MATERIALS SCIENCE AND ENGINEERING

Department of Chemical Engineering and Materials Science
College of Engineering

200 Materials and Society
Fall. 2(2-0) RB: High school physics and chemistry.
Material capabilities, limitations, and their utilization in the service and advancement of society. Role of materials in our day-to-day lives. Resource and environmental concerns including current material-related issues.

250 Materials Science and Engineering
Fall, Spring. Summer. 3(2-3) P: CEM 141 or CEM 151 or LB 171 SA: MSM 250
Structure of metals, ceramics and polymers. Phase diagrams, thermomechanical treatments, physical and mechanical properties, diffusion, microstructure studies, environmental effects.

310 Phase Equilibria in Materials
Fall. 3(3-0) P: (MSE 250 or concurrently) and (MSE 310 or concurrently) R: Open to seniors in the College of Engineering. SA: MSE 351
Enthalpy. Entropy. Free energy. Phase changes in metal, ceramic, and polymer materials systems. Application to alloying, phase diagram determination, and electrochemistry.

320 Mechanical Properties of Materials
Fall. 3(3-0) P: (ME 222 or concurrently) and MSE 250 R: Open to juniors or seniors in the Materials Science and Engineering major or approval of department. SA: MSE 355

331 Materials Characterization Methods I
Fall. 2(1-3) R: Open to juniors or seniors in the Materials Science and Engineering Major. SA: MSE 374 C: MSE 310 concurrently.
Thermal analysis, microindentation techniques, quantitative optical microscopy, effects of alloying on creep deformation, slip systems in ionic crystals, environmental effects including galvanic corrosion, passivation.

360 Fundamentals of Microstructural Design
Spring. 3(3-0) P: ME 291 or MSE 310 or CHE 321 or PHY 215 RB: (MTH 235 or concurrently) or (MTH 340 or concurrently) or (MTH 347 or concurrently) or (MTH 259H or concurrently) and (MSE 260 or concurrently) R: Open to juniors or seniors in the Department of Chemical Engineering and Materials Science or approval of department. SA: MSE 352
Fick’s laws of diffusion. Models of solid state diffusion. Arrhenius plots. Use of non-equilibrium energy storage from solidification, phase changes, and deformation to predict and control microstructural changes and stability during processing in metal, ceramic, and polymer systems.

370 Synthesis and Processing of Materials
Spring. 3(3-0) P: (ME 201 or PHY 215 or MSE 310 or CHE 321) and MSE 250 RB: MSE 260 or concurrently R: Open to students in the Department of Chemical Engineering and Materials Science or approval of department; application required. SA: MSE 365, MSE 380
Chemical and physical processing of materials. Powder synthesis and processing, consolidation, casting, microdevice fabrication and surface treatments, corrosion mitigation.

381 Materials Characterization Methods II
Spring. 2(1-3) P: MSE 331 and MSE 260 or concurrently R: Open to juniors or seniors in the Materials Science and Engineering Major. SA: MSE 376 C: MSE 360 concurrently and MSE 370 concurrently.
Characterization of materials by electron microscopy, X-ray diffraction and fluorescence spectroscopy, Fractography, surface analysis, dynamic mechanical analysis, electrical and thermal property measurements.

410 Materials Foundations for Energy Applications
Fall. 3(3-0) RB: MSE 310 or ME 201 or CHE 321 R: Open to seniors in the College of Chemical Engineering and Materials Science.
Survey of materials that enable new energy generation, storage, and distribution technologies; thermoelectric materials, electrochemistry of batteries, semiconductors for solar cells, radiation tolerant materials, processing of biobased fuels, greenhouse gas mitigation approaches.

425 Biomaterials and Biocompatibility
Spring. 3(3-0) P: MSE 320 and ME 222 or concurrently. SA: MSM 242, MSE 324
Materials science of human implants. Design requirements imposed by the human body, and need for bodily protection.

426 Introduction to Composite Materials
Spring. 3(3-0) P: ME 222 and MSE 250 R: Open to juniors or seniors in the College of Engineering. SA: MSE 444

460 Electronic Structure and Bonding in Materials and Devices
Spring. 3(3-0) P: MSE 260 R: Open to seniors in the Department of Chemical Engineering and Materials Science or approval of department; application required. Relationship between quantum mechanics and material properties. Free electron theory, Energy bands, semiconductors. Dielectrics and ferroelectrics. Dia-, para-, ferro-, and antiferro-magnetism. Superconductivity. Thermal properties.

465 Design and Application of Engineering Materials
Spring. 3(3-0) P: MSE 250 R: Open to seniors or graduate students in the College of Engineering. SA: MSM 465
Fundamental principles of strengthening; toughening, specific strength, and stiffness. Material development based on environmental, temperature, wear, damping, fatigue, and economic considerations.

466 Design and Failure Analysis (W)
Spring. 3(3-0) Interdepartmental with Mechanical Engineering. SA: MSM 250 or and MSE 381 or approval of department and completion of Tier I writing requirement R: Open to seniors in the College of Engineering. SA: MSM 466
Modes and causes of failure in mechanical components and role of design. Non-destructive evaluation. Legal and economic aspects of materials failure. Student projects.

474 Ceramic and Refractory Materials
Spring. 3(3-0) P: MSE 320 and MSE 381 R: Open to seniors in the College of Engineering. SA: MSM 454, MSE 454
Ceramic and glassy materials. High temperature processes. Mechanical and physical properties of technical ceramics.

476 Physical Metallurgy of Ferrous and Aluminum Alloys
Fall. 3(3-0) P: MSE 250 RB: MSE 310 R: Open to seniors in the College of Engineer- ing. SA: MSM 476
Heat treatment and properties of ferrous and aluminum alloys. Casting and solidification. Effects of alloying elements, high strength low alloy steels, hardenability, and case hardening. Joining of materials, such as welding.

477 Manufacturing Processes
Fall. Spring. 3(3-0) Interdepartmental with Mechanical Engineering. Administered by Mechanical Engineering. P: ME 222 and MSE 250 R: Open to students in the Applied Engineering Sciences Major or in the Materials Science and Engineering Major or in the Mechanical Engineering Major. SA: MSM 481
Fundamentals of manufacturing processes such as casting, heat treating, particulate processing, forming, machining, joining, and surface processing. Selection of manufacturing processes based on design and materials.
Materials Science and Engineering—MSE

481 Spectroscopic and Diffraction Analysis of Materials
Spring. 3(2-3) P: PHY 184 or PHY 184B or PHY 234B RB: MSE 260 and MSE 381 R: Open to juniors or seniors or graduate students in the College of Engineering or in the College of Natural Science. SA: MSE 451, MSM 451


490 Independent Study
Fall, Spring, Summer. 1 to 3 credits. A student may earn a maximum of 6 credits in all enrollments for this course. R: Open to seniors. Approval of department. SA: MSM 490

Individualized reading and research.

491 Selected Topics
Fall, Spring, Summer. 1 to 3 credits. A student may earn a maximum of 6 credits in all enrollments for this course. R: Open to students in the Department of Chemical Engineering and Materials Science or in the College of Engineering. SA: MSM 491

Topics of current interest in materials science or engineering.

499 Senior Research and Design Project (W)
Fall, Spring, Summer. 2 to 4 credits. A student may earn a maximum of 6 credits in all enrollments for this course. P: Completion of Tier I writing requirement. R: Open to students in the Department of Chemical Engineering and Materials Science or in the Materials Science and Engineering Major. Approval of department. SA: MSM 499

Design and analysis to solve materials and/or mechanics related problem. Preparation of written report, oral presentation, and defense of the project.

802 Research Methods
Fall. 3(2-3) Interdepartmental with Chemical Engineering. Administered by Chemical Engineering.

Skills required for graduate research. Critically reviewing the literature, defining a fundamental research problem, effective oral and written technical presentations, ethics, and statistics.

810 Materials for Energy Applications
Fall. 3(3-0) RB: ME 802 or MSE 851 or CHE 821 R: Open to graduate students in the Department of Chemical Engineering and Materials Science. Not open to students with credit in MSE 410. Enabling science and technology for new energy generation materials, storage, and distribution technologies. Thermoelectric materials, batteries, dielectric, solar cells, fuel cells, greenhouses, gas production approaches

851 Thermodynamics of Solids
Fall. 3(3-0) SA: MSM 851


855 Advanced Rate Theory and Diffusion
Spring. 3(3-0) RB: MSE 851 SA: MSM 855


860 Advanced Theory of Solids
Spring. 3(3-0) SA: MSE 865, MSM 865


862 Dislocation Theory
Fall. 3(3-0) SA: MSM 862

Advanced theory of dislocations and other crystal defects in metals, ceramics, aggregates and ordered compounds. Elasticity theory of straight dislocations, dislocation strain energy, mobility, obstacle interactions, reactions, and core effects.

870 Electron Microscopy in Materials Science
Fall. 3(2-3) R: Open to graduate students in the Materials Science and Engineering major or approval of department. SA: MSM 870


871 Material Surfaces and Interfaces
Fall of odd years. 3(3-0) Interdepartmental with Chemical Engineering. Administered by Materials Science and Engineering. RB: CEM 392 or CEM 434 or MSE 351 R: Open only to graduate students in the Department of Chemical Engineering and Materials Science or Department of Chemistry or School of Packaging. SA: MSM 871

Physical and chemical nature of solid surfaces and their interaction with gases, liquids, and other solids. Characterization of surfaces and solid-solid interfaces. Relation of surface and interfacial structure to engineering phenomena.

875 Engineering Ceramics
Fall of odd years. 3(3-0) RB: MSE 851 SA: MSM 875

Physical properties of engineering ceramics. Transport properties of ceramics, especially in ferries and garnets. Optical ceramic materials.

876 Advanced Polymeric Materials
Fall of even years. 3(3-0) SA: MSM 876

Advanced topics in polymer structure and properties. Thermoplastics, thermosets, polyblends and elastomers. Processing techniques. Deformation and mechanical properties. Thermal, optical and chemical properties. Composites.

881 Advanced Spectroscopy and Diffraction Analysis of Materials
Spring. 3(2-3) RB: PHY 184 or PHY 184B or PHY 234B R: Open to graduate students in the College of Engineering. SA: MSE 841

Not open to students with credit in MSE 481.


890 Independent Study
Fall, Spring, Summer. 1 to 3 credits. A student may earn a maximum of 6 credits in all enrollments for this course. R: Approval of department. SA: MSM 890

Individualized reading and research of student's interest.

891 Selected Topics
Fall, Spring, Summer. 1 to 3 credits. A student may earn a maximum of 6 credits in all enrollments for this course. R: Approval of department. SA: MSM 891

Special topics of current importance in materials science or engineering.

892 Seminar
Fall, Spring. 1(0-2) A student may earn a maximum of 4 credits in all enrollments for this course. Interdepartmental with Chemical Engineering. Administered by Chemical Engineering. R: Open only to Chemical Engineering majors.

Presentations of detailed studies of one or more specialized aspects of chemical engineering and materials science.

899 Master's Thesis Research
Fall, Spring, Summer. 1 to 8 credits. A student may earn a maximum of 24 credits in all enrollments for this course. SA: MSM 899

Master's thesis research.

964A Anisotropic Crystalline Properties
Fall of even years. 3(3-0) RB: MSE 851


990 Independent Study
Fall, Spring, Summer. 1 to 3 credits. A student may earn a maximum of 6 credits in all enrollments for this course. SA: MSM 990

Individualized reading and research.

991 Selected Topics
Fall, Spring, Summer. 1 to 3 credits. A student may earn a maximum of 6 credits in all enrollments for this course. R: Approval of department. SA: MSM 991

Special advanced topics in materials science and engineering, and mechanics.

999 Doctoral Dissertation Research
Fall, Spring, Summer. 1 to 24 credits. A student may earn a maximum of 36 credits in all enrollments for this course. R: Open to graduate students in the Department of Chemical Engineering and Materials Science. SA: MSM 999

Doctoral dissertation research.