PHYSICS

Department of Physics
and Astronomy
College of Natural Science

101 Concepts in Physics
Fall, 1(1-0) Conceptual foundations of physics emphasizing key experiments.

102 Physics Computations I
Spring, 1(0-3) P: (PHY 183 or concurrently) or (PHY 183B or concurrently) or (PHY 193H or concurrently) or (LB 273 or concurrently) RB: CSE 101 or CSE 231 Use of Mathematica to solve, analyze and graph equations and data from mechanics.

105C Preparatory - Physics
Summer, 1(1-0) Interdepartmental with Lyman Briggs. Administered by Lyman Briggs, RB: College Algebra Preparation for the introductory physics sequence: mathematical concepts, notations, representations, effective problem solving techniques and study strategies.

170 Investigations in Physics
Fall, 3(0-1) P: Open to freshmen in the Department of Physics and Astronomy. Approval of department. Experiments in optics, electronics, sound and mechanics; analysis of data using computers, library research, and oral presentations.

183 Physics for Scientists and Engineers I
Fall, Spring, 4(5-0) P: MTH 132 or MTH 152H or LB 118 Not open to students with credit in LB 273 or PHY 193H or PHY 231 or PHY 231C. Mechanics, Newton’s laws, momentum, energy conservation laws, rotational motion, oscillation, gravity, and waves.

183B Physics for Scientists and Engineers I
Fall, Spring. Summer, 4 credits. P: MTH 132 or MTH 152H or LB 118 Not open to students with credit in LB 273 or PHY 193H or PHY 231 or PHY 231C. Mechanics, Newton’s laws, momentum, energy conservation laws, rotational motion, oscillation, gravity, waves.

184 Physics for Scientists and Engineers II
Fall, Spring, 4(5-0) P: (PHY 183 or PHY 183B or PHY 193H or LB 273) or (PHY 231 and (PHY 233B or concurrently)) and (MTH 133 or MTH 153H or LB 119) Not open to students with credit in LB 274 or PHY 184B or PHY 232 or PHY 232C or PHY 294H or PHY 232C. Electricity and magnetism, electromagnetic waves, light and optics, interference and diffraction.

184B Physics for Scientists and Engineers II
Fall, Spring, Summer. 4 credits. P: (PHY 183 or PHY 183B or PHY 193H or LB 273) or (PHY 231 and PHY 233B) or (PHY 231C and PHY 233B) and (MTH 133 or MTH 153H or LB 119) Not open to students with credit in LB 274 or PHY 184 or PHY 232 or PHY 232C or PHY 294H.

191 Physics Laboratory for Scientists, I
Fall, 1(0-3) P: (PHY 183 or concurrently) or PHY 183B or (PHY 193H or concurrently)) or (PHY 231 and (PHY 233B or concurrently)) or (PHY 231C and (PHY 233B or concurrently)) Not open to students with credit in LB 273 or PHY 251. Error analysis, exercises in motion, forces, conservation laws and some electricity and magnetism studies.

192 Physics Laboratory for Scientists, II
Spring, 1(0-3) P: (PHY 191 and (PHY 184 or concurrently)) or PHY 184B or (PHY 294H or concurrently)) or (PHY 232 and (PHY 234B or concurrently)) or (PHY 232C and (PHY 234B or concurrently)) Not open to students with credit in LB 274 or PHY 252. Electric and magnetic fields, circuits, wave optics, modern physics.

193H Honors Physics I-Mechanics
Spring, 4(4-0) P: (MTH 133 or concurrently) or (MTH 153H or concurrently) or (LB 119 or concurrently) Not open to students with credit in LB 273 or PHY 193H or PHY 231 or PHY 231C. Mechanics and waves.

201 Physics Computations II
Fall, 1(0-3) P: (PHY 184 or concurrently) or (PHY 184B or concurrently) or (PHY 294H or concurrently) RB: MTH 133 and PHY 102 Computer methods to analyze and visualize physics problems. Tools used will include programming languages (Fortran) and mathematical software (Mathematica, etc).

205 Directed Studies
Fall, Spring, Summer. 1 to 3 credits. A student may earn a maximum of 3 credits in all enrollments for this course. P: Approval of department. Guided individualized study in an area of physics.

215 Thermodynamics and Modern Physics
Fall, Spring, 3(4-0) P: (PHY 184 or concurrently) or PHY 184B or (PHY 294H or concurrently) or (LB 274 or concurrently) or (PHY 232 and (PHY 234B or concurrently)) or (PHY 232C and (PHY 234B or concurrently)) Not open to students with credit in PHY 215B. Thermodynamics, atomic physics, quantized systems, nuclear physics, solids, elementary particles.

215B Thermodynamics and Modern Physics
Fall, Spring, Summer. 3 credits. P: (PHY 184 or (PHY 184B or concurrently) or PHY 294H or (LB 274) or (PHY 232 and PHY 234B) or (PHY 232C and PHY 234B) Not open to students with credit in PHY 215B. Thermodynamics, atomic physics, quantized systems, nuclear physics, solids, elementary particles. This course is given in the competency based instruction format.

231 Introductory Physics I
Fall, Spring, 3(4-0) P: MTH 103 or MTH 116 or MTH 124 or (MTH 132 or concurrently) or LB 118 RB: MTH 116 Not open to students with credit in LB 271 or PHY 183 or PHY 183B or PHY 193H or PHY 231. Mechanics, Newton’s Laws, momentum, energy, conservation laws, thermodynamics, waves, sound.

231C Introductory Physics I
Fall, Spring, 3 credits. P: MTH 103 or MTH 116 or MTH 124 or (MTH 132 or concurrently) or LB 118 RB: MTH 116 Not open to students with credit in LB 271 or PHY 183 or PHY 183B or PHY 193H or PHY 231. Mechanics, Newton’s Laws, momentum, energy, conservation laws, thermodynamics, waves, sound. This course is an internet based course.

232 Introductory Physics II
Fall, Spring, 3(4-0) P: PHY 231 or PHY 231C or PHY 183 or PHY 183B or PHY 193H or LB 273 Not open to students with credit in LB 274 or PHY 184 or PHY 184B or PHY 232 or PHY 232B. Electricity and magnetism; optics; atomic, nuclear, and subnuclear physics.

232C Introductory Physics II
Fall, Spring, 3 credits. P: PHY 183 or PHY 183B or PHY 193H or PHY 231 or PHY 231C or LB 273 Not open to students with credit in LB 274 or PHY 184 or PHY 184B or PHY 232 or PHY 294H. Electricity and magnetism; optics; atomic, nuclear, and subnuclear physics. This course is an internet based course.

233B Calculus Concepts in Physics I
Fall, Spring, Summer. 2 credits. P: (PHY 231 or PHY 231C and (MTH 132 or MTH 152H or LB 118) Not open to students with credit in PHY 183 or PHY 193H. Kinematics, dynamics, applications of Newton’s laws. PHY 231B plus PHY 233B is equivalent to PHY 183B. This course is given in the competency based instruction format.

234B Calculus Concepts in Physics II
Fall, Spring, Summer. 2 credits. P: (PHY 232 or PHY 232C) and (MTH 133 or concurrently) or (MTH 153H or concurrently) or (LB 119 or concurrently) Electricity and magnetism. PHY 232 (or PHY232C) plus PHY 234B equals PHY 184. This course is given in the competency based instruction format.

251 Introductory Physics Laboratory I
Fall, Spring, Summer. 1(0-2) P: (PHY 183 or concurrently) or (PHY 183B or concurrently) or (PHY 193H or concurrently) or (PHY 231 or concurrently) or (PHY 231C or concurrently) or (PHY 294H or concurrently) or (PHY 294H or concurrently) or (LB 274 or concurrently) or (PHY 232 or concurrently) or (PHY 232C or concurrently) Not open to students with credit in LB 273 or PHY 191. Laboratory exercises involving simple mechanical systems.

252 Introductory Physics Laboratory II
Fall, Spring, Summer. 1(0-2) P: (PHY 251 or PHY 191 or LB 273) and (PHY 232 or concurrently) or (PHY 232C or concurrently) or (PHY 184 or concurrently) or (PHY 184B or concurrently) or (PHY 294H or concurrently) or (LB 274 or concurrently) or (PHY 232 or concurrently) or (PHY 294H or concurrently) or (LB 274 or concurrently) Not open to students with credit in LB 274 or PHY 192. Laboratory exercises involving simple electromagnetic and optical systems.

294H Honors Physics II-Electromagnetism
Fall, 4(4-0) P: PHY 193H and (MTH 234 or concurrently) or (MTH 254H or concurrently) or (LB 220 or concurrently)) Not open to students with credit in LB 274 or PHY 184 or PHY 232 or PHY 232C. Electricity and magnetism, electromagnetic waves and optics.
Physics—PHY

305 Directed Studies
Fall, Spring, Summer. 1 to 3 credits. A student may earn a maximum of 3 credits in all enrollments for this course. P: (PHY 184 or concurrently) or (PHY 184B or concurrently) or (PHY 294H or concurrently) or (PHY 492B or concurrently) R: Open to undergraduate students. Approval of department.
Guided individualized study in an area of physics.

321 Classical Mechanics I
Spring, Summer. 3(3-0) P: (PHY 184 or PHY 184B or PHY 294H or LB 274) and ((PHY 215 or concurrently) or (PHY 215B or concurrently)) and ((MTH 234 or concurrently) or (MTH 254H or concurrently) or (LB 220 or concurrently))

390 Physics Journal Seminar
Spring. 1(3-0) P: Completion of Tier I writing requirement. R: Open only to juniors or seniors in the Department of Physics and Astronomy or Lyman Briggs School.
Written and oral reports on selected articles in the current literature. Critique of presentations by peers.

405 Directed Studies
Fall, Spring, Summer. 1 to 3 credits. A student may earn a maximum of 5 credits in all enrollments for this course. P: PHY 184 or PHY 184B or PHY 232 or PHY 232C or PHY 294H or LB 274 R: Approval of department.
Guided independent study of special topics.

410 Thermal and Statistical Physics
Spring. 3(3-0) P: PHY 471
Equilibrium statistical mechanics and thermodynamics, kinetic theory, phase transformations.

415 Methods of Theoretical Physics
Spring. 4(4-0) Interdepartmental with Lyman Briggs. Administered by Lyman Briggs. P: ((MTH 254H or concurrently) or (LB 220 or concurrently) or (MTH 234 or concurrently) or (PHY 192 or concurrently) or (LB 274 or concurrently)) and (PHY 215 or concurrently) or (MTH 234 or concurrently) or (MTH 254H or concurrently) or (MTH 256H and PHY 294H) or (LB 220 or concurrently)

422 Classical Mechanics II
Fall. 3(3-0) P: PHY 321

431 Optics I
Fall. 3(3-0) P: (PHY 192 or LB 274) and (PHY 184 or PHY 184B or PHY 294H) and ((MTH 234 or concurrently) or (MTH 256H or concurrently)) and Completion of Tier I Writing Requirement
Lenses, aberrations, apertures, and stops. Diffraction, interferometry, spectroscopy, fiber optics.

440 Electronics
Spring. 4(3-3) P: ((PHY 192 or LB 274) and (PHY 184 or PHY 184B or PHY 294H)) or (PHY 232 and PHY 234B) or (PHY 232C and PHY 234B) and ((MTH 235 or concurrently) or (MTH 254H or concurrently) or (LB 220 or concurrently) or (MTH 340 or concurrently))
Concepts of electronics used in investigating physical phenomena. Circuits, amplifiers, diodes, LEDs, transistors.

451 Advanced Laboratory
Fall. 3(1-6) P: (PHY 440) and completion of Tier I writing requirement
General research techniques, design of experiments, and the analysis of results based on some historical experiments in modern physics.

471 Quantum Physics I
Fall. 3(3-0) P: (PHY 215 or PHY 215B) and (PHY 321 or concurrently) and (MTH 235 or MTH 255H or LB 220)
Schroedinger equation, hydrogen atom, harmonic oscillator, and other one-dimensional systems.

472 Quantum Physics II
Spring. 3(3-0) P: PHY 471 RB: A Mathematics course on Boundary-Value Problems
Matrix formulation of quantum mechanics, perturbation theory, scattering.

480 Computational Physics
Spring of even years. 3(3-0) RB: CSE 131 or CSE 230
Applications of scientific computational techniques to solutions of differential equations, matrix methods, and Monte Carlo methods used in physics.

481 Electricity and Magnetism I
Fall. 3(3-0) P: MTH 234 or MTH 254H or LB 220 R: Open to juniors or seniors or graduate students.
Electrostatics, dielectrics, magnetic fields of steady state currents, Faraday law of induction.

482 Electricity and Magnetism II
Spring. 3(3-0) P: PHY 481 RB: A Mathematics course on Boundary-Value Problems. R: Open to juniors or seniors or graduate students.
Maxwell's equations, scalar and vector potentials, electromagnetic plane waves.

490 Senior Thesis
Fall, Spring, Summer. 1 to 4 credits. A student may earn a maximum of 5 credits in all enrollments for this course. P: (PHY 390) and completion of Tier I writing requirement R: Open to seniors in the Department of Physics and Astronomy. Approval of department.
Design, carry out, and analyze an original experiment or computation. A written and oral report is required.

491 Atomic, Molecular, and Condensed Matter Physics
Fall. 3(3-0) P: (PHY 471 and PHY 410) and completion of Tier I writing requirement
Many-electron atoms. Molecules, crystal structure, lattice dynamics. Band models of metals and semiconductors. Transport properties.

492 Nuclear and Elementary Particle Physics
Spring. 3(3-0) P: (PHY 471) and completion of Tier I writing requirement RB: PHY 472

800 Research Methods
Fall, Spring, Summer. 3(3-0) A student may earn a maximum of 6 credits in all enrollments for this course.
Design and setup of experiments in various faculty research areas. Data collection and analysis. Study and practice of theoretical methods.

810 Methods of Theoretical Physics
Fall. 3(3-0)
Theoretical methods used in classical mechanics, quantum mechanics, electrodynamics, and statistical mechanics.

820 Classical Mechanics
Fall. 3(0-3)
Two-body central force problem, Hamilton's principle, Lagrangian and Hamiltonian equations of motion, variational methods, small oscillations, classical fields.

831 Statistical Mechanics
Spring. 3(3-0)
Equilibrium statistical mechanics and thermodynamics, Boltzmann transport equations and hydrodynamics, Brownian and Langevin motion.

832 Special Topics in Statistical Mechanics
Fall, Spring. 3(3-0) A student may earn a maximum of 12 credits in all enrollments for this course. RB: PHY 831 and PHY 841 and PHY 852
Topics vary and may include superfluidity and superconductivity, magnetism, non-linear dynamics and chaos, phase transitions and critical phenomena, transport theory, disorderd systems, and computational physics.

841 Classical Electrodynamics I
Spring. 3(3-0) P: PHY 810

842 Classical Electrodynamics II
Fall. 3(3-0) RB: PHY 841 and (PHY 810 or concurrently)

850 Electrodynamics of Plasmas
Spring of odd years. 3(3-0) Interdepartmental with Astronomy and Astrophysics and Electrical and Computer Engineering. Administered by Electrical and Computer Engineering. RB: ECE 835 or PHY 488 SA: EE 850
851 Quantum Mechanics I
Fall. 3(3-0) R: Open only to graduate students in the College of Engineering or College of Natural Science.
Axioms of quantum and wave mechanics, applications to spherically symmetric potentials. Hydrogen atom, harmonic oscillator, matrix mechanics, angular momentum theory, rotations.

852 Quantum Mechanics II
Spring. 3(3-0) RB: PHY 851

853 Advanced Quantum Mechanics
Fall. 3(3-0) RB: PHY 852
Quantum description of relativistic particles and fields. Dirac equation, interpretation of negative energy states, Lagrangian field theory, quantization of free fields, interactions, perturbation theory, S-matrix, and Feynman rules.

854 Quantum Electrodynamics
Spring or odd years. 3(3-0) RB: PHY 853
Application of quantum field theory to the interaction of electrons and photons: pair annihilation, Compton scattering. Bound states, renormalization theory.

861 Beam Physics
Spring of odd years. 3(3-0) RB: PHY 820 and PHY 841
Particle accelerator theory and design.

891 Elementary Particle Physics
Spring. 3(3-0) RB: PHY 853
Nonabelian gauge theory, spontaneously broken gauge theory, electroweak interaction, QCD, W and Z boson coupling to quarks and leptons, charm, top and bottom quarks, particle generations.

899 Master’s Thesis Research
Fall, Spring. Summer. 1 to 6 credits. A student may earn a maximum of 36 credits in all enrollments for this course. R: Open only to graduate students in the Physics major. Master’s thesis research.

901 Frontiers in Physics and Astronomy
Spring. 1(1-0)
Seminar and discussions in physics. Attendance at weekly colloquium.

905 Special Problems
Fall, Spring. 1 to 4 credits. A student may earn a maximum of 9 credits in all enrollments for this course. R: Open only to graduate students in the Department of Physics and Astronomy. In-depth study of a topic in physics or in astrophysics and astronomy.

911 Group Theory and Symmetry in Physics
Fall of odd years. 2(2-0) P: PHY 810 and PHY 851 or approval of department
Group representation theory as the general framework to formulate fundamental symmetries in physics. Irreducible states and tensors, projection operator techniques, rotation and translation, Lie groups, Lorentz and Poincare groups. Offered first half of semester.

912 Modern Nonlinear Dynamics
Spring of even years. 2(2-0) P: PHY 820 or approval of department
Nonlinear dynamics of Hamiltonian and dissipative systems; method of averaging; adiabatic invariants; KAM theorems; invariant manifolds; bifurcation theory; dynamical chaos. Offered first half of semester.

913 Foundations of Nanoscience and Nanotechnology
Fall of odd years. 2(2-0) P: PHY 851 or approval of department RB: PHY 971
The self-assembly process and unusual phenomena occurring in nanostructures of carbon. Magnetic aggregates in different size ranges. Finite size and low-dimension effects. Fractional conductance quantization. Response in nanostructures to mechanical stress, high temperature, and electric fields. Offered first half of semester.

916 Quantum Transport and Quantum Optics
Spring of odd years. 2(2-0) P: PHY 831 and PHY 852 or approval of department

917 Introduction to Elementary Particle Physics
Spring of odd years. 2(2-0) P: PHY 851 or approval of department RB: PHY 853
The phenomenology of elementary particle physics, emphasizing the experimental evidence for the Standard Model. Role of elementary particle physics in the development of the early universe.

918 Non-Linear Beam Dynamics
Fall, Spring. 3(3-0) A student may earn a maximum of 6 credits in all enrollments for this course. RB: PHY 861
Dynamics of particle beams.

926 Particle Accelerators
Fall, Spring. Summer. 3(3-0) A student may earn a maximum of 6 credits in all enrollments for this course. RB: PHY 861
Theory of particle accelerator design.

963 U.S. Particle Accelerator School
Fall, Spring. 3(3-0) A student may earn a maximum of 12 credits in all enrollments for this course. RB: PHY 861 SA: PHY 962C
Participation in suitable courses offered by the U.S. Particle Accelerator School.

964 Seminar in Beam Physics Research
Fall, Spring. 3(3-0) A student may earn a maximum of 12 credits in all enrollments for this course. RB: PHY 861 SA: PHY 962D
Presentation of current research topics in beam physics or accelerator design.

971 Atomic and Electronic Structure of Matter
Spring. 3(3-0) RB: PHY 491 and PHY 852 and PHY 841 and PHY 831 SA: PHY 871

973 Special Topics in Condensed Matter Physics
Fall, Spring. 3(3-0) A student may earn a maximum of 12 credits in all enrollments for this course. RB: PHY 971 and PHY 972
Topics vary and may include quantum optics, scattering methods and Green's functions.