CHEMISTRY

Department of Chemistry
College of Natural Science

141 General Chemistry
Fall, Spring. 4(4-0) P: (MTH 103 or concurrently) or (MTH 116 or concurrently) or (MTH 118 or concurrently) or (MTH 124 or concurrently) or (MTH 132 or concurrently) or (MTH 152H or concurrently) or (LB 118 or concurrently). Not open to students with credit in CEM 151 or CEM 181H or LB 171.

Elements and compounds; reactions; stoichiometry; thermochromy; atomic structure; chemical bonding; states of matter; solutions; acids and bases; aqueous equilibrium.

142 General and Inorganic Chemistry
Fall, Spring. 3(4-0) P: CEM 141 or CEM 151 or CEM 181H or LB 171. Not open to students with credit in CEM 152 or CEM 182H or LB 172.

Kinetics; gaseous equilibria; acids and bases; pH; buffers; hydrolysis; titrations; heterogeneous equilibria; thermodynamics; redox and electrochemistry; transition metal chemistry; nuclear chemistry; main group chemistry.

143 Survey of Organic Chemistry
Fall, Spring. 4(3-3) P: CEM 141 or CEM 151. Not open to students with credit in CEM 351.

Chemistry of carbon compounds. Chemistry of the main organic functional groups with applications to everyday life, industry, and biology.

151 General and Descriptive Chemistry
Fall. 4(4-0) P: (MTH 116 or concurrently) or (MTH 124 or concurrently) or (MTH 132 or concurrently) or (MTH 152H or concurrently) or (LB 118 or concurrently) or (MTH 153H or concurrently) or (MTH 153H or concurrently) R: Approval of department.

Kinetics; gaseous equilibria; acids and bases; solid state; transition metal chemistry; coordination chemistry and theories of bonding.

152 Principles of Chemistry
Spring. 3(4-0) P: CEM 151 or CEM 181H or LB 171. Not open to students with credit in CEM 142 or CEM 182H or LB 172.

The mole concept and stoichiometry; solution stoichiometry; thermochromy; gases, liquids, and solids; kinetics; chemical equilibria; acid-based equilibria; aqueous equilibria; thermodynamics; redox and electrochemistry.

161 Chemistry Laboratory I
Fall, Spring. 1(0-3) P: (CEM 141 or concurrently) or (CEM 151 or concurrently) Not open to students with credit in CEM 185H or CEM 171L.

Experiments in general chemistry; stoichiometry, calorimetry, electrochemistry, molecular geometry, gas laws, kinetics, acids and bases, and inorganic chemistry.

162 Chemistry Laboratory II
Fall, Spring. 1(0-3) RB: (CEM 161 or LB 171L or CEM 185H) and ((CEM 142 or concurrently) and (CEM 152 or concurrently)) Not open to students with credit in CEM 186H or LB 172L.

Analytical and inorganic chemistry; redox and acid base titrations; spectrophotometric and gravimetric analysis; preparation and analysis of coordination complexes of nickel, iron, and cobalt.

181H Honors Chemistry I
Fall. 4(4-0) P: (MTH 124 or concurrently) or (MTH 132 or concurrently) or (MTH 152H or concurrently) or (LB 118 or concurrently) R: Approval of department.

Elements and compounds; stoichiometry; reactions; atomic structure and quantum mechanics; chemical bonding and molecular structure; spectroscopy; coordination chemistry and theories of bonding; structure of biochemical molecules.

182H Honors Chemistry II
Spring. 4(4-0) P: (CEM 151 or CEM 181H or LB 171) and ((MTH 126 or concurrently) or (MTH 132 or concurrently) or (MTH 153H or concurrently) R: Approval of department.

Thermodynamics and chemical equilibria; acids and bases; redox chemistry; main group elements; solid state; group theory and symmetry; molecular orbital theory; transition metal chemistry and spectroscopy.

185H Honors Chemistry Laboratory I
Fall. 2(0-6) P: CEM 182H or concurrently R: Approval of department.

Spectroscopy and diffraction methods for the study of electronic structure and molecular geometry; synthesis and separation methods for the preparation and characterization of molecules; application to inorganic, organic, and biochemical molecules and materials.

186H Honors Chemistry Laboratory II
Spring. 2(0-6) P: CEM 182H or concurrently R: Approval of department.

Laboratory research.

251 Organic Chemistry I
Fall, Spring. 4(4-0) P: CEM 141 or CEM 151 or CEM 181H or LB 171. Not open to students with credit in CEM 351.

Common classes of organic compounds including their nomenclature, structure, bonding, reactivity, and spectroscopic characterization.

252 Organic Chemistry II
Fall, Spring. 4(4-0) P: CEM 251. Not open to students with credit in CEM 352.

Continuation of CEM 251 with emphasis on polyfunctional compounds, particularly those of biological interest.

255 Organic Chemistry Laboratory
Spring. 2(1-3) P: (CEM 252 or concurrently) and (CEM 161 or LB 171L or CEM 185H) Not open to students with credit in CEM 355.

Preparation and qualitative analysis of organic compounds.

262 Quantitative Analysis
Fall, Spring, Summer. 3(3-3) P: CEM 162 or LB 172L. Not open to students with credit in CEM 186H or LB 172L.

Preparation and quantitative analysis of chemical compounds.

322 Instrumental Methods
Spring. 2(3-3) P: (CEM 143 or CEM 251 or CEM 351) and (CEM 162 and MT 213 and MT 417) Not open to students with credit in CEM 333 or CEM 434.

Principles of instrumental analysis and separation techniques.

333 Instrumental Methods and Applications
Spring. 3(2-3) P: ((CEM 143 or CEM 251 or CEM 351) or completion of Tier I writing requirement) and (CEM 262 or CEM 186H) or (CEM 162 and MT 213 and MT 417) Not open to students with credit in CEM 332.

Principles and applications of instrumental analysis of separation techniques.

351 Organic Chemistry I
Fall. 3(4-0) P: CEM 152 or CEM 182H or CEM 142 or LB 172. Not open to students with credit in CEM 251.

Structure, bonding, and reactivity of organic molecules.

352 Organic Chemistry II
Spring. 3(4-0) P: CEM 351. Not open to students with credit in CEM 252.


355 Organic Laboratory I
Spring. 2(0-6) P: (CEM 162 or CEM 186H or LB 172L) and ((CEM 352 or concurrently) and completion of Tier I writing requirement) Not open to students with credit in CEM 255.


356 Organic Laboratory II
Fall. 2(0-6) P: CEM 355


383 Introductory Physical Chemistry I
Fall. 3(4-0) P: (CEM 142 or CEM 152 or CEM 182H or LB 171L or (MTH 133 or MTH 153H or MTH 126 or LB 119)) SA: CEM 391

Physical chemistry of macroscopic systems: thermodynamics, kinetics, electrochemistry.

384 Introductory Physical Chemistry II
Spring. 3(4-0) P: CEM 383 Not open to students with credit in CEM 461.

Physical chemistry of microscopic systems: quantum mechanics, spectroscopy.

395 Analytical/Physical Laboratory
Spring. 2(1-4) P: (CEM 483) and completion of Tier I writing requirement) and (CEM 262 or CEM 186H) RB: One year of general chemistry, calculus, and general physics. SA: CEM 372, CEM 472 C: CEM 484 concurrently.

Physical chemistry of microscopic systems: quantum mechanics, spectroscopy.

400H Honors Work
Fall, Spring. 1 to 12 credits. A student may earn a maximum of 12 credits in all enrollments for this course. P: Completion of Tier I writing requirement. R: Approval of department.

Readings and investigations in chemistry.
Chemistry—CEM

410 Literature and Writing in Chemistry
Spring. 3 credits. P: (CEM 252 and CEM 384) and ((CEM 333 or concurrently) and completion of Tier I writing requirement) R: Open only to juniors or seniors in the Chemistry major. Library research related to a topic in contemporary chemistry; thesis required.

411 Inorganic Chemistry
Spring. 4(4-0) P: CEM 383 or CEM 483 Principles of structure and bonding. Symmetry. Solid state chemistry. Acid-base and redox reactions. Main group chemistry: transition metal bonding, spectra, and reaction mechanisms.

415 Advanced Synthesis Laboratory
Fall. 3(0-8) P: (CEM 411) and completion of Tier I writing requirement. R: Open only to juniors or seniors in the Bachelor of Science degree program in Chemistry. Methods of synthesizing inorganic and organometallic compounds.

419 Independent Study
Fall. Spring. Summer. 1 to 12 credits. A student may earn a maximum of 12 credits in all enrollments for this course. R: Approval of department. Faculty supervised readings in chemistry.

420 Independent Research
Fall. Spring. Summer. 1 to 12 credits. A student may earn a maximum of 12 credits in all enrollments for this course. R: Approval of department. Faculty supervised independent investigations in chemistry.

434 Advanced Analytical Chemistry
Fall. 3(3-0) P: CEM 395 and CEM 352 and CEM 483 SA: CEM 361, CEM 362 Instrumental methods of analysis, including spectroscopy, chromatography, and electrochemistry.

435 Analytical Chemistry Laboratory
Spring. 2(1-3) P: (CEM 434 or concurrently) and completion of Tier I writing requirement. SA: CEM 372, CEM 472. Electronic and optical components of chemical instrumentation. Spectroscopic and chromatographic methods.

444 Chemical Safety
Fall. 1(1-0) P: CEM 142 and CEM 252 Prudent laboratory practices. Regulatory agencies’ expectations of chemical industries and academia.

481 Seminar in Computational Chemistry
Fall. Spring. Summer. 1 to 6 credits. A student may earn a maximum of 6 credits in all enrollments for this course. P: (MTH 133 and CSE 231) and ((CEM 152 or concurrently) or (CEM 182H or concurrently)) RB: CPS 260 and CEM 351 Written and oral reports on selected journal articles in computational chemistry.

483 Quantum Chemistry
Fall. 3(4-0) P: (MTH 235 or MTH 255H) and (PHY 184 or PHY 294H or LB 272) and (CEM 142 or CEM 152 or CEM 181H or LB 172) RB: One year of general chemistry, calculus through differential equations and general physics. SA: CEM 362, CEM 461 Not open to students with credit in CEM 384. Postulates of quantum mechanics and the application to model systems, atoms and molecules. Introduction to molecular spectroscopy.

484 Molecular Thermodynamics
Spring. 3(4-0) P: (MTH 235 or MTH 255H) and (PHY 184 or PHY 294H or LB 272) and (CEM 142 or CEM 152 or CEM 182H or LB 172) RB: CEM 483 or CEM 392 SA: CEM 361 Not open to students with credit in CEM 383. Statistical mechanics and its use in classical chemical thermodynamics. Applications of thermodynamics to chemical systems at equilibrium.

485 Modern Nuclear Chemistry
Spring of even years. 3(3-0) P: (CEM 141 or CEM 152 or CEM 182H) and (PHY 232 or PHY 184) RB: CEM 392 or CEM 384 or PHY 471 SA: CEM 430 Elementary nuclear processes and properties; radioactivity, its measurement and its interaction with matter.

495 Molecular Spectroscopy
Fall. Spring. Summer. 1 to 12 credits. A student may earn a maximum of 12 credits in all enrollments for this course. R: Approval of department. Faculty supervised independent investigations in chemistry.

499 Chemical Physics Seminar
Fall. Spring. Summer. 1(1-0) A student may earn a maximum of 2 credits in all enrollments for this course. P: ((PHY 321) and completion of Tier I writing requirement) and (MTH 235 or LB 220 or MTH 255H) Written and oral reports on selected journal articles in chemical physics.

811 Advanced Inorganic Chemistry I
Fall. 3(3-0) P: Open to graduate students in College of Natural Science or College of Engineering. Principles of chemical bonding, electronic structure, and reaction mechanisms of main group and transition metal compounds. Concepts of group theory.

812 Advanced Inorganic Chemistry II
Fall. Spring. Summer. 3(3-0) P: Open only to graduate students in College of Natural Science or College of Engineering. Descriptive chemistry of inorganic compounds. Emphasis on synthesis, structure, reactivity patterns of coordination, organometallic, and solid state compounds of transition metals and main group elements.

820 Organometallic Chemistry
Fall. 3(3-0) Organometallic functional groups. Principles of electronic structure, and bonding in organometallic species will be related to reactivity patterns in common systems. Preparation of complexes with applications to catalytic and stoichiometric organic synthesis.

832 Mass Spectrometry
Fall. Spring. 3(3-0) R: Open only to graduate students in the College of Natural Science or College of Engineering. Instrumentation of mass spectrometry. Interpreting mass spectra of organic and inorganic molecules. Applications to analysis of large molecules and chromatography.

834 Advanced Analytical Chemistry I
Fall. 3(3-0) R: Open only to graduate students in the College of Engineering or in the College of Natural Science. Basic electronics and data acquisition and analysis, electrochemistry, and statistics for chemists.

835 Advanced Analytical Chemistry II
Fall. 3(3-0) R: Open to graduate students in the College of Engineering or in the College of Natural Science or in the School of Criminal Justice. Separations: molecular spectroscopy and mass spectrometry.

836 Separation Science
Spring of odd years. 3(3-0) R: Open only to graduate students in College of Natural Science or College of Engineering. Physical and chemical principles of separations, column technology, and instrumentation for gas, liquid, and supercritical fluid chromatography.

837 Electroanalytical Chemistry
Fall of even years. 3(3-0) R: Open only to graduate students in College of Natural Science or College of Engineering. Modern electroanalytical chemistry. Theory and applications to chemical and biological problems. Coulometry, voltammetry, ion-selective potentiometry, and other electrochemical techniques.

845 Structure and Spectroscopy of Organic Compounds
Fall. Spring. Summer. 3(3-0) R: Open only to graduate students in College of Natural Science or College of Engineering. Structural and stereochemical principles in organic chemistry. Applications of spectroscopic methods, especially nuclear magnetic resonance, static and dynamic aspects of stereochemistry. Spectroscopy in structure determination.

850 Intermediate Organic Chemistry
Fall. 3(3-0) Traditional and modern basic reaction mechanisms and principles and their synthetic applications.

851 Advanced Organic Chemistry
Fall. 3(3-0) R: Open only to graduate students in College of Natural Science or College of Engineering. Structure, reactivity, and methods. Acid-base reactions, substitution, addition, elimination, and pericyclic processes. Major organic intermediates related to simple bonding theory, kinetics, and thermodynamics.

852 Methods of Organic Synthesis
Spring. 3(3-0) R: Open only to graduate students in College of Natural Science or College of Engineering. Principles reactions leading to carbon-carbon bond formation and functional group transformations. Strategies and methods of organic synthesis.
881 Atomic and Molecular Structure
Fall: 3(3-0) R: Open only to graduate students in College of Natural Science or College of Engineering.
Postulates of quantum mechanics, analytical solutions of the Schroedinger equation, theoretical descriptions of chemical bonding, spectroscopy, statistical mechanics, and statistical thermodynamics.

882 Kinetics and Spectroscopic Methods
Spring: 3(3-0) R: Open only to graduate students in College of Natural Science or College of Engineering.
Rate equations and mechanisms of chemical reactions; reaction rate theory, kinetic theory of gases, photochemistry. Spectroscopic methods, and applications of spectroscopy in reaction kinetics.

883 Computational Quantum Chemistry
Fall: 3(3-2) RB: CEM 461 or CEM 881
Computational methods in determining electronic energy levels, equilibrium nuclear configurations, and other molecular properties.

888 Computational Chemistry
Spring: 3(3-2) R: Open only to graduate students in College of Natural Science or College of Engineering.
Computational approaches to molecular problems. Use of ab initio and semi-empirical electronic structure, molecular mechanics and molecular dynamics software.

890 Chemical Problems and Reports
Fall, Spring, Summer. 1 to 6 credits. A student may earn a maximum of 12 credits in all enrollments for this course.
Investigation and report of a nonthesis problem in chemistry.

899 Master's Thesis Research
Fall, Spring, Summer. 1 to 20 credits. A student may earn a maximum of 99 credits in all enrollments for this course. R: Open only to graduate students in the Department of Chemistry.
Master's thesis research.

913 Selected Topics in Inorganic Chemistry
Fall, Spring. 1 to 3 credits. A student may earn a maximum of 9 credits in all enrollments for this course. R: Open only to graduate students in the Department of Chemistry or approval of department.
Current research topics in inorganic chemistry.

918 Inorganic Chemistry Seminar
Fall, Spring. 1(1-0) R: Open only to graduate students in College of Natural Science or College of Engineering.
Current research topics in inorganic chemistry.

924 Selected Topics in Analytical Chemistry
Fall, Spring. 2 to 3 credits. A student may earn a maximum of 9 credits in all enrollments for this course. R: Open only to graduate students in College of Natural Science or College of Engineering.
Advanced computer techniques, surface chemistry, analytical chemistry of polymers, or statistics for chemists.

938 Analytical Chemistry Seminar
Fall, Spring. 1(1-0) R: Open only to graduate students in College of Natural Science or College of Engineering.
Advances in analytical chemistry reported by graduate students, faculty, and guest lecturers.

956 Selected Topics in Organic Chemistry
Fall, Spring. 1 to 3 credits. A student may earn a maximum of 12 credits in all enrollments for this course. R: Open only to graduate students in College of Natural Science or College of Engineering.
Heterocyclic and organometallic chemistry, natural products, photochemistry, free radicals, or reaction mechanisms.

958 Organic Chemistry Seminar
Fall, Spring. 1(1-0) R: Open only to graduate students in College of Natural Science or College of Engineering.
Advances in organic chemistry reported by graduate students.

971 Emerging Topics in Chemistry
Fall, Spring. 1 to 3 credits. A student may earn a maximum of 6 credits in all enrollments for this course. R: Open only to doctoral students in the Chemistry or Chemical Physics major.
Discussion of a research topic of emerging interest in chemistry. Preparation of a proposal for funding of research.

985 Selected Topics in Nuclear Chemistry
Fall, Spring. 1 to 3 credits. A student may earn a maximum of 9 credits in all enrollments for this course. RB: Thermodynamics, Statistical Mechanics, Quantum Mechanics, Electrodynamics, Differential and Integral Calculus, Differential Equations R: Open to doctoral students in the College of Engineering or in the Department of Chemistry.
Nuclear instruments, detectors and electronics, vacuum technology, electric and magnetic properties of nuclei, nuclear simulation tools, or nuclear spectroscopy and reactions.

987 Selected Topics in Physical Chemistry I
Fall, Spring. 1 to 3 credits. A student may earn a maximum of 9 credits in all enrollments for this course. R: Open only to doctoral students or approval of department.
Topics such as kinetics and photochemistry, macromolecular and surface chemistry, molecular spectroscopy, electric and magnetic properties of matter, or applications of statistical mechanics to chemical problems.

988 Selected Topics in Physical Chemistry II
Spring. 1 to 3 credits. A student may earn a maximum of 9 credits in all enrollments for this course. R: Open only to doctoral students or approval of department.
Topics such as analysis and interpretation of molecular spectra, advanced molecular structure theory, magnetic resonance, X-rays and crystal structure, scientific analysis of vacuum systems, or problems in statistical mechanics.

991 Quantum Chemistry and Statistical Thermodynamics I
Fall, Spring. 3(3-0) R: Open only to graduate students in College of Natural Science or College of Engineering.
Principles and applications of quantum chemistry. Partition functions, spectroscopic measurements, and thermodynamic applications.