MATERIALS SCIENCE AND ENGINEERING MSE

Department of Chemical Engineering and Materials Science
College of Engineering

200 Materials and Society
Fall. 2(2-0) RB: High school physics and chemistry.
Material capabilities, limitations, and their utilization in the service and advancement of society. Role of materials in our day-to-day lives. Resource and environmental concerns including current material-related issues.

250 Materials Science and Engineering
Fall, Spring. 3(2-3) P: CEM 141 or CEM 151 or LB 171 SA: MSM 250 Structure of metals, ceramics and polymers. Phase diagrams, thermomechanical treatments, physical and mechanical properties, diffusion, microstructure studies, environmental effects.

260 Electronic, Magnetic, Thermal, and Optical Properties of Materials
Spring. 3(3-0) P: (MSE 250) and (PHY 184 or concurrently) or (PHY 184B or concurrently) or (PHY 294B or concurrently) or (LB 274 or concurrently) SA: MSE 350 Processing, structures, and properties of ceramics, polymers, and composites. Electrical, thermal, magnetic and optical properties of materials. Materials selection and design.

310 Phase Equilibria in Materials
Fall. 3(3-0) P: (MSE 250) and (MTH 234 or concurrently) or (MTH 245H or concurrently) or (LB 220 or concurrently) R: Open to juniors or seniors in the Materials Science and Engineering Major or in the Materials Science and Engineering Minor. SA: MSE 355 Enthalpy. Entropy. Free energy. Phase changes in metal, ceramic, and polymer materials systems. Application to alloying, phase diagram determination, and electrochemistry.

320 Mechanical Properties of Materials
Fall. 3(3-0) P: (ME 222 or concurrently) and MSE 250 R: Open to juniors or seniors in the Materials Science and Engineering Major or in the Materials Science and Engineering Minor. SA: MSE 355 Mechanical behavior of metals, ceramics, and polymers. Three-dimensional stress-states. Stress, strain, and compliance tensors. Test methods. Elasticity, viscoelasticity, and plastic deformation. Fracture, fatigue, and creep.

331 Materials Characterization Methods I
Fall. 2(1-3) P: MSE 310 or concurrently R: Open to juniors or seniors in the Materials Science and Engineering Major. SA: MSE 375 Thermal analysis, microindentation techniques, quantitative optical microscopy, effects of alloying on creep deformation, slip systems in ionic crystals, viscoelastic of solids, and polymer rheology.

360 Fundamentals of Microstructural Design
Spring. 3(3-0) P: ME 201 or MSE 310 or CHE 321 or PHY 215 RB: (MTH 235 or concurrently) or (MTH 340 or concurrently) or (MTH 347H or concurrently) and (MSE 260 or concurrently) R: Open to juniors or seniors in the Department of Chemical Engineering and Materials Science or in the Materials Science and Engineering Minor. SA: MSE 352 Fick’s laws of diffusion. Models of solid state diffusion. Arrhenius plots. Use of non-equilibrium energy storage from solidification, phase changes, and deformation to predict and control microstructural changes and stability during processing in metal, ceramic, and polymer systems.

370 Synthesis and Processing of Materials
Spring. 3(3-0) P: (ME 201 or PHY 215 or MSE 310 or CHE 321) and MSE 250 RB: MSE 260 or concurrently R: Open to juniors or seniors in the Department of Chemical Engineering and Materials Science or in the Materials Science and Engineering Minor. SA: MSE 355, MSE 356 Chemical and physical processing of materials. Powder synthesis and processing, consolidation, casting, microdevice fabrication and surface treatments, corrosion mitigation.

381 Materials Characterization Methods II
Spring. 2(1-3) P: (MSE 260 or concurrently) and (MSE 360 or concurrently) and (MSE 370 or concurrently) R: Open to juniors or seniors in the Materials Science and Engineering Major. Characterization of materials by electron microscopy. X-ray diffraction and fluorescence spectroscopy. Fractography, surface analysis, dynamic mechanical analysis, electrical and thermal property measurements.

410 Materials Foundations for Energy Applications
Fall. 3(3-0) P: MSE 310 or ME 201 and CHE 321 R: Open to seniors in the Department of Chemical Engineering and Materials Science or in the Materials Science and Engineering Minor or approval of department. Survey of materials that enable new energy generation, storage, and distribution technologies; thermoelectric materials, chemistry of batteries, semiconductors for solar cells, radiation tolerant materials, processing of biobased fuels, greenhouse gas mitigation approaches.

425 Biomaterials and Biocompatibility
Spring. 3(3-0) P: MSE 260 or concurrently R: Open to seniors or graduate students in the College of Engineering or in the Materials Science and Engineering Major or in the Materials Science and Engineering Minor. SA: MSE 481 Materials science of human implants. Design requirements imposed by the human body, and need for bodily protection.

426 Introduction to Composite Materials

460 Electronic Structure and Bonding in Materials and Devices
Spring. 3(3-0) P: MSE 260 R: Open to seniors or juniors in the Department of Chemical Engineering and Materials Science or in the Materials Science and Engineering Minor. Relationship between quantum mechanics and material properties. Free electron theory. Energy bands, semiconductors, Dielectrics and ferroelectrics. Dia-, para-, ferro-, and antimagneticism. Superconductivity, Thermal properties.

465 Design and Application of Engineering Materials
Spring. 3(3-0) P: MSE 250 R: Open to seniors or graduate students in the College of Engineering or in the Materials Science and Engineering Major or in the Materials Science and Engineering Minor. SA: MSM 465 Fundamental principles of strengthening: toughening, specific strength, and stiffness. Material development based on environmental, temperature, wear, damping, fatigue, and economic considerations.

466 Design and Failure Analysis (W)
Fall. 3(3-0) P: (MSE 320 and MSE 331 and MSE 381) and completion of Tier I writing requirement R: Open to seniors in the Materials Science and Engineering Major. SA: MSM 466 Modes and causes of failure in mechanical components and role of design. Non-destructive evaluation. Legal and economic aspects of materials failure. Student projects.

474 Ceramic and Refractory Materials
Fall. 3(3-0) P: MSE 260 RB: MSE 370 and MSE 381 R: Open to seniors in the Materials Science and Engineering Major or in the Materials Science and Engineering Minor. SA: MSM 454, MSE 454 Ceramic and glassy materials. High temperature processes. Mechanical and physical properties of technical ceramics.

476 Physical Metallurgy of Ferrous and Aluminum Alloys
Fall. 3(3-0) P: MSE 250 RB: MSE 310 R: Open to seniors in the Materials Science and Engineering Major or in the Materials Science and Engineering Minor. SA: MSM 476 Heat treatment and properties of ferrous and aluminum alloys. Casting and solidification. Effects of alloying elements, high strength low alloy steels, hardness, and case hardening. Joining of materials, such as welding.

477 Manufacturing Processes
Fall, Spring. 3(3-0) Interdepartmental with Mechanical Engineering. Administered by Mechanical Engineering. P: ME 222 and MSE 250 R: Open to students in the Applied Engineering Sciences Major or in the Materials Science and Engineering Major or in the Mechanical Engineering Major. SA: MSM 481 Fundamentals of manufacturing processes such as casting, heat treating, particulate processing, forming, machining, joining, and surface processing. Selection of manufacturing processes based on design and materials.
MSE—Materials Science and Engineering

481 Spectroscopic and Diffraction Analysis of Materials
Spring. 3(2-3) P: PHY 184 or PHY 184B or PHY 234B or PHY 294H or LB 274 RB: MSE 260 and MSE 381 R: Open to juniors or seniors in the Materials Science and Engineering Major or in the Materials Science and Engineering Minor. SA: MSE 451, MSM 451

490 Independent Study
Fall, Spring, Summer. 1 to 3 credits. A student may earn a maximum of 6 credits in all enrollments for this course. R: Open to seniors. Approval of department. SA: MSM 490

Individualized reading and research.

491 Selected Topics
Fall, Spring, Summer. 1 to 3 credits. A student may earn a maximum of 6 credits in all enrollments for this course. R: Open to students in the Department of Chemical Engineering and Materials Science or in the College of Engineering. SA: MSM 491

Topics of current interest in materials science or engineering.

499 Senior Research and Design Project (W)
Fall, Spring, Summer. 2 to 4 credits. A student may earn a maximum of 6 credits in all enrollments for this course. P: Completion of Tier I writing requirement. R: Open to students in the Department of Chemical Engineering and Materials Science or in the Materials Science and Engineering Major. Approval of department. SA: MSM 499

Design and analysis to solve materials and/or mechanics related problem. Preparation of written report, oral presentation, and defense of the project.

810 Materials for Energy Applications
Fall. 3(3-0) R: ME 802 or MSE 851 or CHE 821 R: Open to graduate students in the Department of Chemical Engineering and Materials Science. Not open to students with credit in MSE 410.

Enabling science and technology for new energy generation materials, storage, and distribution technologies; thermoelectric materials, electrochemistry of batteries, semiconductors for solar cells, radiation tolerant materials, processing of biobased fuels, greenhouse gas mitigation approaches.

851 Thermodynamics of Solids
Fall. 3(3-0) SA: MSM 851

855 Advanced Rate Theory and Diffusion

860 Advanced Theory of Solids
Spring. 3(3-0) SA: MSE 865, MSM 865

861 Dislocation Theory
Fall. 3(3-0) SA: MSM 862

Advanced theory of dislocations and other crystal defects in metals, ceramics, aggregates and ordered compounds. Elasticity theory of straight dislocations, dislocation strain energy, mobility, obstacle interactions, reactions, and core effects.

870 Electron Microscopy in Materials Science
Fall. 3(2-3) R: Open to graduate students in the Materials Science and Engineering major or approval of department. SA: MSM 870

871 Material Surfaces and Interfaces
Fall of odd years. 3(3-0) Interdepartmental with Chemical Engineering, Administered by Materials Science and Engineering. RB: CEM 392 or CEM 434 or MSE 351: Open only to graduate students in the Department of Chemical Engineering and Materials Science or Department of Chemistry or School of Packaging. SA: MSM 871

Physical and chemical nature of solid surfaces and their interaction with gases, liquids, and other solids. Characterization of surfaces and solid-solid interfaces. Relation of surface and interfacial structure to engineering phenomena.

875 Engineering Ceramics
Fall of odd years. 3(3-0) RB: MSE 851 SA: MSM 875

Physical properties of engineering ceramics. Transport properties of ceramics, especially in ferrites and garnets. Optical ceramic materials.

876 Advanced Polymeric Materials
Fall of even years. 3(3-0) SA: MSM 876

Advanced topics in polymer structure and properties. Thermoplastics, thermosets, polyblends and elastomers. Processing techniques. Deformation and mechanical properties. Thermal, optical and chemical properties. Composites.

880 Computational Materials Science
Spring. 3(2-3) RB: MSE 860 or MSE 862 or MSE 964A or ME 820 or ME 872 R: Open to graduate students in the College of Engineering.

Modeling methods and computational techniques for predicting materials properties. Multi-scale simulation in different material classes. Techniques include density functional theory, molecular statics and dynamics, discrete dislocation dynamics, continuum crystal plasticity.

881 Advanced Spectroscopy and Diffraction Analysis of Materials
Spring. 3(2-3) R: PHY 184 or PHY 184B or PHY 234B: Open to graduate students in the College of Engineering. SA: MSE 841 Not open to students with credit in MSE 410.

890 Independent Study
Fall, Spring, Summer. 1 to 3 credits. A student may earn a maximum of 6 credits in all enrollments for this course. R: Approval of department. SA: MSM 890

Individualized reading and research of student's interest.

891 Selected Topics
Fall, Spring, Summer. 1 to 3 credits. A student may earn a maximum of 6 credits in all enrollments for this course. R: Approval of department. SA: MSM 891

Special topics of current importance in materials science or engineering.

892 Seminar
Fall, Spring. 1(0-2) A student may earn a maximum of 2 credits in all enrollments for this course. Interdepartmental with Chemical Engineering. Administered by Chemical Engineering. R: Open to master's students in the Chemical Engineering Major or in the Materials Science and Engineering Major.

Presentations of detailed studies of specialized aspects of chemical engineering and materials science.

899 Master's Thesis Research
Fall, Spring, Summer. 4 to 8 credits. A student may earn a maximum of 24 credits in all enrollments for this course. SA: MSM 899

Master's thesis research.

964A Anisotropic Crystalline Properties
Fall of even years. 3(3-0) RB: MSE 851

Independent Study
Fall, Spring, Summer. 1 to 3 credits. A student may earn a maximum of 6 credits in all enrollments for this course. SA: MSM 990
Individualized reading and research.

Selected Topics
Fall, Spring, Summer. 1 to 3 credits. A student may earn a maximum of 6 credits in all enrollments for this course. R: Approval of department. SA: MSM 991
Special advanced topics in materials science and engineering, and mechanics.

Seminar
Fall, Spring. 1(0-2) A student may earn a maximum of 5 credits in all enrollments for this course. Interdepartmental with Chemical Engineering. Administered by Chemical Engineering. R: Open to doctoral students in the Chemical Engineering Major or in the Materials Science and Engineering Major.
Presentations of detailed studies of specialized aspects of chemical engineering and materials science.

Doctoral Dissertation Research
Fall, Spring, Summer. 1 to 24 credits. A student may earn a maximum of 36 credits in all enrollments for this course. R: Open to graduate students in the Department of Chemical Engineering and Materials Science. SA: MSM 999
Doctoral dissertation research.