413 Advanced Biomedical Laboratory Diagnostics Laboratory
Spring. 1(0-3) P: BLD 213 and BLD 324 and BLD 434 and BLD 435 and MMG 463 RB: BLD 424 and BLD 430 R: Open to students in the Diagnostic Molecular Science major or in the Biomedical Laboratory Science major or in the Lyman Briggs Diagnostic Molecular Science Coordinate Major or in the Lyman Briggs Biomedical Science Coordinate Major. Diagnostic assays across various disciplines within the clinical laboratory (microbiology, immunohematology, hematology and molecular diagnostics) as well as data interpretation and problem solving skills.

414 Clinical Chemistry Analysis and Practice
Spring. 3(3-0) P: BLD 213 and (STT 200 or STT 201 or STT 231 or STT 351 or STT 421) RB: PHY 231 or LB 273 R: Open to students in the Biomedical Laboratory Science major or in the Lyman Briggs Biomedical Science Coordinate Major. SA: MT 417 Not open to students with credit in BLD 417. Concepts and principles of analytic methods commonly used in the clinical laboratory. Qualitative and quantitative features of instrumental analysis. Issues of quality control and quality assurance, method evaluation and standards of laboratory practice.

416 Clinical Chemistry
Fall. 4(4-0) P: BLD 213 and (BMB 401 or BMB 461) and (PSL 250 or PSL 310 or PSL 431) RB: BLD 414 or (BLD 417 and CEM 333) SA: MT 416 Correlation of laboratory test results with normal physiology and biochemistry and with disease states. Metabolic and endocrine systems. Acquired and inherited diseases. Therapeutic drug monitoring, and toxicology.

417 Quality Processes in Diagnostic Laboratory Testing
Spring. 2(2-0) P: BLD 213 and (STT 200 or STT 201 or STT 231 or STT 351 or STT 421) RB: PHY 231 or LB 273 R: Open to students in the Clinical Laboratory Sciences Major. SA: MT 414, MT 417 Not open to students with credit in BLD 417. Statistical methods for validating diagnostic laboratory tests including quality control processes, proficiency testing, method evaluation, related regulatory requirements, laboratory information systems, and laboratory mathematics.

424 Advanced Hematology, Hemostasis and Urinalysis
Spring. 2(2-0) P: BLD 324 RB: (PSL 310 or concurrently) or (PSL 250 or concurrently) or (PSL 431) and (BLD 416 and (BLD 430 or concurrently) and BLD 434 and (BLD 435 or concurrently)) SA: MT 422, MT 424 Etiology and pathogenesis of diseases of the hematologic, hemostatic and urinary systems including anemias, leukemias, and hemophlias. Diagnostic testing for such diseases.

424L Advanced Laboratory in Hematology, Hemostasis, and Urinalysis
Spring. 1(0-3) P: BLD 324L and (BLD 424 or concurrently) Specialized and advanced assays used in the diagnosis of diseases of the hematological, hemostatic, and urinary systems.

430 Molecular Laboratory Diagnostics
Spring. 2(2-0) P: BS 161 or LB 145 or BS 181H SA: MT 430 Concepts and principles of molecular analysis applied to medical diagnoses and related applications.

433 Clinical Immunology and Immunohematology Laboratory
Spring. 1(0-3) P: BLD 213 and (BLD 435 or concurrently) R: Open to students in the Clinical Laboratory Sciences major. SA: MT 433 Immunologic methods for disease detection. Methods of blood typing and pre-transfusion testing.

435 Transfusion and Transplantation Medicine
Spring. 3(3-0) P: BLD 434 or MMG 451 Principles and practice of transfusion medicine including blood typing. Principles and practices of transplantation medicine. Transplantation immunology, organ procurement, and rejection detection.

436 Principles of Diagnostic Molecular Science
Spring. 2(2-0) P: BMB 461 and (BS 161 or LB 145 or BS 181H) and ZOL 341 SA: MT 436 Not open to students with credit in BLD 830. C: BMB 462 concurrently. Principles and techniques of molecular diagnostic assays including applicable regulations.

437 Clinical Applications of Diagnostic Molecular Science
Spring. 2(2-0) P: BLD 436 SA: MT 437 Not open to students with credit in BLD 831. Application of molecular diagnostic methods in clinical and other types of laboratory disciplines.

438 Molecular Diagnostic Laboratory
Fall. 3(3-0) P: MT 436 SA: MT 438 Not open to students with credit in BLD 832. Laboratory in molecular techniques with emphasis on clinical and diagnostic applications.

442 Education and Management in the Clinical Laboratory
Spring. 2(2-0) P: (MTH 103 or MTH 116) or (STT 200 or STT 201 or STT 231 or STT 351 or STT 421) RB: BLD 220 R: Open to students in the Clinical Laboratory Sciences Major. SA: MT 442 Basic principles and concepts in education and management in clinical laboratories. Systematic approach to instructional design, delivery and evaluation. Principles of leadership, personnel management, fiscal management, and regulatory compliance.

450 Eukaryotic Pathogens
Spring. 3(3-0) P: BS 161 or LB 145 or BS 181H and (CEM 141 or CEM 151 or CEM 181H or LB 171) RB: MMG 201 or MMG 301 SA: MT 450 Medically important fungi and parasites. Host-parasite relationships, life cycles, culture, identification, and associated diseases.
455 Integrating Clinical Laboratory Science Discipline (W) Fall, Spring. 2(2-0) P: (BLD 324 or concurrently) or (BLD 417 or concurrently) or (BLD 416 or concurrently) or (MMG 463 or concurrently) or (BLD 433 or concurrently) or (BLD 436 or concurrently) and completion of Tier I writing requirement R: Open to under-graduate students in the Clinical Laboratory Sciences or in the Biomedical Laboratory Science major or in the Diagnostic Molecular Science major. SA: MT 455

Problem oriented approach integrating topics from biomedical laboratory diagnostics courses with emphasis on writing experience in the major and on critical thinking skills.

463 Medical Microbiology Fall. 3(3-0) Interdepartmental with Microbiology and Molecular Genetics. Administered by Microbiology and Molecular Genetics. P: MMG 301 or (MMG 201 and BS 161) or (MMG 201 and LB 145) or (MMG 201 and BS 181H) RB: MMG 451 or BLD 434 R: Open to juniors or seniors in the Biomedical Laboratory Diagnostics Program or in the Department of Microbiology and Molecular Genetics or in the Biomedical Laboratory Science Major or in the Lyman Briggs Biomedical Laboratory Science Coordinate Major or in the Lyman Briggs Environmental Biology/Microbiology Coordinate Major or in the Genomics and Molecular Genetics Major or in the Lyman Briggs Genomics and Molecular Genetics Coordinate Major or in the Lyman Briggs Human Biology Coordinate Major or in the Human Biology Major or in the Microbiology Major or in the Lyman Briggs Microbiology Coordinate Major. SA: MIC 463

Properties of pathogenic bacteria and viruses and their mechanisms of pathogenicity and clinical diseases.

464 Diagnostic Microbiology Laboratory Fall. 2(0-4) Interdepartmental with Microbiology and Molecular Genetics. Administered by Microbiology and Molecular Genetics. P: MMG 463 or concurrently R: Open to juniors or seniors in the Biomedical Laboratory Diagnostics Program or in the Department of Microbiology and Molecular Genetics or in the Lyman Briggs Biomedical Laboratory Science Coordinate Major or in the Lyman Briggs Genomics and Molecular Genetics Coordinate Major or in the Lyman Briggs Microbiology Coordinate Major. SA: MIC 464

Clinical laboratory diagnostic procedures for the identification of pathogenic microbes.

471 Advanced Clinical Chemistry Laboratory Fall, Spring. Summer. 3 credits. P: CEM 333 R: Open to students in the Clinical Laboratory Sciences major. SA: MT 471

Application and integration of theory and technical skills in clinical chemistry and biochemistry.

472 Advanced Clinical Chemistry Fall, Spring. Summer. 1 credit. P: BLD 416 and BLD 417 R: Open to seniors in the Clinical Laboratory Sciences major. SA: MT 472

Theoretical aspects of clinical chemistry, chemical and biochemical reactions, statistical analysis, and pathophysiologic relationships. Integration of cognitive material with clinical laboratory test results.

473 Advanced Clinical Hematology and Body Fluids Laboratory Fall, Spring, Summer. 3 credits. P: BLD 424 R: Open to seniors in the Clinical Laboratory Sciences major. SA: MT 473

Application and integration of theory and technical skills in hematology, hemostasis, and body fluid analysis.

474 Advanced Clinical Hematology and Body Fluids Fall, Spring, Summer. 1 credit. P: BLD 424 R: Open to seniors in the Clinical Laboratory Sciences major. SA: MT 474

Theoretical aspects of advanced hematology, hemostasis and body fluid analysis. Integration of cognitive material with clinical laboratory test results.

475 Advanced Clinical Immunology and Immunohematology Laboratory Fall, Spring, Summer. 2 credits. P: BLD 433 R: Open to seniors in the Clinical Laboratory Sciences major. SA: MT 475

Application and integration of theory and technical skills in immunology and immunohematology.

476 Advanced Clinical Immunology and Immunohematology Fall, Spring, Summer. 1 credit. P: BLD 433 and BLD 434 and BLD 435 R: Open to seniors in the Clinical Laboratory Sciences major. SA: MT 476

Theoretical aspects of immunology and immunohematology. Integration of cognitive material with clinical laboratory test results.

477 Advanced Clinical Microbiology Laboratory Fall, Spring, Summer. 3 credits. P: MMG 464 and BLD 450 R: Open to seniors in the Clinical Laboratory Sciences major. SA: MT 477

Application and integration of theory and technical skills in clinical microbiology and infectious disease.

478 Advanced Clinical Microbiology Fall, Spring, Summer. 1 credit. P: MMG 463 and BLD 450 and BLD 498 R: Open to seniors in the Clinical Laboratory Sciences major. SA: MT 478

Theoretical aspects of clinical microbiology and infectious disease. Integration of cognitive material with clinical laboratory test results.

479 Professional Behavior in Clinical Laboratory Science Fall, Spring, Summer. 1(0-2) P: (BLD 220 and BLD 442) or ((BLD 471 or concurrently) or (BLD 473 or concurrently) or (BLD 475 or concurrently) or (BLD 477 or concurrently)) R: Open to students in the Clinical Laboratory Sciences major. SA: MT 479

Application of professional behavior principles to practical experiences in clinical laboratory science.

482 Advanced Diagnostic Molecular Science Spring. 2 credits. R: Open to students in the Diagnostic Molecular Science major. SA: MT 482 C: BLD 483 concurrently or BLD 484 concurrently or BLD 485 concurrently or BLD 486 concurrently or BLD 487 concurrently or BLD 488 concurrently

Integration of principles and concepts in diagnostic molecular science with diagnostic laboratory test results.

483 Molecular Diagnostic Experience in Hematopathology and Oncology Spring. 2 credits. P: BLD 438 R: Open to students in the Diagnostic Molecular Science major. SA: MT 483 C: BLD 482 concurrently

Clinical experience in molecular diagnostic laboratories with applications in hematology and oncology.

484 Molecular Diagnostic Experience in Infectious Disease Spring. 2 credits. P: BLD 438 R: Open to students in the Diagnostic Molecular Science major. SA: MT 484 C: BLD 437 concurrently

Clinical experience in molecular diagnostic laboratories with applications to infectious disease diagnosis.

485 Molecular Diagnostic Experience in Inherited and Predictive Genetics Spring. 2 credits. P: BLD 438 R: Open to students in the Diagnostic Molecular Science major. SA: MT 485 C: BLD 482 concurrently

Clinical experience in molecular diagnostic laboratories with applications in inherited and predictive genetics.

486 Molecular Diagnostic Experience in Genotyping and Individual Identification Spring. 2 credits. P: BLD 438 R: Open to students in the Diagnostic Molecular Science major. SA: MT 486 C: BLD 482 concurrently

Clinical experience in molecular diagnostic laboratories with applications to genotyping and identification of individuals.

495 Directed Study Fall, Spring, Summer. 1 to 3 credits. A student may earn a maximum of 6 credits in all enrollments for this course. R: Open to students in the Clinical Laboratory Sciences major or in the Diagnostic Molecular Science major or in the Lyman Briggs School of Medical Technology Major or in the Medical Technology Major. SA: MT 495

Faculty directed study, with assigned readings, reviews of appropriate scientific periodicals, research, and laboratory experience.

498 Focused Problems in Clinical Laboratory Science Spring. 2(1-2) P: BLD 417 and BLD 434 and (BLD 424 or concurrently) and (BLD 450 or concurrently) R: Open to students in the Clinical Laboratory Sciences major. SA: MT 454, MT 498

Case study problems of medical microbiology, hematology, and clinical chemistry.

498L Infectious Disease Diagnostic Laboratory Spring. 1(0-3) P: MMG 464 and (BLD 450 or concurrently) RB: BLD 430 and BLD 434 R: Open to undergraduate students in the Clinical Laboratory Sciences major. Applying pre-analytical, analytical, and post-analytical principles to the identification of infectious agents in unknown samples.

801 Biomedical Laboratory Diagnostics Seminar Fall, Spring. 1(1-0) A student may earn a maximum of 2 credits in all enrollments for this course. SA: MT 801

Current research topics in clinical laboratory sciences.
805 Communication in the Sciences
Fall, Summer. 2(2-0)
Professional communication in clinical laboratory science, including article and proposal writing, thesis writing, posters, and presentations.

811 Fundamentals of Scientific Research
Spring. 1(1-0) R: Open to masters students in the Biomedical Laboratory Diagnostics Program. SA: MT 810
Best practices for the research enterprise. Ethical conduct of research. Critical evaluation of scientific literature.

815 Cell Biology in Health and Disease I
Spring. 2(2-0) R: Undergraduate course in Biochemistry and Physiology. Experience in a clinical laboratory. Principles and theories of cell biology and biochemistry are presented with a focus on applications to clinical pathology.

816 Cell Biology in Health and Disease II
Summer. 2(2-0) P: BLD 815 RB: Undergraduate course in biochemistry and physiology. Experience in a clinical laboratory. Continuation of BLD 815.

830 Concepts in Molecular Biology
Fall. 2(2-0) Interdepartmental with Pathobiology and Diagnostic Investigation. Administered by Biomedical Laboratory Diagnostics. RB: One course in biochemistry concurrently. SA: MT 830
Techniques and theories of molecular biology, nucleic acid synthesis and isolation, enzymatic digestion and modification, electrophoresis, hybridization, amplification, library construction, and cloning.

831 Clinical Application of Molecular Biology
Spring. 2(2-0) P: BLD 830 RB: Basic biochemistry, medical or research laboratory experience SA: MT 831
Molecular diagnostic principles. Diagnostic outcomes in traditional and non-traditional laboratory disciplines.

832 Molecular Pathology Laboratory
Summer. 2(0-4) P: BLD 831 or concurrently Equipment operation, DNA extraction and measurement, electrophoresis, hybridization and transfers, amplification and detection including techniques and automated sequencing. Clinical applications.

835 Hemostasis, Thrombosis and Effective Resource Management
Fall. 3(3-0) RB: Background in hemostasis, thrombosis and blood product management. R: Open to lifelong graduate students in the College of Natural Science or in the Biomedical Laboratory Diagnostics Program or in the Clinical Laboratory Sciences major or approval of department.
Theories of coagulation, thrombosis and effective blood product management. Needs and particular stresses during an active bleeding crisis.

836 Adverse Transfusion Outcomes: Detection, Monitoring and Prevention
Spring. 2(2-0) RB: Medical technology and clinical laboratory sciences laboratory professionals. R: Open to lifelong graduate students and open to graduate students in the Biomedical Laboratory Operations major or in the Clinical Laboratory Sciences major.
Adverse transfusion outcomes (ATO) covering cause, methods of detection, monitoring paradigms and prevention.

837 Transfusion Service Operations and Management
Fall, Spring. 1(1-0) RB: Clinical transfusion service practical experience. Management and operational practices needed to meet both the fiscal and regulatory oversight of a transfusion service.

842 Managing Biomedical Laboratory Operations
Fall, Spring. 2(2-0) R: Open to graduate students or lifelong graduate students or approval of department. SA: MT 842
Integration of the roles of legislative, regulatory, technological and economic factors that influence the practice and management of biomedical laboratory operations.

844 Topics in Biomedical Laboratory Operations
Spring. 1(1-0) P: BLD 842 R: Open to graduate students or lifelong graduate students or approval of department. SA: MT 844
Current issues relevant to biomedical laboratory operations from an interdisciplinary perspective with an emphasis on efficient laboratory operations.

846 Decision Processes for Biomedical Laboratory Operations
Fall. 2(2-0) P: BLD 842 R: Open to masters students or lifelong graduate students or approval of department. SA: MT 846
Integrative case studies presented in a problem-based learning format. Strategies for decision-making in the operations of a biomedical laboratory. Cases integrate scientific principles, management principles and regulatory factors.

850 Concepts in Immunodiagnostics
Fall, Spring. 2(2-0) R: An undergraduate course in biochemistry or cell biology. SA: MT 850
Immunology principles and theory applied to diagnostic evaluation of the host immune response during health and disease.

851 Clinical Application of Immunodiagnostic Principles
Spring. 2(2-0) P: BLD 850 SA: MT 851
Immunodiagnostics and principles and practice applied to clinical assay development and method evaluation.

852 Immunodiagnostics Laboratory
Summer. 2(2-0) P: BLD 850
Performance of immunopurifications, in vitro diagnostic assays and basic flow cytometry. Data analysis and quality control evaluation.

853 Advanced Flow Cytometry
Summer. 2(2-0) P: BLD 850 and BLD 851 and (BLD 852 or concurrently) or approval of department
Flow cytometry systems, software and reagents. Data analysis and experimental design of complex flow cytometric assays. Flow cytometry applications in medicine and research.

861 Emerging Infections, Emerging Technology
Summer. 2(2-0) P: MMG 463 or approval of department RB: Undergraduate degree in medical laboratory science, microbiology or epidemiology.
Use of recent cases in infectious diseases to investigate the causes for disease emergence and the laboratory technologies used to identify the microbial causes, to describe epidemiology and to develop surveillance systems and prevention.

870 Clinical Mass Spectrometry Theory
Fall. 2(2-0) R: One course in Biochemistry or concurrent.
The theory and principles of mass spectrometry. Principles of instrumentation, liquid and gas chromatography theory and data analysis as it applies to the clinical laboratory.

871 Applied Clinical Mass Spectrometry
Spring. 2(2-0) P: BLD 870 or approval of department RB: One course in protein chemistry or concurrent.
Data interpretation and quality control in clinical mass spectrometry. Principles of sample preparation, platform selection, data analysis, and clinical applications as it applies to the clinical laboratory.

890 Selected Problems in Clinical Laboratory Science
Fall, Spring. 1 to 6 credits. A student may earn a maximum of 12 credits in all enrollments for this course. R: Open to graduate students in the Clinical Laboratory Sciences major. SA: MT 890
Non-thesis research for Plan B master’s students.

895 Projects in Biomedical Laboratory Operations
Fall, Spring. 1 to 6 credits. A student may earn a maximum of 6 credits in all enrollments for this course. R: Open to masters students in the Biomedical Laboratory Operations major or approval of department. SA: MT 895
Completion of a significant on-site project in cooperation with an industrial/clinical partner.

899 Master’s Thesis Research
Fall, Spring. 1 to 10 credits. A student may earn a maximum of 36 credits in all enrollments for this course. R: Open to graduate students in the Clinical Laboratory Sciences major. SA: MT 899
Master’s thesis research.