - AT 293 Professional Internship in Agricultural Technology 3 to 6
 - CSS 101 Introduction to Crop Science 3
 - CSS 101L Introduction to Crop Science Laboratory 1
 - CSS 105 Agricultural Industries Seminar 1
 - CSS 110 Computer Applications in Agronomy 2
 - CSS 120 Issues in Food Agriculture 3
 - CSS 288 Principles of Weed Management 3
 - CSS 303 Principles of Precision Agriculture 3

2. One of the following courses (3 credits):
 - ABM 222 Agribusiness and Food Industry Sales (W) 3
 - ABM 225 Commodity Marketing I 3

3. Complete 12 to 15 credits from the following:
 - AE 151 Fabrication Technology 2
 - AE 153 Engine and Equipment Technology 2
 - ANS 110 Introductory Animal Agriculture 4
 - ANS 141 Draft Horse Basics 2
 - ANS 200A Introductory Judging of Livestock or Carcass 1 or 2
 - ANS 203 Principles of Livestock Feeding 2
 - ANS 211 Animal and Product Evaluation 3
 - ANS 222 Introductory Beef Cattle Management 3
 - ANS 232 Introductory Dairy Cattle Management 3
 - ANS 272 Introductory Swine Management 3
 - AT 291 Selected Topics in Agricultural Technology 2 to 6
 - CSS 124 Introduction to Sustainable Agriculture and Food Systems 1
 - CSS 135 Crop Scouting and Investigation 2
 - CSS 151 Seed and Grain Quality 2
 - CSS 201 Forage Crops 3
 - CSS 210 Fundamentals of Soil Science 3
 - CSS 212 Advanced Crop Production 2
 - CSS 222 New Horizons in Biotechnology 2
 - CSS 294 Issues in International Agriculture 1
 - ENT 111 Basics of Applied Entomology 2
 - HRT 203 Principles of Horticulture 3
 - HRT 205 Plant Mineral Nutrition 1
 - HRT 206 Training and Pruning Plants 1
 - HRT 251 Organic Farming Principles and Practices 3
 - HRT 341 Vegetable Production and Management 3
 - HRT 352 Fundamentals of Applied Plant Pathology 3
 - TSM 343 Principles of Precision Agriculture 3

INSTITUTE of AGRICULTURAL TECHNOLOGY

Founded in 1894, the Institute of Agricultural Technology delivers innovative, educational programs on campus and with community college partners that develop career-ready graduates through intensive, practical learning and skill enhancement in agricultural, environmental, and applied technologies. The Institute seeks to prepare students for dynamic careers in a changing world. Certificate programs vary from 10 to 24 months in length, are highly respected statewide and nationally, and several have international reputations. Classes are taught by faculty and staff in the College of Agriculture and Natural Resources, so students gain from the research and extension programs at Michigan State University. For additional information on any of the certificate programs, write to the Institute of Agricultural Technology, Michigan State University, Agriculture Hall, 446 W. Circle Drive, Room 120, East Lansing, MI 48824-1039.

PROGRAMS

Agricultural Industries

The Agricultural Industries program is designed to provide students in gaining in-depth agricultural industry and business knowledge to apply to their own operation or to launch a career in the industry. Students have the flexibility to focus on agronomy, horticulture, animal science or agricultural business through integration of hands-on laboratory learning and classroom formats. Students who are interested may be eligible to transfer into a four-year degree program at MSU upon completion of the certificate.

Requirements for Agricultural Industries

The student must complete 48 credits from the following:

1. All of the following courses (30 to 34 credits):
 - ABM 100 Decision-making in the Agri-Food System 3
 - ABM 130 Farm Management I 3
 - AT 045 Agricultural Communications 2
 - AT 055 Agricultural Finance 3
 - AT 071 Technical Mathematics 2
 - AT 291 Selected Topics in Agricultural Technology 2
 - AT 293 Professional Internship in Agricultural Technology 3 to 6
 - CSS 101 Introduction to Crop Science 3
 - CSS 101L Introduction to Crop Science Laboratory 1
 - CSS 105 Agricultural Industries Seminar 1
 - CSS 110 Computer Applications in Agronomy 2
 - CSS 120 Issues in Food Agriculture 3
 - CSS 288 Principles of Weed Management 3

2. One of the following courses (3 credits):
 - ABM 222 Agribusiness and Food Industry Sales (W) 3
 - ABM 225 Commodity Marketing I 3

3. Complete 12 to 15 credits from the following:
 - AE 151 Fabrication Technology 2
 - AE 153 Engine and Equipment Technology 2
 - ANS 110 Introductory Animal Agriculture 4
 - ANS 141 Draft Horse Basics 2
 - ANS 200A Introductory Judging of Livestock or Carcass 1 or 2
 - ANS 203 Principles of Livestock Feeding 2
 - ANS 211 Animal and Product Evaluation 3
 - ANS 222 Introductory Beef Cattle Management 3
 - ANS 232 Introductory Dairy Cattle Management 3
 - ANS 272 Introductory Swine Management 3
 - AT 291 Selected Topics in Agricultural Technology 2 to 6
 - CSS 124 Introduction to Sustainable Agriculture and Food Systems 1
 - CSS 135 Crop Scouting and Investigation 2
 - CSS 151 Seed and Grain Quality 2
 - CSS 201 Forage Crops 3
 - CSS 210 Fundamentals of Soil Science 3
 - CSS 212 Advanced Crop Production 2
 - CSS 222 New Horizons in Biotechnology 2
 - CSS 294 Issues in International Agriculture 1
 - ENT 111 Basics of Applied Entomology 2
 - HRT 203 Principles of Horticulture 3
 - HRT 205 Plant Mineral Nutrition 1
 - HRT 206 Training and Pruning Plants 1
 - HRT 251 Organic Farming Principles and Practices 3
 - HRT 341 Vegetable Production and Management 3
 - HRT 352 Fundamentals of Applied Plant Pathology 3
 - TSM 343 Principles of Precision Agriculture 3

INSTITUTE of AGRICULTURAL TECHNOLOGY

Founded in 1894, the Institute of Agricultural Technology delivers innovative, educational programs on campus and with community college partners that develop career-ready graduates through intensive, practical learning and skill enhancement in agricultural, environmental, and applied technologies. The Institute seeks to prepare students for dynamic careers in a changing world. Certificate programs vary from 10 to 24 months in length, are highly respected statewide and nationally, and several have international reputations. Classes are taught by faculty and staff in the College of Agriculture and Natural Resources, so students gain from the research and extension programs at Michigan State University. For additional information on any of the certificate programs, write
AGRICULTURE AND NATURAL RESOURCES
Institute of Agricultural Technology

Requirements for Agricultural Operations

Students must complete 55 credits from the following:

1. All of the following courses (30 credits):
 - ABM 130 Farm Management I ... 3
 - AE 131 Agricultural Water Resource Management 3
 - AE 143 Application of Precision Agriculture Technologies 3
 - AT 202 Agricultural Regulation, Compliance and Safety 3
 - AT 283 Professional Internship in Agricultural Technology 3
 - CSS 101 Introduction to Crop Science 3
 - CSS 105 Agricultural Industries Seminar 1
 - CSS 135 Crop Scouting and Investigation 2
 - CSS 210 Fundamentals of Soil Science 3
 - ENT 110 Applied Entomology of Economic Plants 3
 - PLP 200 Plant Diseases and Their Pathogens 3

2. Completion of a minimum of 4 additional elective credits in the college as approved by the program coordinator in the Institute of Agricultural Technology.

3. Completion of 21 credits of additional coursework through Northwestern Michigan College. All course work must be approved by the program coordinator in the Institute of Agricultural Technology.

Applied Horse Science

The Applied Horse Science certificate, in partnership with Montcalm Community College, provides students the opportunity to study an in-depth horse science curriculum outside of the traditional classroom and provides learning experiences that improve the profitability, animal welfare, environmental stewardship and recreation by horse enthusiasts.

Requirements for Applied Horse Science

1. All of the following courses (14 credits):
 - ANS 140 Fundamentals of Horsemanship 2
 - ANS 149 Horse Management Clerkship 2
 - ANS 200D Introductory Judging of Horses 2
 - ANS 225 Horse Behavior and Welfare 2
 - ANS 243 Horse Nutrition and Feeding 2
 - ANS 244 Horse Facility Design and Management 2
 - ANS 247 Horse Health .. 2

2. One of the following courses (2 credits):
 - ANS 140 Fundamentals of Horsemanship 2
 - ANS 148 Methods of Safe Horsemanship 2

3. Two credits from the following courses (2 credits):
 - ANS 143 Principles of Trail Riding 1
 - ANS 144 Introduction to Horse Breeding and Foal Management .. 1
 - ANS 148 Methods of Safe Horsemanship 2
 - ANS 248 Horse Reproductive Technology and Breeding Techniques 2

4. Complete 17 credits of course work from Montcalm Community College as approved by the student's academic advisor.

Applied Plant Science

Employment and career opportunities continue to expand for those who have training and educational preparation in applied plant science. In response to this regional plant industry need, Northwestern Michigan College (NMC) partners with Michigan State University to offer a combined program, which enables students to complete an Associate of Applied Science degree through Northwestern Michigan College as well as an MSU Institute of Agricultural Technology certificate - without leaving their local area.

Bringing together the world-acclaimed expertise of Michigan State University's College of Agriculture and Natural Resources and the "close to home" convenience of outstanding community colleges, the Applied Plant Science program prepares graduates for a wide range of employment and career choices. Each student receives personal, one-on-one help in selecting her/his program of study (including workplace internship). Students may earn their certificate in Applied Plant Science with concentrations in Commercial Horticulture Operations, Commercial Turfgrass Operations, or Landscape Horticulture.

Requirements for Applied Plant Science

1. All of the following courses (21 credits):
 - AT 293 Professional Internship in Agricultural Technology 3
 - CSS 210 Fundamentals of Soil Science 3
 - ENT 111 Basics of Applied Entomology 3
 - ESA 225 Land and Environmental Issues in Law and Policy 3
 - HRT 213 Landscape Maintenance ... 2
 - HRT 215 Landscape Industries Seminar 1
 - HRT 218 Landscape Irrigation .. 3
 - PLP 200 Plant Diseases and Pathogens 3

2. One of the following concentrations (9 credits):
 - Commercial Horticulture Operations
 - Complete 9 credits from the following:
 - HRT 205 Plant Mineral Nutrition 1
 - HRT 208 Pruning and Training Systems in Horticulture 3
 - HRT 221 Greenhouse Structures and Management 3
 - HRT 242 Passive Solar Greenhouses for Protected Cultivation 1
 - HRT 251 Organic Farming Principles and Practices 3
 - HRT 253 Compost Production and Use 1
 - HRT 332 Tree Fruit Production and Management 2
 - HRT 335 Berry Crop Production and Management 1
 - HRT 341 Vegetable Production and Management 3
 - Commercial Turfgrass Operations
 - All of the following courses:
 - HRT 205 Plant Mineral Nutrition 3
 - HRT 208 Pruning and Training Systems in Horticulture 3
 - HRT 221 Greenhouse Structures and Management 3
 - HRT 242 Passive Solar Greenhouses for Protected Cultivation 3
 - HRT 251 Organic Farming Principles and Practices 3
 - HRT 253 Compost Production and Use 1
 - HRT 332 Tree Fruit Production and Management 2
 - HRT 335 Berry Crop Production and Management 1
 - HRT 341 Vegetable Production and Management 3

Requirements for Beef Cattle Management

This program allows specialization in the area of beef cattle management in a one-year intensified program. It provides knowledge and experience in the management of both cow/calf and feedlot enterprises. There is a demand for industrious young people with practical experience to fill positions of responsibility as herd managers, assistant herd managers, and other livestock-related jobs.

Agriculture, in this rapidly changing era, requires aggressive young people who have specialized training in modern scientific practices. While the demands for success are great, the opportunities for success are limited only by a person’s desires or imagination.

Requirements for Beef Cattle Management

The student must complete 35 credits from the following:

1. All of the following courses:
 - ANS 110 Introductory Animal Agriculture 4
 - ANS 122A Feedlot Clerkship .. 2
 - ANS 122B Beef Cow Calf Clerkship 2
 - ANS 203 Principles of Livestock Feeding 2
 - ANS 205 Reproduction in Livestock 2
 - ANS 222 Introductory Beef Cattle Management 2
 - AT 045 Agricultural Communications 2
 - AT 293 Professional Internship in Agricultural Technology 6

2. Both of the following courses:
 - HRT 111 Beef Cattle Management 3
 - HRT 212 Landscape Plants I .. 3

3. Complete 7 credits of elective course work 7
Dairy Management

Because dairy farming is among the leading agricultural enterprises in Michigan, the dairy program has been developed to meet the specialized needs of the herd manager and commercial dairy farmer. Opportunities abound for persons with the combination of classroom training in the areas of dairy husbandry, nutrition, artificial insemination, crops, and farm management and the practical experience that may be obtained on any of the many cooperating dairy farms in Michigan and the surrounding states.

Programs of study tailored to meet the individual’s wants and needs are designed around the subject matter areas of agricultural economics, communications, crop and soil sciences, and agricultural mechanics. Additionally, students learn about the continuing changes in rural living, which have a great influence on agriculture.

Requirements for Dairy Management

The student must complete 48 credits from the following:

1. All of the following courses (32 credits):
 - ANS 132 Dairy Farm Management Seminar
 - ANS 203 Principles of Livestock Feeding
 - ANS 205 Reproduction in Livestock
 - ANS 215 Growth, Health and Lactation in Dairy Cattle
 - ANS 230 Dairy Herd Management
 - ANS 232 Introductory Dairy Cattle Management
 - ANS 233 Dairy Feed Management
 - ANS 235 Dairy Reproduction
 - ANS 238 Dairy Health Management
 - AT 045 Agricultural Communications
 - AT 071 Technical Mathematics
 - AT 291 Selected Topics in Agricultural Technology
 - CSS 110 Computer Applications in Agronomy

2. Complete 16 credits of elective course work from the following:
 - ABM 100 Decision-making in the Agri-Food System
 - ABM 130 Farm Management I
 - ABM 225 Commodity Marketing I
 - ANS 110 Introductory Animal Agriculture
 - ANS 222 Introductory Beef Cattle Management
 - AT 055 Agricultural Finance
 - CSS 101 Introduction to Crop Science
 - CSS 120 Agricultural Industry Issues
 - CSS 201 Forage Crops
 - CSS 212 Advanced Crop Production

Electrical Technology

The Electrical Technology certificate is an electrical apprenticeship training program with an emphasis on residential, commercial, and industrial wiring. Students study electrical codes, fundamentals, installations, motor controls, and solid state electronic applications. Throughout the program, students receive training in energy efficiency and alternate power systems. The certificate provides advanced technical training important for a successful career in the electrical field.

Integrated in the 15-month program are a wide range of disciplines through hands-on classroom and laboratory learning, and on-the-job training. The 4,000 square feet laboratory is equipped with electrical systems found in agricultural, commercial, and industrial facilities as well as systems that serve residential homes. The laboratory also has programmable logic controls, variable frequency drives, and standard AC and DC motors used in the field. The skills learned are used to become a licensed journey electrician through the State of Michigan, which is recognized by the State Electrical Administrative Board. Students who are interested may transfer into a four-year degree program at MSU upon completion of the certificate.

Requirements for Electrical Technology

1. All of the following courses (37 to 40 credits):
 - AE 172 Electrical Wiring I
 - AE 173 Electrical Occasions
 - AE 182 Electrical Wiring II
 - AE 185 Electrical Applications
 - AE 192 Electrical Wiring III
 - AE 194 Electrical Systems Planning
 - AT 045 Agricultural Communications
 - AT 271 Technical Mathematics
 - AT 293 Professional Internship in Agricultural Technology
 - CSS 110 Computer Applications in Agronomy
 - TSM 121 Fundamentals of Electricity
 - TSM 130 Energy Efficiency and Conservation in Agricultural Systems
 - TSM 222 Fundamentals of Automation and Controls
 - Students who demonstrate proficiency through placement testing for AT 045 and AT 071 will take elective course work to substitute the credit in those courses.

2. The following course or equivalent certification:
 - KIN 125 First Aid and Personal Safety
 - Equivalent certification is current first aid and CPR certification.

3. Complete 5 to 15 credits of additional Agricultural Technology courses chosen in consultation with and approved by the program coordinator.

Fruit and Vegetable Crop Management

The Fruit and Vegetable Crop Management program provides students an opportunity to apply practical knowledge and training on the selection, use, and management of fruit and vegetable crops. The program combines classroom instruction and theory with practical experience gained through field laboratories and a professional internship. Graduates of the program are prepared for careers in the fruit and vegetable industry.

Requirements for Fruit and Vegetable Crop Management

Students must complete 48 credits from the following:

1. All of the following courses (20 credits):
 - ANS 201 Principles of Livestock Feeding
 - ANS 205 Reproduction in Livestock
 - AT 045 Agricultural Communications
 - AT 071 Technical Mathematics
 - AT 291 Selected Topics in Agricultural Technology
 - CSS 110 Computer Applications in Agronomy

2. Completion of 7 additional elective credits in the college as approved by the program coordinator in the Institute of Agricultural Technology.

3. Completion of 21 credits of additional course work through Northwestern Michigan College. All course work must be approved by the program coordinator in the Institute of Agricultural Technology.

Fruit, Vegetable, and Organic Horticulture Management

The Fruit, Vegetable, and Organic Horticulture Management program provides students an opportunity to gain the necessary skills for a successful career in the multibillion dollar fruit and vegetable industries. The program combines classroom instruction and theory with practical experience gained through field laboratories and a professional internship. Graduates of the program work as owners, managers, buyers, or salespersons in a wide variety of horticultural food crop industries: fruit and vegetable production; farmers’ markets; organic farms and community-supported agriculture programs; urban gardening; irrigation design, installation, and management; public and/or private botanical gardens; and more.

Horticulture is a complex and diversified, yet fully integrated discipline that encompasses the biological, molecular, physical, management and marketing sciences and the arts to improve the production of nutritious, high-quality and safe food, advance the development and use of new specialty crops, enhance human health and well-being, and positively impact the natural and built environments.
Students may enroll in online courses, courses that are integrated with outreach and extension programs, and 5- or 10-week courses. They will have opportunities to be extensively involved in professional and social activities beyond the classroom including: working in research laboratories; assisting in field-based projects, assisting with food crop production; and becoming involved with the Student Organic Farm, and the Ecological Food and Farm Stewardship Club.

Requirements for Fruit, Vegetable, and Organic Horticulture Management

Students must complete 48 credits from the following:

1. All of the following courses (23 credits):
 - AT 045 Agricultural Communications ... 2
 - AT 071 Technical Mathematics .. 2
 - AT 293 Professional Internship in Agricultural Technology 3
 - CSS 110 Computer Applications in Agronomy 2
 - CSS 210 Fundamentals of Soil Science 2
 - ENT 111 Basics of Applied Entomology 2
 - HRT 109 Introduction to Applied Plant Science 2
 - HRT 206 Training and Pruning Plants .. 2
 - HRT 207 Horticulture Career Development 1
 - HRT 218 Irrigation Systems for Horticulture 1
 - PLP 105 Fundamentals of Applied Plant Pathology 2

 Students who demonstrate proficiency through placement testing for AT 045 and AT 071 will take elective course work to substitute the credit in those courses.

2. A minimum of 15 credits from the following courses:
 - ABM 100 Decision-making in the Agri-Food System 3
 - ABM 222 Agribusiness and Food Industry Sales (W) 3
 - AT 055 Agricultural Finance .. 3
 - AT 291 Selected Topics in Agricultural Technology 3
 - HRT 204 Plant Propagation ... 2
 - HRT 205 Plant Mineral Nutrition ... 1
 - HRT 221 Greenhouse Structures and Management 1
 - HRT 242 Passive Solar Greenhouses for Protected Cultivation 1
 - HRT 243 Organic Transplant Production 1
 - HRT 251 Organic Farming Principles and Practices 1
 - HRT 253 Compost Production and Use 1

 Students who choose AT 291 Selected Topics in Agricultural Technology must enroll in the section titled 'Spanish – Horticulture Industries'.

3. Completion of 10 additional elective credits in the college as approved by program coordinator in the Institute of Agricultural Technology.

Grounds Management

The Grounds Management certificate is delivered in partnership between Wayne County Community College District and the Michigan State University Institute of Agricultural Technology. It is designed for persons interested in careers managing commercial, private, school, or community athletic facilities and landscapes.

Graduates of the program will receive a certificate from the Michigan State University Institute of Agricultural Technology and will have the opportunity to complete a test to become a certified pesticide applicator with the Michigan Department of Agriculture. Additional course work may lead to a Certificate in Grounds Management from Michigan State University and a Certificate in Facilities Maintenance from Wayne County Community College District, making the graduate more qualified to manage both indoor and outdoor facilities. Students may continue their course work to obtain an Associate in Applied Science Degree from Wayne County Community College District in addition to the certificate from Michigan State University.

Requirements for Grounds Management

The student must complete 50 credits from the following:

1. All of the following courses (25 credits):
 - AT 291 Special Topics in Agricultural Technology 1
 - AT 293 Professional Internship in Agricultural Technology 3
 - CSS 202 The World of Turf .. 2
 - CSS 203 Applied Turf Management .. 1
 - CSS 210 Fundamentals of Soil Science 3
 - CSS 289 Turfgrass Strategies: Integration and Synthesis 2
 - CSS 292 Management of Turfgrass Weeds 3
 - ENT 111 Basics of Applied Entomology 2
 - HRT 214 Landscape and Turfgrass Business Operations 2

 HRT 218 Landscape Irrigation .. 3
 PLP 104 Applied Plant Pathology for Ornamentals and Turf 3

2. Complete 25 credits of coursework from Wayne County Community College District as approved by the student's academic advisor.

Horse Management

The horse management program places emphasis on acquisition of equine husbandry skills that will prepare students for jobs in the ever-growing horse industry or for the management of their own farms and horses. Students are required to complete a one-semester placement training experience working with professionals in the horse industry. Study abroad opportunities may also be incorporated into the student’s program. The horse industry has exciting job opportunities for students who have a passion for horses and a strong work ethic. Students who complete this program will be prepared for positions ranging from assistant trainers to managers of small farms and from racetrack grooms to tackle and equipment sales personnel.

Requirements for Horse Management

The student must complete 48 credits from the following:

1. All of the following courses (37 to 40 credits):
 - ABM 130 Farm Management .. 3
 - ANS 140 Fundamentals of Horsemanship 2
 - ANS 145 Horse Behavior and Welfare 1
 - ANS 146 Fundamentals of Horse Training 3
 - ANS 147 Horse Management Placement Seminar 1
 - ANS 218 Horse Management Clerkship 2
 - ANS 200D Introductory Judging of Horses 2
 - ANS 203 Principles of Livestock Feeding 2
 - ANS 205 Reproduction in Livestock ... 2
 - ANS 206 Draft Horses ... 2
 - ANS 240 Horse Farm Management .. 3
 - ANS 242 Introductory Horse Management 3
 - ANS 243 Horse Nutrition and Feeding 2
 - ANS 245 Horse Exercise Physiology ... 2
 - AT 045 Agricultural Communications 2
 - AT 071 Technical Mathematics ... 2
 - AT 293 Professional Internship in Agricultural Technology 6

2. Complete 8 to 11 credits of elective course work from the following:
 - ANS 110 Introductory Animal Agriculture 4
 - ANS 141 Draft Horse Basics .. 2
 - ANS 142 Horse Training for Competition 2
 - ANS 148 Methods of Instructing Safe Horsemanship 2
 - ANS 290 Independent Study in Agricultural Technology 2 to 6
 - ANS 300D Advanced Horse Judging ... 2
 - AT 291 Selected Topics in Agricultural Technology 2
 - CSS 371 Forage Crops ... 3
 - KIN 125 First Aid and Personal Safety 3

 Study abroad .. 6

Landscape and Nursery Management

The Landscape and Nursery Management program at Michigan State University provides students an opportunity to gain the necessary skills for a successful career in the multibillion dollar green industry. The program combines classroom instruction and theory with practical experience gained through field laboratories and a professional internship. Graduates of the program work as owners, managers, buyers, or salespersons in a wide variety of horticultural industries: landscape design, construction, and management; irrigation design, installation, and management; retail garden center management; herbaceous and woody plant production; urban tree management; and public and/or private botanical gardens.

Horticulture is a complex and diversified, yet fully integrated discipline that encompasses the biological, molecular, physical, management and marketing sciences and the arts to improve the production of nutritious, high-quality and safe food, advances the development and use of new specialty crops, enhances human health and well-being, and positively impacts the natural and built environments.

Students will have opportunities to enroll in online courses, courses integrated with outreach and extension programs, and 5-
or 10-week module courses. Students are extensively involved in activities beyond the classroom such as working in research laboratories; assisting in field-based projects, landscape, greenhouse, garden, and nursery operations; running the Horticulture Club’s annual spring show and plant sale; and participating in academic and field events associated with the Professional Landcare Network (PLANET).

The Landscape and Nursery Management program is offered by the Department of Horticulture in cooperation with the Institute of Agricultural Technology.

Requirements for Landscape and Nursery Management

| CREDITS |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| 1. All of the following courses (30 credits): |
AT 045 Agricultural Communications	2
AT 291 Selected Topics in Agricultural Technology	2
CSS 101 Pesticide and Fertilizer Application Technology	2
CSS 202 World of Turf	3
CSS 202L World of Turf Lab	1
HRT 218 Irrigation Systems for Horticulture	3
HRT 221 Landscape Computer Aided Design	2
HRT 227 Greenhouse Structures and Management	3
ENT 111 Basics of Applied Entomology	2
HRT 109 Introduction to Applied Plant Science	2
HRT 211 Landscape Plants I	3
HRT 212 Landscape Plants II	3
HRT 213 Landscape Maintenance	3
HRT 213L Landscape Maintenance Field Laboratory	1
HRT 214 Landscape and Turfgrass Business Operations	2
PLP 105 Fundamentals of Applied Plant Pathology	2
Students should enroll in the Spanish Horticulture Industries section of AT 291.	
2. Complete at least 9 credits from the following courses:	
AE 053 Engine and Equipment Maintenance	2
AT 291 Selected Topics in Agricultural Technology	2
CSS 202 World of Turf	3
CSS 202L World of Turf Lab	1
HRT 204 Plant Propagation	2
Students should enroll in the Spanish Horticulture Industries section of AT 291.	
3. Complete a minimum of 9 additional Agricultural Technology courses chosen in consultation with and approved by the program coordinator.	

Landscape and Lawn Management

The Landscape and Lawn Management program is a unique partnership between the Michigan State University College of Agriculture and Natural Resources’ Institute of Agricultural Technology and Grand Rapids Community College. This program provides students an opportunity to gain the necessary skills for a successful career in the billion-dollar landscape and nursery industry without leaving the Grand Rapids area. Graduates of the program work as owners, managers, buyers, or salespersons in retail firms, commercial landscape construction and maintenance operations, and as well as for private enterprises.

The program combines the theories and principles of classroom instruction with the practical experience of placement training. Although the emphasis is on landscape and lawn management, other important aspects of a college education are included. Students are required to take courses in fields such as written communications, botany, business management, computer science, soil science, plant pathology, entomology, ornamental plant identification, and much more.

Upon completion of the program requirements for the certificate, students also have the option of completing 20 additional credits at Grand Rapids Community College to obtain an Associate of Arts and Sciences degree. The additional courses are in business, chemistry, written communications, humanities, and social science.

Requirements for Landscape and Lawn Management

| CREDITS |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| 1. All of the following courses (25 credits): |
AT 293 Professional Internship in Agricultural Technology	3
CSS 202L World of Turf Lab	1
CSS 210 Fundamentals of Soil Science	3
ENT 110 Applied Entomology of Economic Plants	3
HRT 211 Landscape Plants I	3
HRT 212 Landscape Plants II	3
HRT 213 Landscape Maintenance	3
HRT 214 Landscape and Turfgrass Business Operations	3
PLP 104 Applied Plant Pathology for Ornamentals and Turf	3
2. Complete a minimum of 3 credits of course work from the Institute of Agricultural Technology as approved by the program coordinator.	
3. Complete 20 credits of course work from Grand Rapids Community College as approved by the program coordinator.	

Landscape Management

The Landscape Management program provides training for students to select, use, and manage landscape plants and lawns. Students obtain a working knowledge of plant growth, development, and identification which prepares them for careers in the green industry.

Requirements for Landscape Management

| CREDITS |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Students must complete 48 credits from the following: |
| 1. All of the following courses (27 credits): |
AT 293 Professional Internship in Agricultural Technology	3
CSS 210 Fundamentals of Soil Science	3
ENT 110 Applied Entomology of Economic Plants	3
HRT 207 Horticulture Career Development	1
HRT 211 Landscape Plants I	3
HRT 212 Landscape Plants II	3
HRT 213 Landscape Maintenance	2
HRT 218 Irrigation Systems for Horticulture	3
PLP 200 Plant Diseases and Their Pathogens	3
2. Completion of 21 credits of additional course work through Northwestern Michigan College. All course work must be approved by the program coordinator in the Institute of Agricultural Technology.	

Livestock Industries

The Livestock Industries certificate program is designed to give students a professional advantage in the livestock production career field of their choice. Students are exposed to a broad spectrum of applied course work and hands-on education at the university’s facilities and an extensive industry internship. Students engage with leading professors, researchers, and future professional colleagues in a manner that is directly applicable to a functioning livestock operation and also develop communication skills while bridging the gap between theory and practical best management practices.

Requirements for Livestock Industries

| CREDITS |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| 1. All of the following courses (26 credits): |
ABM 130 Farm Management I	3
ANS 110 Introductory Animal Agriculture	4
ANS 201 Animal Products	3
ANS 203 Principles of Livestock Feeding	2
ANS 295 Structure and Function of Livestock	2
AT 045 Agricultural Communications	2
AT 071 Technical Mathematics	2
AT 293 Professional Internship in Agricultural Technology	3
CSS 101 Introduction to Crop Science	2
CSS 110 Computer Applications in Agronomy	2
2. Two of the following courses (5 or 6 credits):	
ANS 122A Feedlot Clerkship	2
ANS 222 Introductory Beef Cattle Management	3
ANS 252 Introduction to Management of Avian Species	3
ANS 262 Introductory Sheep Management	3
ANS 272 Introductory Swine Management	3
3. Complete a minimum of 10 credits in consultation with and approved by the program coordinator.	
Turfgrass Management

A rapidly expanding turfgrass industry offers many challenging job opportunities for trained personnel. The growing demand for recreational areas and rededication to the maintenance of beauty in America has created a shortage of turfgrass specialists.

Golf Course Emphasis

The golf course emphasis provides the fundamentals of turfgrass technology necessary primarily for the supervision and management of golf courses. Attractive starting salaries and many job opportunities are available with excellent potential for advancement. Previous work experience on a golf course maintenance crew is expected.

Requirements for the Golf Course Emphasis

All of the following courses (54 credits):

- AT 291 Selected Topics in Agricultural Technology ... 4
- AT 293 Professional Internship in Agricultural Technology 3 to 6
- CSS 110 Computer Applications in Agronomy .. 3
- CSS 178 Turfgrass Irrigation .. 3
- CSS 181 Pesticide and Fertilizer Application Technology 3
- CSS 210 Fundamentals of Soil Science ... 3
- CSS 232 Turfgrass Management .. 4
- CSS 262 Turfgrass Management Seminar .. 2
- CSS 264 Golf Course Design and Construction Techniques 2
- CSS 267 Introduction to Turf Design and Construction 3
- CSS 269 Turfgrass Strategies: Integration and Synthesis 2
- CSS 272 Turfgrass Soil Fertility ... 2
- CSS 292 Management of Turfgrass Weeds .. 3
- CSS 382 Turfgrass Physiology ... 2
- ENT 364 Turfgrass Entomology .. 3
- HRT 213 Landscape Maintenance ... 2
- HRT 213L Landscape Maintenance Field Laboratory 1
- PLB 105 Plant Biology .. 3
- PLP 366 Turf Pathology .. 3
- Elective ... 3

Students must enroll in two separate 2-credit sections of AT 291; Turf and Landscape Analytic Practices for 2 credits and Spanish for Turf and Landscape for 2 credits.

Students must enroll in two separate 1-credit sections of CSS 262.

Requirements for the Sports and Commercial Turf Management Emphasis

The sports and commercial turf management emphasis is designed for persons interested in careers in these areas. These are rapidly growing areas of turfgrass management and offer rewarding job opportunities.

Sports and Commercial Turf Management Emphasis

The sports and commercial turf management emphasis provides courses in the areas of horticulture and landscape management and specializes in the needs of these industries.

Requirements for the Sports and Commercial Turf Management Emphasis

All of the following courses (54 credits):

- AT 291 Selected Topics in Agricultural Technology ... 4
- AT 293 Professional Internship in Agricultural Technology 3 to 6
- CSS 110 Computer Applications in Agronomy .. 3
- CSS 178 Turfgrass Irrigation .. 3
- CSS 181 Pesticide and Fertilizer Application Technology 3
- CSS 210 Fundamentals of Soil Science ... 3
- CSS 232 Turfgrass Management .. 4
- CSS 262 Turfgrass Management Seminar .. 2
- CSS 267 Introduction to Turf Design and Construction 3
- CSS 269 Turfgrass Strategies: Integration and Synthesis 2
- CSS 272 Turfgrass Soil Fertility ... 2
- CSS 292 Management of Turfgrass Weeds .. 3
- CSS 382 Turfgrass Physiology ... 2
- ENT 364 Turfgrass Entomology .. 3
- HRT 213 Landscape Maintenance ... 2
- HRT 213L Landscape Maintenance Field Laboratory 1
- PLB 105 Plant Biology .. 3
- PLP 366 Turf Pathology .. 3
- Electives ... 5 to 8

Students who do not demonstrate English proficiency through the IAT placement test or college-level transfer credit must complete AT 045 Agricultural Communications (2 credits) or an equivalent course.

Program offerings in both emphasis areas are integrated with other areas in turfgrass and landscape and nursery. Courses include technical, communication, mathematics, and business content. Placement training opportunities are offered at many leading industrial businesses.

Swine Management

Food production, including that of pork, is increasing along with the world's population due to the use of scientific technologies and skilled people. If we are to keep pace with the growing population, we will need more of these two vital inputs. The tasks of developing new technologies and new human resources are equally challenging.

The swine management program is designed to prepare people for careers in modern pork production anywhere in the world. The one-year program judiciously balances "hands-on" training with classroom instruction in the areas of animal care, nutrition, housing management, swine health, reproduction, records management, environmental management and personnel management.

Requirements for Swine Management

The student must complete 35 credits from the following:

1. All of the following courses (32 credits):
 - AEE 110 Foundations of ANR Communications: Learning and Leadership ... 3
 - ANS 110 Introductory Animal Agriculture ... 4
 - ANS 171 Swine Clerkship .. 2
 - ANS 203 Principles of Livestock Feeding ... 2
 - ANS 272 Introductory Swine Management ... 3
 - AT 045 Agricultural Communications ... 2
 - AT 055 Agricultural Finance ... 3
 - AT 071 Technical Mathematics ... 2
 - AT 203 Selected Topics in Agricultural Technology ... 2
 - AT 076 Professional Internship in Agricultural Technology ... 6
 - CSS 110 Computer Applications in Agronomy ... 2

2. Complete 3 credits of elective course work ... 3

Viticulture

The Viticulture certificate is delivered in partnership between Northwestern Michigan College, the Viticulture and Enology Science and Technology Alliance (VESTA), and the Michigan State University Institute of Agricultural Technology. The combination of online viticulture courses delivered by experts from throughout the United States, hands-on experience at local vineyards, fresh markets, juice processors, packing plants and wineries and fundamental plant science courses provide graduates with the specific expertise and skills needed for careers in the rapidly expanding grape industry – supplying grapes for table, juice and wine making.

Graduates of the program will receive a certificate from the Michigan State University Institute of Agricultural Technology. Students may continue their course work to obtain an Associate in Applied Science Degree from the community college partners in addition to the certificate from Michigan State University. Shad students wish to continue their education, the appropriate pre-designated credits may be applied to a bachelor's degree program at Michigan State University if students meet the established transfer guidelines.
Requirements for Viticulture

1. All of the following courses (16 credits):
 - AT 202: Agricultural Regulations, Compliance and Safety (3)
 - AT 293: Professional Internship in Agricultural Technology (3)
 - ENT 110: Applied Entomology of Economic Plants (3)
 - HRT 234: Current Issues in Viticulture and Enology (1)
 - HRT 322: Principles and Practices of Grape Production (3)
 - PLP 200: Plant Diseases and their Pathogens (3)

2. Complete 21 credits of additional course work through Northwestern Michigan College as well as 16 credits through the Viticulture and Enology Science and Technology Alliance. All course work must be approved by the student’s academic advisor.

Admission

Applicants for technical programs must be high school graduates. A strong background in communications, mathematics, and science will help prepare the student for successful completion of a technical training program.

The admission process includes a consideration of the student’s academic record, work experience, recommendations from employers, test scores, and other criteria. In some cases, students may be invited to Michigan State University for an interview.

Financial Aid

Institute of Agricultural Technology students are eligible for financial aid. Scholarships are provided by industry groups and individual business firms and are awarded to students who have demonstrated superior scholastic ability or an outstanding work record.

Veterans Education

The programs offered by the Institute of Agricultural Technology are approved by the Department of Veterans Affairs as Cooperative Veterans Training Programs. Under some Chapters of Title 38, U.S. Code, veterans may receive educational benefits. Veterans planning to enroll should contact the Veterans Certification Section of the Office of the Registrar to determine their eligibility.

Michigan Works

Students in the Institute of Agricultural Technology are eligible for sponsorship under the guidelines of the Michigan Works Program. Students must arrange sponsorship with the appropriate Michigan Works office.

Institute of Agricultural Technology Transfer Student Admission

Institute of Agricultural Technology students who have completed their respective Institute of Agricultural Technology programs will, upon completion of the applications process, be considered for transfer admission to Michigan State University. Acceptance is determined by the applicant’s previous academic record and his or her proposed program.

To complete the application process, the student must:

1. Complete and submit a signed request (Student Intent to Transfer Form) to the Institute of Agricultural Technology, as soon as the student develops an interest in transferring, in order to inform the Institute of Agricultural Technology of the desire to transfer to a baccalaureate program. The request must be signed by the program coordinator and by the Institute of Agricultural Technology Director in order to facilitate proper student advising by the Institute of Agricultural Technology.

2. Have a minimum grade point average of 3.0 upon completion of the Institute of Agricultural Technology program and satisfy all other requirements for admission.

3. Earn a minimum grade of 2.0 in WRA 110 or its equivalent.

4. Earn a minimum grade of 2.0 in MTH 103 or its equivalent.

5. Apply to the baccalaureate program using the application form from the Office of Admissions and Scholarships. It is recommended that students apply at the beginning of the semester they are to graduate from the Institute of Agricultural Technology.

6. Additional requirements may apply for limited enrollment programs.

7. Complete all other undergraduate application requirements.

For additional information regarding transfer admission, refer to the Transfer Student Admission statement in the Undergraduate Education section of this catalog.

MSU AgBioResearch

Douglas D. Buhler, Director

The research programs of MSU AgBioResearch help to keep Michigan agriculture competitive, foster stewardship of natural resources, ensure food safety, build stronger, healthier families and communities, and spur economic development throughout the state. The mission of AgBioResearch - to engage in innovative, leading edge research that ensures the wise use of agricultural, natural and community resources and enhances the quality of life in Michigan, the nation and the world - is an integral part of Michigan State University’s responsibilities as a land-grant university.

Based in the College of Agriculture and Natural Resources, AgBioResearch is composed of a network of on-campus laboratories and research centers across the state. More than 300 faculty members from 29 academic departments, research institutes and laboratories receive support from AgBioResearch. Beyond the college, AgBioResearch is affiliated with the College of Arts and Letters, College of Communication Arts and Sciences, College of Engineering, College of Natural Science, College of Social Science, and the College of Veterinary Medicine. AgBioResearch helps Michigan agriculture compete nationally and globally by developing ways to increase production efficiency, improve product quality and meet market needs. Other research focuses on food safety and security, natural resource management and the emerging bioeconomy. Research also concentrates on economic development, recreation and tourism, climate change and water quality.

AgBioResearch activities are conducted in laboratories, greenhouses and several south campus experimental plots in East Lansing. Research also takes place at the 13 off-campus field research centers ranging from a forest biomass innovation center in the Upper Peninsula to fruit and vegetable research centers in the southernmost counties of the state.

AgBioResearch, following in the land-grant tradition, is about more than agriculture. It is an idea for higher education that combines practical information with innovative scientific studies to generate knowledge to meet rapidly changing needs in the state and nation.

Organized under the Hatch Act of 1887, AgBioResearch has been part of Michigan State University for most of the university’s 150-year history. Funding comes from the state and federal governments, commodity groups, industries, foundations and individuals.
MICHIGAN STATE UNIVERSITY EXTENSION

Raymond Hammerschmidt, Director

Michigan State University (MSU) Extension helps people improve their lives by bringing MSU’s knowledge resources directly to individuals, communities and businesses. For more than 100 years, MSU Extension has helped grow Michigan’s economy by equipping residents with the information they need to do their jobs better, raise healthy and safe families, build their communities and empower children to realize a successful future.

With a focus on four statewide program areas and a presence in every Michigan county, locally based Extension faculty and staff members provide tools to help people enhance their quality of life. From guiding a community meeting to presenting an online webinar, MSU Extension educators work to provide the most current information when and where people need it to ensure success – in the workplace, at home and in their communities. Campus-based faculty members in four MSU colleges share expertise derived from research and other scholarly activities to support local Extension programs.

Whether it is helping grow Michigan’s agriculture economy, capturing opportunities that use our natural resources in a sustainable way, controlling health care costs by giving individuals the information they need to manage chronic illness or preparing tomorrow’s leaders, MSU Extension is creating opportunities and building communities that make Michigan strong, prosperous and a great place to live.

MSU Extension was established in 1914 and is part of a national educational system based in the nation’s land-grant universities and funded jointly by the U.S. Department of Agriculture, state and local governments.

Extension programming is focused in four statewide programs: agriculture and agribusiness, health and nutrition, children and youth, and economic and community development.

Agriculture and Agribusiness

Agriculture is one of the fastest growing sectors of the Michigan economy and MSU Extension works with all segments of Michigan agriculture to improve farmer’s profitability and sustainability. MSU Agricultural and Agribusiness Extension develops and delivers research grounded, need-based programming to improve the efficiency and sustainability of farmers, while also leading programs to improve water and land stewardship, improve consumer understanding of modern farming practices as well as develop farm-based energy alternatives. Furthermore MSU Extension provides programs to farmers who are beginning farming, are considering new ventures in specialty crops, or alternative commodities. For agriculture entrepreneurs, MSU Extension provides counseling and review of new business ventures in the development of value-added products. This better positions Michigan as a leader in providing affordable, quality, safe food into local, national and international markets. Our underlying goal is to improve the vitality of the Michigan agricultural economy by providing means to improve the production of safe, high quality, nutritious food, bio-based materials and fuels and improve people’s understanding of farming practices.

Health and Nutrition

Michigan State University Extension’s strength is its community-based approach to meeting local needs and its unwavering efforts to serve the needs of children, families and communities, regardless of whether they are in urban, suburban or rural settings. In all of its programming, MSU Extension promotes healthy lifestyles and equips Michigan residents to take control of their personal health through research-based education and action-oriented tools. Our goal is to help people lead healthy lives and contribute to their communities.

Children and Youth

MSU Extension’s children and youth programs address needs and issues from birth through age 19. Early childhood education programs (birth to 5) provide parents and child care providers with educational resources related to child development, emerging literacy and school readiness. The 4-H program (ages 5-19) gives youth and adults opportunities to experience the benefits of working together around common interests while participating in hands-on learning activities that build leadership and teach practical life skills in hundreds of areas including science and technology, communications, health and civic engagement. Programs are designed to develop employability skills and encourage career exploration.

Programs help parents, care providers and other interested adults engage children and youth in age appropriate ways as they build skills, develop assets and explore their world.

Economic and Community Development: Greening Michigan

MSU Extension staff members help residents build stronger communities by enhancing community engagement, strengthening government leadership and financial structures, advancing entrepreneurship, fostering natural resource stewardship, developing local food systems and enhancing the quality of place. Outreach programs also strengthen Michigan communities and families through home ownership and financial literacy education.

MSU PRODUCT CENTER

FOOD-AG-BIO

H. Christopher Peterson, Director

The MSU Product Center Food-Ag-Bio was established in 2003, by the Michigan Agricultural Experiment Station (now AgBioResearch) and Michigan State University Extension, to improve economic opportunities in the Michigan agriculture, food and bio-products sectors. The Product Center assists new entrepreneurs and existing businesses to develop and commercialize high value, consumer-responsive products and services. The Center serves as a single doorway for these businesses to MSU’s vast and varied technical expertise, research, outreach, and educational services related to food and agriculture. The Center has three interrelated programs: New and Emerging Ventures, Accelerated Growth Services, and Strategic Research.

New and Emerging Ventures utilize campus-based staff and the statewide MSUE Innovation Counselors Network to counsel business ventures from earliest idea to venture launch. In addition to business development, technical expertise in product development, food processing, labeling, and regulatory compliance is provided.

Accelerated Growth Services work with well-established agriculture and food businesses that have opportunities for growth. Primarily senior campus staff work with these ventures.
At all levels of venture size and scope, counselors nurture new market and product development opportunities by tapping into Michigan State University's technical expertise. Project specialists also collaborate with external consultants, industry groups and governmental agencies.

Strategic Research develops the information needed to support evaluation of concepts, products and businesses. It also produces long-range studies for Michigan's agricultural, food and bio-products sectors. Most important among these is periodic estimates of the economic value of Michigan's food and agricultural system, and the Michigan Food and Agricultural Index. This information is critical to public and private decision makers.

INSTITUTE of WATER RESEARCH

Jon Bartholic, Director

The Michigan State University Institute of Water Research was established in 1961 to promote and coordinate water research, education, and advisory services for the inland waters and Great Lakes of Michigan. Serving as a boundary organization, the Institute is able to work across disciplinary boundaries and develop partnerships with campus departments, local and state agencies, and other Universities and organizations in the broad water arena. The Institute is a focal point to which University and off-campus communities can turn for advice and assistance in support of water research issues. It is one of 54 state institutes designated by Congress to administer research funds authorized under the Water Research Resources Act of 1984. With this base and through private, state, and federal funds, the Institute supports integrated research projects for faculty and graduate students on campus and in other universities.

The Institute provides leadership in building partnerships and implementing programs at the state, regional, and international level, and in solving real-world water-related problems. It uses advanced data management, decision support systems, integrated social networking components, and cutting-edge technology to address land and water resources issues such as nonpoint source pollution, nutrient reduction and ecological processes. The Institute also coordinates online education and training programs, including a professional certificate program for surface and ground water protection and watershed management. Through its outreach programming and dissemination of information on water research, the Institute provides citizens throughout the state and region with science-based information and knowledge that enables them to make better informed decisions regarding water issues.