COMPUTER SCIENCE AND ENGINEERING
CSE

Department of Computer Science and Engineering
College of Engineering

100 Computer Science as a Profession
Fall, Spring. 1(1-0) RB: High school algebra; ability to use a computer for browsing, email, and report preparation.

101 Computing Concepts and Competencies
Fall, Spring, Summer. 3(2-2) SA: CPS 100, CPS 130
Core concepts in computing including information storage, retrieval, management, and representation. Applications from specific disciplines. Applying core concepts to design and implement solutions to various focal problems, using hardware, multimedia software, communication and networks.

102 Algorithmic Thinking and Programming
Fall, Spring, Summer. 3(1-4) P: (MTH 103 or MTH 103B or MTH 116 or MTH 124 or MTH 132 or MTH 152H or LB 118) or designated score on Mathematics Placement test Not open to students with credit in CSE 231.
The fundamentals of computing, algorithms and programming, using a high-level language such as Python. Integrating programs with other applications.

131 Technical Computing and Problem Solving
Spring. 3(1-3) P: (MTH 124 or concurrently) or (MTH 132 or concurrently) or (MTH 152H or concurrently) or (LB 118 or concurrently) SA: CPS 131
Use of computing systems for technical problem solving in engineering and science.

201 Fundamentals of Information Technology
Fall, Spring, 3(3-0) P: (CSE 101 or CSE 131) and (MTH 103 or MTH 116 or MTH 124 or MTH 132 or MTH 152H or LB 118) RB: high school algebra; literacy in web and computer tools, such as editor and browser. SA: CSE 240
Digital representation of objects such as numbers, signals, and 3-dimensional shapes. Algorithms that operate on digital objects. Computer communications and the Internet. Computer security and web services.

220 Programming in C
Fall, Spring. 3(2-2) P: (EGR 100 or ECE 101) and ((MTH 132 or concurrently) or (MTH 152H or concurrently) or (LB 118 or concurrently)) R: Open to undergraduate students. Not open to students with credit in CSE 251.
Basics of programming in C. Data types, operators, control, functions, arrays, pointers, file processing, testing and debugging.

231 Introduction to Programming I
Fall, Spring. Summer. 4(3-2) P: (LB 118 or concurrently) or (MTH 124 or concurrently) or (MTH 132 or concurrently) or (MTH 152H or concurrently) SA: CSE 230
Introduction to programming using Python. Design, implementation and testing of programs to solve problems such as those in engineering, mathematics and science. Programming fundamentals, functions, objects, and use of libraries of functions.

232 Introduction to Programming II
Fall, Spring. 4(3-2) P: (CSE 231 or CMSE 202) and (LB 118 or MTH 124 or MTH 132 or MTH 152H) SA: CSE 330
Continuation of object-centered design and implementation in C++. Building programs from modules. Data abstraction and classes to implement abstract data types. Static and dynamic memory allocation. Data structure implementation and algorithm efficiency. Lists, tables, stacks, and queues. Templates and generic programming.

260 Discrete Structures in Computer Science
Fall, Spring, 4(5-0) P: MTH 133 or MTH 126 or MTH 153H or LB 119 SA: CSE 260

290 Independent Study in Computer Science
Fall, Spring. 1 credit. A student may earn a maximum of 3 credits in all enrollments for this course. R: Approval of department; application required. SA: CPS 290
Supervised individual study in an area of computer science.

291 Selected Topics in Computer Science
Fall, Spring. 1 to 4 credits. A student may earn a maximum of 8 credits in all enrollments for this course. R: Approval of department; application required. SA: CPS 291
Topics selected to supplement and enrich existing courses and lead to the development of new courses.

320 Computer Organization and Architecture
Fall, Spring. 3(3-0) P: CSE 232 and CSE 260 R: Open to students in the Department of Computer Science and Engineering or in the Lyman Briggs Computer Science Coordinate Major or in the Lyman Briggs Computer Science Major and open to juniors or seniors in the College of Engineering.

331 Algorithms and Data Structures
Fall, Spring. 3(3-0) P: (CSE 232) and (CSE 260 or CMSE 202) R: Open to students in the Department of Computer Science and Engineering or in the Computer Engineering Major or in the Lyman Briggs Computer Science Coordinate Major or in the Lyman Briggs Computer Science Major and open to juniors or seniors in the College of Engineering.
Linear data structures, trees, graphs and algorithms which operate on them. Fundamental algorithms for searching, sorting, string matching, graph problems. Design and analysis of algorithms.

335 Object-oriented Software Design
Fall, Spring. 4(4-0) P: CSE 232 and CSE 260 R: Open to students in the Department of Computer Science and Engineering or in the Computer Engineering Major or in the Lyman Briggs Computer Science Coordinate Major or in the Lyman Briggs Computer Science Major or in the Computer Science Discipline Teaching Minor. SA: CSE 370
Development of object-oriented software, including design, implementation, testing and maintenance.

402 Biometrics and Pattern Recognition
Fall. 3(3-0) P: (CSE 331) and (STT 351 or STT 380 or STT 430 or STT 441) R: Open to juniors or seniors in the College of Engineering or in the Computer Science Minor or in the Lyman Briggs Computer Science Coordinate Major or in the Lyman Briggs Computer Science Major.
Automated techniques used for feature extraction and pattern matching focusing on face, fingerprint and iris recognition.

404 Introduction to Machine Learning
Fall. 3(3-0) P: Interdepartmental with Computational Mathematics, Science, & Engineering and Statistics and Probability. Administered by Computer Science and Engineering. P: (CSE 331) and (STT 351 or STT 380 or STT 430 or STT 441) RB: Basic linear algebra R: Open to juniors or seniors in the College of Engineering or in the Computer Science Minor or in the Lyman Briggs Computer Science Coordinate Major or in the Lyman Briggs Computer Science Major.
Core principles and techniques of all machine learning including model design and programming algorithms.

410 Operating Systems
Fall. 3(3-0) P: (CSE 232 and CSE 260) and CSE 325 R: Open to juniors or seniors in the College of Engineering or in the Computer Science Minor or in the Lyman Briggs Computer Science Coordinate Major or in the Lyman Briggs Computer Science Major or in the Computer Science Discipline Teaching Minor. SA: CPS 410
Principles and evolution of operating systems. Processes and concurrency. Operating systems management. Case studies of modern operating systems.
415 Introduction to Parallel Computing
Spring. 3(3-0) P: CSE 320 and CSE 331 R: Open to juniors or seniors in the College of Engineering or in the Computer Science Minor or in the Lyman Briggs Computer Science Coordinate Major or in the Lyman Briggs Computer Science Major. Not open to students with credit in CMSE 401.
Core principles and techniques of parallel computing including architectures, programming models, and algorithm design. Performance analysis and optimization. Use of parallel computers.

420 Computer Architecture
Spring. 3(3-0) P: (CSE 232 and CSE 260) and (CSE 320 or ECE 331) R: Open to juniors or seniors in the College of Engineering or in the Computer Science Minor or in the Lyman Briggs Computer Science Coordinate Major or in the Lyman Briggs Computer Science Major or in the Computer Science Discipline Teaching Minor; SA: CPS 420 Organization and architecture of computer systems. Arithmetic Logic Unit and control unit implementation. Hardwired and microprogrammed control. Pipelined processors; data and branch hazards. Memory hierarchy and storage devices. Input-output and peripheral devices. Advanced architectures.

422 Computer Networks
Fall; Spring. 3(3-0) P: (STT 351 or ECE 280 or STT 430 or STT 441) and CSE 325 R: Open to juniors or seniors in the College of Engineering or in the Computer Science Minor or in the Lyman Briggs Computer Science Coordinate Major or in the Lyman Briggs Computer Science Major; SA: CPS 422 Computer network architectures and models. Physical media and signaling. Data link protocols. Medium access control. Routing and IP. Transport services including TCP/IP/UDP. Network applications. Local-area and wide-area networks.

425 Introduction to Computer Security
Spring. 3(3-0) P: CSE 422 or concurrently R: Open to juniors or seniors in the College of Engineering or in the Computer Science Minor or in the Lyman Briggs Computer Science Coordinate Major or in the Lyman Briggs Computer Science Major. Theory and practice of security engineering. Security protocols. Cryptography and cryptanalysis. Smartcards. Network security and intrusion detection. Common system attacks.

429 Interdisciplinary Topics in CyberSecurity
Spring. 3(3-0) Interdepartmental with Criminal Justice. Administered by Computer Science and Engineering. P: CSE 101 or CSE 131 or CSE 231 R: Open to juniors or seniors or graduate students. Technical, legal, criminal, medical/business, and communication aspects of CyberSecurity.

431 Algorithm Engineering
Fall. Spring. 3(3-0) P: CSE 331 R: Open to juniors or seniors in the College of Engineering or in the Computer Science Minor or in the Lyman Briggs Computer Science Coordinate Major or in the Lyman Briggs Computer Science Major. Algorithm analysis, design, implementation, and optimization for a broad range of problem categories including techniques to recognize and cope with intractable problems.

435 Software Engineering
Fall. 3(3-0) P: (CSE 331 and CSE 335) and completion of Tier I writing requirement R: Open to juniors or seniors in the College of Engineering or in the Computer Science Minor or in the Lyman Briggs Computer Science Coordinate Major or in the Lyman Briggs Computer Science Major. Software lifecycle including specification, design, coding, testing, and verification of a software product. Stepwise refinement and traceability. Software maintenance and documentation.

440 Introduction to Artificial Intelligence
Fall. 3(3-0) P: CSE 331 R: Open to juniors or seniors in the College of Engineering or in the Computer Science Minor or in the Lyman Briggs Computer Science Coordinate Major or in the Lyman Briggs Computer Science Major; SA: CPS 440 Fundamental issues in intelligent systems. Knowledge representation and mechanisms of reasoning. Search and constraint satisfaction. Agents. Application areas of AI and current topics.

444 Information Technology Project Management
Spring. 3(3-0) Interdepartmental with Information Technology Management and Media and Information. Administered by Information Technology Management. P: ITM 311 R: Open to students in the Information Technology Minor. Practical training and experiences in design, testing, and launch of new information technologies and systems.

450 Translation of Programming Languages
Fall. 3(3-0) P: CSE 331 and (CSE 320 or ECE 331) R: Open to juniors or seniors in the College of Engineering or in the Computer Science Minor or in the Lyman Briggs Computer Science Coordinate Major or in the Lyman Briggs Computer Science Major; SA: CPS 450 Theory and practice of programming language translation. Languages, grammars and parsing. Lexical, syntactic and semantic analysis. Compile-time error handling. Code optimization and code generation.

460 Computability and Formal Language Theory
Fall. 3(3-0) P: CSE 331 R: Open to juniors or seniors in the College of Engineering or in the Computer Science Minor or in the Lyman Briggs Computer Science Coordinate Major or in the Lyman Briggs Computer Science Major; SA: CSE 360 Formal models of computation such as finite state automata, pushdown automata, and Turing machines. Formal definitions of languages, problems, and language classes including recursive, recursively enumerable, regular, and context free languages. The relationships among various models of computation, language classes, and problems. Church's thesis and the limits of computability. Proofs of program properties including correctness.

472 Computer Graphics
Spring. 3(3-0) P: CSE 331 or CSE 335 R: Open to juniors or seniors in the College of Engineering or in the Computer Science Minor or in the Lyman Briggs Computer Science Coordinate Major or in the Lyman Briggs Computer Science Major; SA: CPS 472 Graphics systems. Two- and three-dimensional imaging geometry and transformations. Curve and surface design. Rendering, shading, color, and animation. Graphics programming.

476 Mobile Application Development
Spring. 3(3-0) P: CSE 320 or CSE 331 or CSE 335 R: Open to juniors or seniors in the College of Engineering or in the Computer Science Minor or in the Lyman Briggs Computer Science Coordinate Major or in the Lyman Briggs Computer Science Major. Software development techniques for mobile devices such as smart phones and tablet computers.

477 Web Application Architecture and Development
Spring. 3(3-0) P: CSE 320 or CSE 331 or CSE 335 R: Open to juniors or seniors in the College of Engineering or in the Computer Science Minor or in the Lyman Briggs Computer Science Coordinate Major or in the Lyman Briggs Computer Science Major. Fundamentals of World Wide Web (WWW) programming, including protocols, client-server interaction, markup languages, client- and server-side programming, databases, and remote procedure calls. Development of a WWW server and WWW sites with browser-based interfaces. Students will incorporate scaling, throughput, and latency considerations in the development of widely-distributed systems.

480 Database Systems
Spring. 3(3-0) P: CSE 331 or CSE 335 R: Open to juniors or seniors in the College of Engineering or in the Computer Science Minor or in the Lyman Briggs Computer Science Coordinate Major or in the Lyman Briggs Computer Science Major; SA: CPS 480 Storage of and access to physical databases including indexing, hashing, and range accesses. Relational data models, database design principles, query languages, query optimization, transaction processing and recovery techniques. Object-oriented and distributed databases.
Big Data Analysis
Spring, 3(3-0) P: (CSE 331) and (STT 351 or STT 380 or STT 430 or STT 441) R: Open to juniors or seniors in the College of Engineering or in the Lyman Briggs Computer Science Coordinate Major or in the Lyman Briggs Computer Science Major. Data collection, storage, and preprocessing, and analysis techniques. Programming for large-scale data analysis. Case studies and applications.

Independent Study in Computer Science
Fall, Spring. 1 to 3 credits. A student may earn a maximum of 3 credits in all enrollments for this course. R: Open to students in the Computer Engineering Major or in the Computer Science Major. Approval of department; application required. SA: CPS 490 Supervised individual study in an area of computer science.

Selected Topics in Computer Science
Fall, Spring. 1 to 4 credits. A student may earn a maximum of 9 credits in all enrollments for this course. R: Open to students in the Computer Engineering Major or in the Lyman Briggs Computer Science Coordinate Major or in the Lyman Briggs Computer Science Major or in the Computer Science Disciplinary Teaching Minor. Approval of department. SA: CPS 491

Topics selected to supplement and enrich existing courses and lead to the development of new courses.

Selected Topics in Data Science
Fall, Spring. 1 to 4 credits. A student may earn a maximum of 12 credits in all enrollments for this course. Interdepartmental with Computational Mathematics, Science, & Engineering and Statistics and Probability. Admistered by Computational Mathematics, Science, & Engineering. R: Approval of department. Topics selected to supplement and enrich existing courses in Data Science.

Experiential Learning in Data Science (W)
Fall, Spring. 4(2-4) Interdepartmental with Computational Mathematics, Science, & Engineering and Statistics and Probability. Admistered by Computational Mathematics, Science, & Engineering. P: (CSE 232 and CMSE 382) and completion of Tier I writing requirement. R: Open to seniors. Team-based data science projects on realistic, large-scale data.

Collaborative Design (W)
Fall, Spring. 4(2-4) P: (CSE 402 or CSE 415 or CSE 422 or CSE 431 or CSE 440 or CSE 450 or CSE 471 or CSE 476 or CSE 477 or CSE 482) and (CSE 402 or CSE 420 or CSE 425 or CSE 435 or CSE 440 or CSE 460 or CSE 472 or CSE 477 or CSE 480 or CSE 482) and (CSE 335 and completion of Tier I writing requirement) and (CSE 325 or CSE 410) R: Open to students in the Computer Science Major or in the Lyman Briggs Computer Science Coordinate Major. SA: CSE 449, CSE 478, CSE 479
Development of a comprehensive software and/or hardware solution to a problem in a team setting with emphasis on working with a client. Participation in a design cycle including specification, design, implementation, testing, maintenance, and documentation. Issues of professionalism, ethics, and communication.

Introduction to Computational Science for Evolutionary Biologists
Fall. 3(3-0) R: A strong background in molecular biology, evolution, or ecology. R: Not open to graduate students in the College of Engineering or in the Department of Computer Science and Engineering. Approval of department. Introductory and intermediate programming and scripting for data analysis and modeling. Algorithmic considerations. Scientific controls, workflows, and reproducibility.

Pattern Recognition and Analysis
Spring. 3(3-0) R: (CSE 331 and MTH 314 and STT 441) or (CSE 331 and MTH 314 and STT 441) R: Open to graduate students in the Department of Computer Science and Engineering or in the Department of Electrical and Computer Engineering. Algorithms for classifying and understanding data. Statistical and syntactic methods, supervised and unsupervised machine learning. Cluster analysis and ordination. Exploratory data analysis. Methodology for design of classifiers.

Computer Vision
Fall. 3(3-0) R: (CSE 331 and MTH 314 and STT 351) R: Open only to Computer Science or Electrical Engineering majors. SA: CPS 403

Distributed Systems
Spring. 3(3-0) R: Open to students in the Electrical Engineering Major or in the Computer Science Major. SA: CPS 812
Principles, paradigms, techniques used in distributed systems. Assurance techniques for distributed systems. Fault-tolerance and security issues in distributed systems. Research issues in the design and implementation of distributed systems.

Advanced VLSI Design
Spring. 3(3-0) Interdepartmental with Electrical and Computer Engineering. R: Open only to majors in the Department of Computer Science and Engineering or approval of department. SA: EE 813

Formal Methods in Software Development
Fall of odd years. 3(3-0) R: MTH 472. Open only to majors in the Department of Computer Science and Engineering or approval of department. SA: CPS 814
Formal specification languages, integrating verification with development. Design and the implementation of term project.

Advanced Computer Architecture
Fall, Spring. 3(3-0) Interdepartmental with Electrical and Computer Engineering. R: Open only to majors in the Department of Computer Science and Engineering or approval of department. SA: CPS 820
Instruction set architecture. Pipelining, vector processors, cache memory, high bandwidth memory design, virtual memory, input and output. Benchmarking techniques. New developments related to single CPU systems.

Parallel Computing
Fall. 3(3-0) Interdepartmental with Computational Mathematics, Science, & Engineering. R: Calculus at the level of MTH 133. Ability to program proficiently in C/C++. Basic understanding of data structures and algorithms (both at the level of CSE 232). Basic linear algebra and differential equations. Core principles, techniques, and use of parallel computation using modern supercomputers. Parallel architectures. Parallel programming models. Principles of parallel algorithm design. Performance analysis and optimization.

Advanced Computer Networks and Communications
Fall. 3(3-0) R: CSE 422 R: Open only to graduate students in the Department of Computer Science and Engineering. SA: CPS 824
Advanced topics in emerging computer networking technologies, including high-speed wide area networks and local area networks, wireless and mobile computing networks, optical networks, and multimedia networking.

Computer and Network Security
Spring. 3(3-0) R: CSE 410 and CSE 422
Threat assessments, secure software, intrusions and intrusion detection.

Design and Theory of Algorithms
Fall, Spring. 3(3-0) R: CSE 232 and CSE 460 R: Open only to majors in the Department of Computer Science and Engineering or approval of department. SA: CPS 830
Analysis of algorithms. Algorithm design techniques. Efficient algorithms for classical problems. Intractable problems and techniques to handle them.
835 Algorithmic Graph Theory
Spring. 3(3-0) RB: (CSE 232 and CSE 460) and (MTH 309 or MTH 314) R: Open to students in the Department of Computer Science and Engineering or approval of department. SA: CPS 835
Classical concepts in Graph Theory. Algorithmic aspects of graphs such as finding paths, network flow, spanning trees and matching.

836 Probabilistic Models and Algorithms in Computational Biology
Fall. 3(3-0) P: CSE 331 RB: Basic understanding of data structures; probabilities; programming experiences (no restriction to programming language)
Canonic probabilistic models and algorithms used in important bioinformatics tools.

841 Artificial Intelligence
Fall. 3(3-0) RB: CSE 440 R: Open only to Computer Science or Electrical Engineering majors. SA: CPS 841
Types of intelligence, knowledge representation, cognitive models. Goal-based systems, heuristic search and games, expert systems. Language understanding, robotics and computer vision, theorem proving and deductive systems, and learning.

842 Natural Language Processing
Spring of odd years. 3(3-0) RB: Programming skills, basic probability and statistics knowledge.
Models and algorithms for natural language processing including syntax, semantics, pragmatics, and discourse. Knowledge-based and statistical approaches to a variety of language related applications.

843 Language and Interaction
Spring of even years. 3(3-0) RB: Programming skills. Basic probability and statistical knowledge. Artificial intelligence.
Introduction to foundations and the state-of-the-art technology enabling natural language communication with artificial agents. Speech recognition, acoustic modeling and language modeling, dialogue and discourse modeling. Psycholinguistic studies on situated human language processing, and their applications in situated human robot dialogue.

845 Multi-disciplinary Research Methods for the Study of Evolution
Spring. 3(3-0) Interdepartmental with Integrative Biology and Microbiology and Molecular Genetics. Administered by Computer Science and Engineering.
Techniques for engaging in multi-disciplinary research collaborations, including biology, computer science, and engineering. Students engage in group projects to answer fundamental questions about the dynamics of actively evolving systems including both natural and computational. Multi-disciplinary teams will learn to overcome discipline-specific language and conceptual issues. Experimental design, statistical analysis, data visualization, and paper and grant writing for multi-disciplinary audiences.

847 Machine Learning
Spring. 3(3-0) P: CSE 841 RB: Algorithms, programming in C or equivalent, probability and statistics, artificial intelligence. R: Open only to students in the Department of Computer Science and Engineering or approval of department.
Computational study of learning and data mining. Strengths and limitations of various learning paradigms, including supervised learning, learning from scalar reward, unsupervised learning, and learning with domain knowledge.

848 Evolutionary Computation
Fall of even years. 3(3-0) Interdepartmental with Electrical and Computer Engineering. Administered by Computer Science and Engineering. RB: CSE 841 and CSE 440 R: Open to graduate students in the Department of Computer Science and Engineering and open to graduate students in the Department of Electrical and Computer Engineering approval of department.
Investigation of evolutionary computation from a historical, theoretical and application viewpoint. Readings from the present literature, experiments with provided software on the application of evolutionary computation principles.

860 Foundations of Computing
Spring of even years. 3(3-0) RB: CSE 460 R: Open only to majors in the Department of Computer Science and Engineering or approval of department. SA: CPS 860

867 Nature and Practice of Cognitive Science
Spring. 3(3-0) Interdepartmental with Integrative Biology and Linguistics and Philosophy. Administered by Psychology. RB: Undergraduate course work in behavioral biology, cognitive psychology, philosophy, linguistics, or artificial intelligence. SA: ZOL 867
Survey of how different disciplines explore the cognitive processes underlying intelligent behavior.

870 Advanced Software Engineering
Spring. 3(3-0) RB: (CSE 470) or undergraduate software engineering course R: Open only to students in the Department of Computer Science and Engineering.
Methods and techniques supporting later lifecycle activities, including software testing and maintenance, reuse, and reverse engineering. Domain-specific software engineering methods. Human-computer interfaces, distributed systems, and visualization techniques.

872 Advanced Computer Graphics
Fall. 3(3-0) RB: CSE 472
Advanced aspects of digital image generation, geometric modeling, computer animation and rendering methods.

880 Advanced Database Systems
Fall. 3(3-0) RB: CSE 480 R: Open only to majors in the Department of Computer Science and Engineering or approval of department. SA: CPS 880
Distributed and object-oriented databases and knowledgebase systems. Design theory, query optimization, and transaction processing.

881 Data Mining
Fall. 3(3-0) RB: Programming skills in C, C++, Java and Matlab. Basic knowledge in calculus, probability and statistics.
Techniques and algorithms for knowledge discovery in databases, from data preprocessing and transformation to model validation and post-processing. Core concepts include association analysis, sequential pattern discovery, anomaly detection, predictive modeling, and cluster analysis. Application of data mining to various application domains.

885 Artificial Neural Networks
Spring. 3(3-0) Interdepartmental with Electrical and Computer Engineering. Administered by Electrical and Computer Engineering. SA: EE 885

890 Independent Study
Fall, Spring, Summer. 1 to 3 credits. A student may earn a maximum of 6 credits in all enrollments for this course. R: Open only to Computer Science or Electrical Engineering majors. Approval of department. SA: CPS 890
Independent study of some topic, system, or language not covered in a regular course.

891 Selected Topics
Fall. Spring. 1 to 3 credits. A student may earn a maximum of 9 credits in all enrollments for this course. R: Open only to Computer Science or Electrical Engineering majors. Approval of department.
SA: CPS 891
Selected topics in computer science of current interest and importance but not covered in a regular course.

898 Master's Project
Spring. 3 credits. A student may earn a maximum of 6 credits in all enrollments for this course. R: Open to students in the Department of Computer Science and Engineering.
In depth student project where the student performs original research, research replication, or survey and reporting on a topic such as system design and development, or system conversion or installation.

899 Master's Thesis Research
Fall. Spring, Summer. 1 to 8 credits. A student may earn a maximum of 24 credits in all enrollments for this course. R: Open only to Computer Science majors. Approval of department. SA: CPS 899
Master's thesis research.
902 Selected Topics in Recognition by Machine
Spring. 3(3-0) A student may earn a maximum of 9 credits in all enrollments for this course. RB: CSE 802 and CSE 803 R: Open only to Computer Science or Electrical Engineering majors. SA: CPS 902
Advanced topics in pattern recognition and computer vision such as Markov random fields, modeling and recognition of three dimensional objects, and integration of visual modules.

910 Selected Topics in Computer Networks and Distributed Systems
Spring of even years. 3(3-0) A student may earn a maximum of 9 credits in all enrollments for this course. RB: CSE 422 and CSE 812 R: Open only to Computer Science or Electrical Engineering majors. SA: CPS 910
Advanced topics and developments in high-bandwidth computer networks, protocol engineering, and distributed computer systems.

914 Formal Methods in Software Development
Fall. 3(3-0) A student may earn a maximum of 9 credits in all enrollments for this course. P: CSE 814 RB: Undergraduate courses in software engineering and in logic. R: Open to graduate students in the Department of Computer Science and Engineering.
Current research in selected areas of software engineering such as: approaches for the incorporation of formal methods in software development; current projects using formal methods in software engineering; object-oriented analysis and development techniques; and approaches for the incorporation of user interface analysis and design in software development.

920 Selected Topics in High Performance Computer Systems
Spring of odd years. 3(3-0) A student may earn a maximum of 9 credits in all enrollments for this course. Interdepartmental with Electrical and Computer Engineering. Administered by Computer Science and Engineering. R: Open to students in the Computer Science Major or approval of department. SA: CPS 920
Design of high performance computer systems. Seminar format.

941 Selected Topics in Artificial Intelligence
Fall. 3(3-0) A student may earn a maximum of 9 credits in all enrollments for this course. RB: CSE 841 R: Open only to Computer Science or Electrical Engineering majors. SA: CPS 941
Topic such as second generation expert systems, human factors, natural language processing, speech understanding, neural networks, genetic algorithms and opportunistic planning.

960 Selected Topics in Algorithms and Complexity
Spring of odd years. 3(3-0) A student may earn a maximum of 9 credits in all enrollments for this course. RB: CSE 830 and CSE 860 R: Open only to graduate students in the Department of Computer Science and Engineering. Approval of department. SA: CPS 960
Current research in the general theory of algorithms and computational complexity.

980 Selected Topics in Database Systems
Spring. 3(3-0) A student may earn a maximum of 9 credits in all enrollments for this course. RB: CSE 880 R: Open only to Computer Science or Electrical Engineering majors. SA: CPS 980
Recent developments in areas such as distributed and parallel database systems, object oriented database systems, knowledgebase and expert database systems.

999 Doctoral Dissertation Research
Fall, Spring, Summer. 1 to 36 credits. A student may earn a maximum of 36 credits in all enrollments for this course. R: Open to graduate students in the Computer Science major. Approval of department. SA: CPS 999
Doctoral dissertation research.