College of Natural Science
Department of Mathematics

MATHEMATICS MTH

1005 Fundamentals of Algebra
Summer, 1(1-0) Factoring, Rational and exponential expressions, Linear and quadratic relations, Fractions and distributive laws. Functions

100E Intermediate Algebra Workshop for the Mathematics Enrichment Program
Fall, Spring, 1(0-4) R: Approval of department. C: MTH 1825 concurrently. Enrichment topics in intermediate algebra for students in the Mathematics Enrichment Program.

103 College Algebra
Fall, Spring, Summer, 3(3-0) P:M: (MTH 1825) or designated score on Mathematics Placement test Not open to students with credit in LBS 117 or MTH 116. Number systems; functions and relations; exponents and logarithms; elementary theory of equations; inequalities; and systems of equations.

103E College Algebra Workshop for the Mathematics Enrichment Program
Fall, Spring, 1(0-4) R: Approval of department. C: MTH 103 concurrently. Enrichment topics in college algebra for students in the Mathematics Enrichment Program.

110 Finite Mathematics and Elements of College Algebra

110E Finite Mathematics and Elements of College Algebra for Mathematics Enrichment
Spring, 1(0-2) R: Approval of department. C: MTH 110 concurrently. Enrichment topics in finite mathematics and elements of college algebra.

112 Finite Mathematics: Applications of College Algebra
Fall, Spring, Summer, 3(3-0) P:M: (MTH 103) or designated score on Mathematics Placement test SA: MTH 106 Not open to students with credit in MTH 110. Combinatorics, probability and statistics, mathematics of finance, geometry, transition matrices, and linear programming. The course emphasizes applications and includes work using spreadsheets.

112E Finite Mathematics Workshop for Mathematics Enrichment Program
Spring, 1(0-4) R: Approval of department SA: MTH 106E C: MTH 112 concurrently. Enrichment topics in Finite Mathematics for students in the Mathematics Enrichment Program.

114 Trigonometry
Fall, Spring, Summer, 3(3-0) P:M: MTH 103 SA: MTH 104 Not open to students with credit in MTH 116. Radian and degree measure of angles. Definitions and graphs of trigonometric functions and their inverses. Solving trigonometric equations. Applications including identities, indirect measurement and trigonometric modeling.

116 College Algebra and Trigonometry
Fall, Spring, Summer, 5(5-0) P:M: (MTH 1825) or designated score on Mathematics Placement test Not open to students with credit in LBS 117 or MTH 103. Functions and graphs. Equations and inequalities. Exponential and logarithmic functions. Trigonometric functions. Systems of equations. Binomial theorem.

116E Precalculus Workshop for the Emerging Scholars Program
Fall, 1(0-4) R: Approval of department. C: MTH 116 concurrently. Enrichment topics in precalculus for students in the Emerging Scholars Program.

124 Survey of Calculus I
Fall, Spring, Summer, 3(3-0) P:M: (MTH 103 or MTH 116 or LBS 117) or designated score on Mathematics Placement test Not open to students with credit in LBS 118 or MTH 112 or MTH 152H. Study of limits, continuous functions, derivatives, integrals and their applications.

124E Survey of Calculus with Applications I Mathematics Enrichment Workshop
Fall, 1(0-4) R: Approval of department. C: MTH 124 concurrently. Enrichment topics in Survey of Calculus with Applications I for students in the Mathematics Enrichment Program.

126 Survey of Calculus II
Fall, Spring, Summer, 3(3-0) P:M: MTH 124 Not open to students with credit in MTH 133 or MTH 153H. Application of partial derivatives, integrals, optimization of functions of several variables and differential equations.

132 Calculus I
Fall, Spring, Summer, 3(3-0) P:M: (MTH 103 and MTH 114) or (MTH 116 or LBS 117) or designated score on Mathematics Placement test SA: MTH 152 Not open to students with credit in LBS 118 or MTH 152H. Limits, continuous functions, derivatives and their applications. Integrals and the fundamental theorem of calculus.

132E Calculus I Workshop for the Emerging Scholars Program
Fall, Spring, 2(0-6) R: Approval of department. C: MTH 132 concurrently. Enrichment topics in Calculus I for students in the Emerging Scholars Program.

133 Calculus II
Fall, Spring, Summer, 4(4-0) P:M: MTH 132 or MTH 152H Not open to students with credit in LBS 118 or LBS 119 or MTH 153H. Application of the integral and methods of integration. Improper integrals. Polar coordinates and parametric curves. Sequences and series. Power series.

133E Calculus II Workshop for the Emerging Scholars Program
Fall, Spring, 1(0-4) R: Approval of department. C: MTH 133 concurrently. Enrichment topics in Calculus II for students in the Emerging Scholars Program.

152H Honors Calculus I
Fall, 3(3-0) R: Open only to Honors College students or approval of department. Not open to students with credit in LBS 118 or MTH 132. Limits, continuous functions, derivatives, integrals, fundamental theorem of calculus. Special emphasis on concepts and theory.

153H Honors Calculus II
Fall, Spring, 3(3-0) P:M: (MTH 152H) Not open to students with credit in LBS 119 or MTH 133. The integral. Improper integrals. Polar coordinates and parametric curves. Sequences and series. Power and Taylor series. Special emphasis on concepts and theory.

1825 Intermediate Algebra

201 Mathematical Investigations I
Fall, Spring, Summer, 3(3-0) P:M: (MTH 103 or MTH 110 or MTH 116 or LBS 117 or MTH 124 or MTH 132 or MTH 152H or LBS 118) or designated score on Mathematics Placement test R: Open only to students in the Education major or Special Education major whose area of emphasis is deaf education or hearing disabilities or Child Development major or Teacher Certification Internship-Year Studies program. Mathematics for prospective elementary teachers. Numbers, problem solving, geometry, functions, statistics and probability.

202 Mathematical Investigations II
Fall, Spring, Summer, 3(3-0) P:M: MTH 201 R: Open only to students in the Education major or Special Education major whose area of emphasis is deaf education or learning disabilities or Child Development major or Teacher Certification Internship-Year Studies program. A continuation of MTH 201.

234 Multivariable Calculus
Fall, Spring, Summer, 4(4-0) P:M: MTH 133 or MTH 153H or LBS 119 Not open to students with credit in MTH 254H. Vectors in space. Functions of several variables and partial differentiation. Multiple integrals. Line and surface integrals. Green’s and Stokes’s theorems.

235 Differential Equations
Fall, Spring, Summer, 3(3-0) P:M: MTH 234 or MTH 254H R: Not open to students in the Department of Mathematics or in the Lyman Briggs School—Mathematics Coordinate Major. Not open to students with credit in MTH 255H. Separable and exact equations. Linear equations and variation of parameters. Higher order linear equations. Laplace transforms. Systems of first-order linear equations. Introduction to partial differential equations and Fourier series.
254H Honors Multivariable Calculus
Fall, Spring. 3(3-0) P:M: MTH 153H Not open to students with credit in LBS 220 or MTH 234.

Vectors in space. Functions of several variables and partial differentiation. Multiple integrals. Line and surface integrals. Green's and Stokes's Theorems.

255H Honors Differential Equations
Fall, Spring. 3(3-0) P:M: MTH 254H R: Not open to students in the Bachelor of Arts in Mathematics or Bachelor of Science in Mathematics or Lyman Briggs School Mathematics coordinate majors. Not open to students with credit in MTH 235.

Topics chosen from separable and exact equations, linear equations and variation of parameters, series solutions, higher order linear equations, Laplace transforms, systems of first-order linear equations, nonlinear equations and stability, introduction to partial differential equations.

290 Directed Study
Fall, Spring. Summer. 1 to 4 credits. A student may earn a maximum of 6 credits in all enrollments for this course.

Faculty directed study of selected mathematical topics.

309 Linear Algebra I
Fall, Spring. Summer. 3(3-0) P:M: (MTH 234 or MTH 254H or LBS 220) or completion of Tier I writing requirement

Matrices, systems of linear equations, vector spaces, linear transformations, inner products and orthogonal spaces, eigenvalues and eigenvectors, and applications to geometry. A writing course with emphasis on proofs.

310 Abstract Algebra I and Number Theory
Fall, Spring. Summer. 3(3-0) P:M: (MTH 309) and completion of Tier I writing requirement

Structure of the integers, congruences, polynomial rings, and ideals. A writing course with emphasis on proofs.

314 Matrix Algebra with Applications
Fall, Spring. Summer. 3(3-0) P:M: MTH 234 or MTH 254H or LBS 220 R: Not open to students in the Department of Mathematics or students in Lyman Briggs School Mathematics coordinate major or Lyman Briggs School Computational Mathematics coordinate major.

Problem-solving and applications in matrix algebra for scientists and engineers. Vectors, matrices, linear transformations, inner products, dimension, eigenvalues and eigenvectors. Applications to systems of equations and to geometry.

320 Analysis I
Fall, Spring. Summer. 3(3-0) P:M: (MTH 234 or MTH 254H or LBS 220) and (MTH 309 or MTH 310) Not open to students with credit in MTH 428H.

330 Higher Geometry
Fall. 3(3-0) P:M: MTH 309

Topics in transformations: isometries, similarities, inversion. Advanced Euclidean geometry: theorems of Menelaus, Ceva, and Desargue. Cross ratio, harmonic points, analytic, metric and vector methods, convexity.

340 Ordinary Differential Equations I
Fall, Spring. Summer. 3(3-0) P:M: MTH 309

Techniques for solving differential equations, existence and uniqueness theorems, qualitative theory, Fourier series and applications.

360 Theory of Mathematical Interest
Fall. 3(3-0) P:M: MTH 234 or concurrently Measurement of interest rates, basic problems in interest theory, basic annuities, continuous and varying annuities, yield rates, amortization, bonds and other securities, practical applications, and stochastic approaches to interest.

411 Abstract Algebra II
Fall, Spring. 3(3-0) P:M: MTH 310 Not open to students with credit in MTH 418H.

Continuation of MTH 310. Permutation groups, groups of transformations, normal subgroups, homomorphism theorems, modules. Principal ideal rings, unique factorization domains, noncommutative rings, rings of fractions, ideals.

414 Linear Algebra II
Fall. 3(3-0) P:M: MTH 309 or MTH 314 Not open to students with credit in MTH 415.

Linear transformations on finite dimensional vector spaces. Invariant subspaces, rank, eigenvalues and eigenvectors. Canonical forms. Bilinear and multilinear forms.

415 Applied Linear Algebra
Fall, Spring. Summer. 3(3-0) P:M: MTH 235 or MTH 255H or LBS 220 RB: MTH 309 or MTH 314 R: Not open to students in the Bachelor of Arts in Mathematics or Bachelor of Science in Mathematics or Lyman Briggs School Mathematics coordinate majors. Not open to students with credit in MTH 414.

416 Introduction to Algebraic Coding
Fall. 3(3-0) P:M: MTH 309

Concepts and techniques of abstract algebra applied to the design of communication systems for use in imperfect circumstances. Theory of codes designed by algebraic means.

417 Topics in Number Theory
Spring of even years. 3(3-0) P:M: MTH 310

Congruences of higher degree, primitive roots and quadratic reciprocity. Number-theoretic functions, algebraic numbers. Dirichlet Series, p-order expansion, continued fractions.

418H Honors Algebra I
Fall. 3(3-0) P:M: Completion of Tier I writing requirement. RB: MTH 309 R: Approval of department.

Not open to students with credit in MTH 411.

Theory of groups, Sylow theory, the structure of finite Abelian groups, ring theory, ideals, homomorphisms, and polynomial rings.

419H Honors Algebra II
Spring. 3(3-0) P:M: MTH 418H R: Approval of department.

Algebraic field extensions, Galois theory. Classification of finite fields. Fundamental Theorem of Algebra.

421 Analysis II
Fall, Spring. Summer. 3(3-0) P:M: MTH 320

Not open to students with credit in MTH 424 or MTH 429H.

424 Applied Advanced Calculus
Spring. Summer. 3(3-0) P:M: MTH 235 or MTH 255H or LBS 220 R: Not open to students in the Department of Mathematics.

Vector analysis for scientists and engineers. Inverse and implicit function theorems, divergence and curl, Stokes's theorem. Sequences and series, uniform convergence.

425 Complex Analysis
Fall, Spring. 3(3-0) P:M: MTH 320

Analytic functions of a complex variable, Cauchy integral theorem, conformal maps, bilinear transformation, harmonic functions. Classification of singularities, residues, conformal mappings.

428H Honors Analysis I
Fall. 3(3-0) R: Approval of department.

Not open to students with credit in MTH 320.

Honors analysis with emphasis on metric topology, differentiation, and integration in higher dimensional settings. Convergence of sequences of functions.

429H Honors Analysis II
Spring. 3(3-0) P:M: MTH 428H R: Approval of department.

Not open to students with credit in MTH 421 or MTH 424.

Continuation of MTH 428H. Convergence of sequences of functions, inverse and implicit function theorems, integration in higher dimensional settings.

432 Axiomatic Geometry
Spring. 3(3-0) P:M: MTH 309

Axiomatic systems and finite geometries: axioms of Euclidean and hyperbolic geometry, the Poincare model, independence of the parallel postulate. Classical constructions and the impossibility of angle trisection.

441 Ordinary Differential Equations II
Fall. 3(3-0) P:M: (MTH 235 or MTH 255H or LBS 220 or MTH 340) and (MTH 309 or MTH 415 or MTH 314)

Existence and uniqueness theorems, linearization, stability theory, and phase space analysis.

442 Partial Differential Equations
Spring. 3(3-0) P:M: MTH 235 or MTH 255H or LBS 220 or MTH 415 R: Not open to students in the Department of Mathematics.

Classification and canonical forms for second order partial differential equations. Well posed boundary and initial value problems for the wave equation, the heat equation and the Laplace equation.

443 Boundary Value Problems for Engineers
Fall. 3(3-0) P:M: MTH 235 or MTH 255H or LBS 220 R: Not open to students in the Department of Mathematics.

451 Numerical Analysis I
Fall. 3(3-0) P.M.: (CSE 131 or CSE 231) and (MTH 309 or MTH 314 or MTH 415) and (MTH 235 or MTH 255H or LBS 220 or MTH 340) SA: MTH 351

452 Numerical Analysis II
Spring. 3(3-0) P.M: MTH 451
A continuation of MTH 451.

455 Actuarial Models
Spring. 3(3-0) Interdepartmental with Statistics and Probability. RB: STT 441 and MTH 360
Stochastic models used in insurance. Survival distributions, life insurance, life annuities, benefit premiums, benefit reserves, and analysis of benefit reserves.

457 Introduction to Financial Mathematics
Spring. 3(3-0) P.M: MTH 309 and (MTH 340 or MTH 235) and (STT 441 or STT 351)

461 Metric and Topological Spaces
Fall. 3(3-0) P.M: MTH 320 or MTH 426H

472 Mathematical Logic
Spring. 3(3-0) P.M: MTH 234 or MTH 254H or LBS 220
Logics and formal systems, syntax and semantics. Completeness and axiomatizability. Decidable and undecidable theories and Goedel's theorems. Peano arithmetic.

481 Discrete Mathematics I
Fall. Spring. 3(3-0) P.M: MTH 309

482 Discrete Mathematics II
Spring. 3(3-0) P.M: MTH 481 RB: MTH 310
Recurrence and generating functions, Ramsey theory. Block designs, Latin squares, Eulerian and Hamiltonian paths. Minimum spanning trees, network flows.

490 Directed Studies
Fall. Spring. Summer. 1 to 4 credits. A student may earn a maximum of 9 credits in all enrollments for this course. R: Approval of department.
Faculty directed study in a selected mathematical topic.

496 Capstone in Mathematics
Fall. Spring. 3(3-0) P.M: Completion of Tier I writing requirement. R: Approval of department.
A capstone course integrating several areas of mathematics.

801 Current Issues in Mathematics Education
Fall. 3(3-0) R: Approval of department. Recent developments in K-16 mathematics curriculum, teaching, learning, and evaluation.

802A Critical Content of School Mathematics: Algebra and Analysis
Spring of even years. 3(3-0) RB: MTH 330 and MTH 481 and MTH 801 R: Open only to graduate students. Foundations and development, evolution and applications in the school curriculum. Connections among content areas. Learning and teaching mathematics.

802B Critical Content of School Mathematics: Geometry and Discrete Mathematics
Spring of even years. 3(3-0) RB: MTH 330 and MTH 481 and MTH 801 R: Open only to graduate students. Foundations and development and evolution and applications in the school curriculum. Connections among content areas. Learning and teaching mathematics.

810 Error-Correcting Codes
Spring. 3(3-0) RB: MTH 411 or MTH 414 or MTH 415
Block codes, maximum likelihood decoding, Shannon's theorem. Generalized Reed-Solomon codes, modification of codes, subfield codes. Alternant and Goppa codes, cyclic codes and BCH codes.

818 Algebra I
Fall. 3(3-0) RB: MTH 411
Group theory: Sylow theory, permutation groups, Jordan-Holder theory, Abelian groups, free groups. Ring theory: algebra of ideals, unique factorization, polynomial rings, finitely generated modules over PIDs.

819 Algebra II
Spring. 3(3-0) RB: MTH 818
Modules and vector spaces, projectives modules, tensor algebra. Fields and Galois groups, algebraic and transcendental numbers, non-commutative rings. The Jacobson radical, the structure of semisimple rings with the descending chain condition.

828 Real Analysis I
Fall. 3(3-0) RB: MTH 421 and MTH 461

829 Complex Analysis I
Spring. 3(3-0) RB: MTH 421 and MTH 425

840 Chaos and Dynamical Systems
Spring. 3(3-0) RB: (MTH 441 and MTH 320 and MTH 414) and some experience with mathematical software such as Mathematica or Matlab.
Chaotic or random motions in differential and difference equations.

841 Boundary Value Problems I
Fall. 3(3-0) RB: MTH 414 and MTH 421
Methods for solving boundary and initial value problems for ordinary and partial differential equations.
Mathematics—MTH

869 Geometry and Topology II
Spring. 3(3-0) RB: MTH 888
Continuation of MTH 868.

879 Teaching College Mathematics
Fall. 3(3-0) A student may earn a maximum of 6 credits in all enrollments for this course. Interdepartmental with Counseling, Educational Psychology and Special Education and Science and Mathematics Education and Teacher Education. Administered by Science and Mathematics Education. RB: Past or concurrent mathematics teaching experience.

Curriculum materials, case studies, approaches to teaching and student learning of particular mathematics topics.

880 Combinatorics
Fall. 3(3-0) RB: MTH 411 or MTH 482
Enumerative combinatorics, recurrence relations, generating functions, asymptotics, applications to graphs, partially ordered sets, generalized Mobius inversions, combinatorial algorithms.

881 Graph Theory
Spring. 3(3-0) RB: MTH 880
Graph theory, connectivity, algebraic and topological methods. Networks, graph algorithms, Hamiltonian and Eulerian graphs, extremal graph theory, random graphs.

890 Readings in Mathematics
Fall, Spring, Summer. 1 to 6 credits. A student may earn a maximum of 24 credits in all enrollments for this course. R: Approval of department.
Individualized study for Master's level students.

910 Commutative Algebra I
Fall of odd years. 3(3-0) RB: MTH 819
Noetherian rings and modules, localization and tensor products, primary decomposition, Krull dimensions, graded rings and modules, Hilbert's Nullstellensatz, integral extensions, discrete valuation rings, Dedekind domains.

911 Commutative Algebra II
Spring of even years. 3(3-0) RB: MTH 910
Ext and Tor, regular sequences, Cohen-Macaulay rings, regular rings, Gorenstein rings, completion, modules of differentials, Cohen's structure theorems.

912 Group Theory I
Fall of even years. 3(3-0) RB: MTH 819
Permutation groups, solvable and nilpotent groups, simple groups. Representation and character theory. Extension theory and cohomology groups.

913 Group Theory II
Spring of odd years. 3(3-0) RB: MTH 912
Groups of Lie type, linear groups, locally finite groups, free groups and free products, the subgroup theorems.

914 Lie Groups and Algebras I
Fall of odd years. 3(3-0) RB: MTH 819
Nilpotent and semisimple algebras, the adjoint representation, root spaces, Weyl groups, Dynkin diagrams, classification of simple algebras.

915 Lie Groups and Algebras II
Spring of even years. 3(3-0) RB: MTH 914
Weights, symmetric spaces, groups of Lie type, finite groups of Lie type, Lang's theorem.

916 Introduction to Algebraic Geometry I
Fall of even years. 3(3-0) RB: MTH 818 and MTH 819
Affine and projective algebraic varieties and their properties. Morphisms and singularities. Schemes and coherent sheaves. Sheaf cohomology and other related topics.

917 Introduction to Algebraic Geometry II
Spring of odd years. 3(3-0) RB: MTH 916
Continuation of MTH 916.

920 Functional Analysis I
Spring. 3(3-0) RB: MTH 828

921 Functional Analysis II
Fall of even years. 3(3-0) RB: MTH 829 and MTH 920

926 Proseminar in Mathematics Education I
Fall. 3(3-0) Interdepartmental with Counseling, Educational Psychology and Special Education and Science and Mathematics Education and Teacher Education. Administered by Science and Mathematics Education.
Research on the learning and teaching of mathematics. Teaching, teacher and student learning, curriculum, and educational policy. Historical, philosophical, empirical, and theoretical perspectives.

927 Proseminar in Mathematics Education II
Spring. 3(3-0) RB: MTH 926
Continuation of SME 926.

928 Real Analysis II
Fall. 3(3-0) RB: MTH 828

929 Complex Analysis
Spring. 3(3-0) RB: MTH 828 and MTH 829

930 Riemannian Geometry I
Fall of even years. 3(3-0) RB: MTH 869
Riemannian metrics, connections, curvature, geodesics. First and second variation, Jacobi fields, conjugate points, Rauch comparison theorems, Hodge theorem, Bochner technique, spinors. Further topics on curvature or submanifold theory.

931 Riemannian Geometry II
Spring of odd years. 3(3-0) RB: MTH 930
Continuation of MTH 930.

935 Complex Manifolds I
Fall of odd years. 3(3-0) RB: MTH 829 and MTH 869

936 Complex Manifolds II
Spring of even years. 3(3-0) RB: MTH 935
Continuation of MTH 935.

940 Applied Analysis I
Fall. 3(3-0) RB: MTH 828
Sobolev spaces, trace theorem, imbedding theorems, sectorial forms. Linear elliptic boundary and eigenvalue problems.

941 Applied Analysis II
Spring. 3(3-0) RB: MTH 940
Fixed point theorems. Variational methods. Applications to nonlinear integral and elliptic differential equations. Semigroup theory.

942 Foundations of Applied Mathematics I
Fall. 3(3-0) RB: MTH 848 and MTH 849

943 Foundations of Applied Mathematics II
Spring. 3(3-0) RB: MTH 942
Continuation of MTH 942.

950 Numerical Methods for Partial Differential Equations I
Spring of odd years. 3(3-0) RB: MTH 852
Finite difference methods for ordinary and partial differential equations.

954 Design and Methods in Mathematics Education Research
Fall of odd years. 3(3-0) Interdepartmental with Counseling, Educational Psychology and Special Education and Science and Mathematics Education and Teacher Education. Administered by Science and Mathematics Education. RB: SME 926 and SME 927
History, current trends, and issues pertaining to research design and methods in mathematics education research. Mathematics education research in the areas of policy, teaching, teacher learning, and student learning with particular attention to how features of research designs influence research findings.

960 Algebraic Topology I
Fall. 3(3-0) RB: MTH 869
Cohomology, products, duality, basic homotopy theory, bundles, obstruction theory, spectral sequences, characteristic classes, and other related topics.

961 Algebraic Topology II
Spring. 3(3-0) RB: MTH 960
Continuation of MTH 960.
990 Reading in Mathematics
Fall, Spring, Summer. 1 to 3 credits. A student may earn a maximum of 9 credits in all enrollments for this course. R: Approval of department.
Individualized study for doctoral level students.

991 Special Topics in Algebra
Fall, Spring. 3 to 6 credits. A student may earn a maximum of 18 credits in all enrollments for this course. R: Approval of department.
Advanced topics in algebra.

992 Special Topics in Analysis
Fall, Spring. 3 to 6 credits. A student may earn a maximum of 18 credits in all enrollments for this course. R: Approval of department.
Advanced topics in analysis.

993 Special Topics in Geometry
Fall, Spring. 3 to 6 credits. A student may earn a maximum of 18 credits in all enrollments for this course. R: Approval of department.
Advanced topics in geometry.

994 Special Topics in Applied Mathematics
Fall, Spring. 3 to 6 credits. A student may earn a maximum of 24 credits in all enrollments for this course. R: Approval of department.
Advanced topics in applied mathematics.

995 Special Topics in Numerical Analysis and Operations Research
Fall, Spring. 3 to 6 credits. A student may earn a maximum of 18 credits in all enrollments for this course. R: Approval of department.
Advanced topics in numerical analysis or operations research.

996 Special Topics in Topology
Fall, Spring. 3 to 6 credits. A student may earn a maximum of 18 credits in all enrollments for this course. R: Approval of department.
Advanced topics in topology.

998 Special Topics in Combinatorics and Graph Theory
Fall, Spring. 3 to 6 credits. A student may earn a maximum of 18 credits in all enrollments for this course. R: Approval of department.
Advanced topics in combinatorics and graph theory.

999 Doctoral Dissertation Research
Fall, Spring, Summer. 1 to 24 credits. A student may earn a maximum of 120 credits in all enrollments for this course. R: Approval of department.
Doctoral dissertation research.