876. Advanced Polymeric Materials
Fall of even years. 3(3-0) C: MSM 810 concurrently.
Advanced topics in polymer structure and properties. Thermoplastics, thermosets, polyblends and elastomers. Processing techniques. Deformation and mechanical properties. Thermal, optical and chemical properties. Composites.

881. Advanced Manufacturing Systems
Fall. 3(3-0) P: MSM 482 R: Open only to juniors or seniors in the Manufacturing Engineering major or to students in the Business Management of Manufacturing major.

885. Seminar
Fall, Spring. 1(1-0)
Oral presentations of students' research or literature survey.

890. Independent Study
Fall, Spring, Summer. 1 to 3 credits. A student may earn a maximum of 6 credits in all enrollments for this course. R: Approval of department. Individualized reading and research of student's interest.

891. Selected Topics
Fall, Spring, Summer. 1 to 3 credits. A student may earn a maximum of 6 credits in all enrollments for this course. R: Approval of department. Special topics in materials science or mechanics of current importance.

899. Master's Thesis Research
Fall, Spring, Summer. 1 to 6 credits. A student may earn a maximum of 24 credits in all enrollments for this course.

905. Optical Methods of Measurement
Fall of even years. 3(2-3) R: Approval of department.
Measurement of dimension, position, motion, strain, using optical methods including holography, speckle interferometry, Moire, photoelasticity, laser Doppler, electronic imaging, model analysis. Relevant optics theory.

909. Boundary Element Method
Spring of odd years. 3(3-0) P: MSM 813
Spring of even years. 3(3-0) R: Approval of department.
Solution of boundary element method to the solution of continuum type problems in heat transfer, fluid mechanics and stress analysis. Computer applications.

915. Nonlinear Elasticity
Spring of odd years. 3(3-0) P: MSM 813

918. Thermomechanics and Viscoelasticity
Spring of even years. 3(3-0) P: MSM 810, MTH 443

964. Advanced Physical and Mechanical Properties of Materials I (MTC)
Fall of even years. 3(3-0) A student may earn a maximum of 9 credits in all enrollments for this course. Topics vary each semester. Topics such as anisotropic crystalline properties and dissipative phase transformations. SA: MSM 860

965. Advanced Analytical Techniques (MTC)
Fall of odd years. 3(3-0) A student may earn a maximum of 9 credits in all enrollments for this course. Topics vary each semester. Topics such as environmental effects on materials and advanced techniques in electron microscopy. SA: MSM 860

974. Advanced Physical and Mechanical Properties of Materials II (MTC)
Spring of even years. 3(3-0) A student may earn a maximum of 9 credits in all enrollments for this course. Topics vary each semester. Topics such as microcracking in brittle materials, or high temperature deformation and processing. SA: MSM 960

975. Advanced Processing Techniques (MTC)
Spring of odd years. 3(3-0) A student may earn a maximum of 9 credits in all enrollments for this course. Topics vary each semester. Topics such as laser and plasma processing and ceramic processing. SA: MSM 960

100. Independent Study
Fall, Spring, Summer. 1 to 3 credits. A student may earn a maximum of 6 credits in all enrollments for this course. R: Approval of department. Individualized reading and research.

101. Selected Topics
Fall, Spring, Summer. 1 to 3 credits. A student may earn a maximum of 6 credits in all enrollments for this course. R: Approval of department. Special advanced topics in materials science and engineering, and mechanics.

102. Doctoral Dissertation Research
Fall, Spring, Summer. 1 to 24 credits. A student may earn a maximum of 72 credits in all enrollments for this course.

MATHMATICS MTH
Department of Mathematics
College of Natural Science

103. College Algebra
Fall, Spring, Summer. 3(3-0) P: (MTH 1825) or designated score on Mathematics placement test. Not open to students with credit in LBS 117 or MTH 110 or MTH 116 or MTH 120.

104. Trigonometry
Fall, Spring, Summer. 3(3-0) P: (MTH 103 or MTH 110) Not open to students with credit in MTH 116.
Radian and degree measure of angles. Definitions and graphs of trigonometric functions and their inverses. Solving trigonometric equations. Applications including identities, law of sines, law of cosines, vectors in the plane, and polar coordinates.

110. College Algebra and Finite Mathematics
Fall, Spring, Summer. 5(5-0) P: (MTH 1825) or designated score on Mathematics placement test. Not open to students with credit in LBS 117 or MTH 110 or MTH 116 or MTH 120.

116. College Algebra and Trigonometry
Fall, Spring, Summer. 5(5-0) P: (MTH 1825) or designated score on Mathematics placement test. Not open to students with credit in LBS 117 or MTH 103 or MTH 110 or MTH 120.

124. Survey of Calculus with Applications I
Fall, Spring, Summer. 3(3-0) P: (MTH 103 or MTH 110 or MTH 116 or LBS 117) or designated score on Mathematics placement test. Not open to students with credit in LBS 118 or MTH 120 or MTH 132 or MTH 153H.
Study of limits, continuous functions, derivatives, integrals and their applications.

126. Survey of Calculus with Applications II
Fall, Spring, Summer. 3(3-0) P: (MTH 120 or MTH 124) Not open to students with credit in MTH 132 or MTH 113H.
Application of partial derivatives, integrals, optimization of functions of several variables and infinite series.
132. Calculus I
Fall, Spring, Summer. 3(3-0) P: (MTH 103 and MTH 104) or (MTH 116) or (LBS 117) or distin-
gnated score on Mathematics placement test. Not open to students with credit in MTH 118 or MTH 120 or MTH 124 or Mth 152H.
Limits, continuous functions, derivatives and their applications. Integrals and the fundamen-
tal theorem of calculus.

132E. Calculus I Workshop for the
Emerging Scholars Program
Fall, Spring. 2(2-0) R: Approval of department. C: MTH 132 concurrently.
Enrichment topics in Calculus I for students in the Emerging Scholars Program.

133. Calculus II
Fall, Spring, Summer. 4(4-0) P: (MTH 132 or MTH 152H) Not open to students with credit in LBS 118 or LBS 119 or MTH 126 or MTH 153H.
Applications of the integral and methods of integ-
Power series.

133E. Calculus II Workshop for the
Emerging Scholars Program
Fall, Spring. 1(4-0) R: Approval of department. C: MTH 133 concurrently.
Enrichment topics in Calculus II for students in the Emerging Scholars Program.

152H. Honors Calculus I
Fall, 3(3-0) R: Honors College student or approval of department. Not open to students with credit in LBS 118 or MTH1120 or MTH124 or MTH132.
Limits, continuous functions, derivatives, integ-
als, fundamental theorem of calculus. Special emphasis on concepts and theory.

153H. Honors Calculus II
Fall, Spring, 3(3-0) P: (MTH 152H) Not open to students with credit in MTH 126 or MTH 133.
The integral. Improper integrals. Polar coordi-
nates and parametric curves. Sequences and series. Power and Taylor series. Special emphasis on concepts and theory.

1825. Intermediate Algebra
Fall, Spring, Summer. 3(3-0) P: Completion of Tier I writing require-
ment. Problem solving in doing mathematics: collecting data, searching for patterns, conjecturing, verifi-
cation (reasoning), application, and finding con-
nections.

201. Mathematical Investigations I
Fall, Spring, Summer. 3(3-0) P: (MTH 103 or MTH 110 or MTH 116 or LBS 117) or designated score on Mathematics placement test.
Matrices and linear algebra. General linear sys-
tems of equations, least squares minimization techniques. Eigenvalues and eigenvectors, spec-
tral decompositions, exponentials.

234. Multivariable Calculus
Fall, Spring, Summer. 4(4-0) P: (MTH 133 or MTH 153H or LBS 119) Not open to students with credit in MTH 254H.
Vectors in space. Functions of several variables and partial differentiation. Multiple integrals. Line and surface integrals. Green's and Stokes's theorems.

235. Differential Equations
Fall, Spring, Summer. 3(3-0) P: (MTH 234 or MTH 254H) Not open to students with credit in MTH 255H.
Topics chosen from separable and exact equa-
tions, linear equations and variation of param-
ters, series solutions, higher order linear equa-
tions, Laplace transforms, systems of first order linear equations, nonlinear equations and stabil-
ity, introduction to partial differential equations.

254H. Honors Multivariable Calculus
Fall, 3(3-0) P: (MTH 153H) Not open to students with credit in MTH 220 or MTH 234.
Vectors in space. Functions of several variables and partial differentiation. Multiple integrals. Line and surface integrals. Green's and Stokes's Theorems.

290. Directed Study
Fall, Spring, Summer. 1 to 4 credits. A student may earn a maximum of 6 credits in all enroll-
ments for this course.
Faculty directed study of selected mathematical topics.

301. Abstract Algebra I and Number
Theory
Fall, Spring, Summer. 3(3-0) P: (MTH 133 or MTH 153H or LBS 119) R: Completion of Tier I writing requirement.
A writing course with an emphasis on proofs. Structure of the integers, congruences, poly-
nomial rings, ideals and fields.

314. Linear Algebra I
Fall, Spring, Summer. 3(3-0) P: (MTH 234 or MTH 254H or LBS 220)
Matrices, vectors and linear transformations. Operations on matrices, inner products, dimen-
sion, eigenvalues and eigenvectors. Applications to systems of equations and to geometry.

320. Analysis I
Fall, Spring, Summer. 3(3-0) P: (MTH 234 or MTH 254H or LBS 220) and (MTH 310) Not open to students with credit in MTH 428H.

330. Higher Geometry
Fall, Spring, Summer. 3(3-0) P: (MTH 310)
Topics in transformations: isometries, similari-
ties, inversion. Advanced Euclidean geometry: theorems of Menelaus, Ceva, and Desargue. Cross ratio, harmonic points, analytic, metric and vector methods, convexity.

351. Elements of Numerical Analysis
Fall, Spring, Summer. 3(3-0) P: (MTH 235 or MTH 255H or LBS 220) R: Not open to students in the Department of Mathematics. Not open to students with credit in MTH 451.
Techniques and elementary theory of numerical analysis for engineering and science students.

411. Abstract Algebra II
Fall, Spring, Summer. 3(3-0) P: (MTH 310) Not open to students with credit in MTH 418H.
Continuation of MTH 310. Permutation groups, groups of transformations, normal subgroups, homomorphism theorems, modules. Principal ideals, unique factorization domains, non-
commutative rings, rings of fractions, ideals.

414. Linear Algebra II
Fall, Spring, Summer. 3(3-0) P: (MTH 310 and MTH 314) Not open to students with credit in MTH 414.
Linear transformations on finite dimensional vector spaces, Invariant subspaces, rank, eigen-
values and eigenvectors. Canonical forms. Bilin-
ear and multilinear forms.

415. Applied Linear Algebra
Fall, Spring, Summer. 3(3-0) P: (MTH 314) Not open to students with credit in MTH 414.
Matrices and linear algebra. General linear sys-
tems of equations, least squares minimization techniques. Eigenvalues and eigenvectors, spect-
ral decompositions, exponentials.

416. Introduction to Algebraic Coding
Fall. 3(3-0) P: (MTH 314) Concepts and techniques of abstract algebra applied to the design of communication systems for use in imperfect circumstances. Theory of codes designed by algebraic means.

417. Topics in Number Theory
Spring of even years. 3(3-0) P: (MTH 310) Congruences of higher degree, primitive roots and quadratic reciprocity. Number-theoretic func-
tions, algebraic numbers. Dirichlet Series, p-order expansion, continued fractions.

418H. Honors Algebra I
Fall. 3(3-0) P: Completion of Tier I writing re-
quirement. RB: (MTH 310) R: Approval of de-
partment. Not open to students with credit in MTH 411.
Theory of groups, Sylow theory, the structure of finite Abelian groups, ring theory, ideals, homo-
morphisms, and polynomial rings.

419H. Honors Algebra II
Spring. 3(3-0) P: (MTH 418H) R: Approval of department.
Algebraic field extensions, Galois theory. Classifi-
cation of finite fields. Fundamental Theorem of Algebra.

421. Analysis II
Fall, Spring, Summer. 3(3-0) P: (MTH 320) Not open to students with credit in MTH 424 or MTH 429H.
Continuation of MTH 320. Euclidean spaces: differentiation and integration in higher dimen-
sions. Convergence of sequences of functions.

424. Applied Advanced Calculus
Spring. 3(3-0) P: (MTH 235 or MTH 255H or LBS 220) Not open to students with credit in MTH 421 or MTH 429H.
Vector analysis for scientists and engineers. Inverse and implicit function theorems, diver-
gence and curl, Stokes's theorem. Sequences and series, uniform convergence.
Descriptions—Mathematics of Courses

425. Complex Analysis
Fall, Spring. 3(3-0) P: (MTH 234 or MTH 254H or LBS 220)
Analytic functions of a complex variable: Cauchy integral theorem, conformal maps, bilinear transformation, harmonic functions. Classification of singularities, residues, conformal mappings.

428H. Honors Analysis I
Fall. 3(3-0) R: Approval of department. Not open to students with credit in MTH 320.
Honors analysis with emphasis on metric topology, differentiation, and integration in higher dimensional settings. Convergence of sequences of functions.

429H. Honors Analysis II
Spring. 3(3-0) P: (MTH 428H) R: Approval of department. Not open to students with credit in MTH 421 or MTH 424.
Continuation of MTH 428H. Convergence of sequences of functions, inverse and implicit function theorems, integration in higher dimensional settings.

432. Axiomatic Geometry
Spring. 3(3-0) P: (MTH 310)
Axiomatic systems and finite geometries: axioms of Euclidean and hyperbolic geometry, the Poincare model, independence of the parallel postulate. Classical constructions and the impossibility of angle trisection.

434. Differential Geometry
Fall. 3(3-0) P: (MTH 235 or MTH 255H or LBS 220)

441. Ordinary Differential Equations
Fall. 3(3-0) P: (MTH 235 or MTH 255H or LBS 220 and (MTH 314)
Existence and uniqueness theorems, linearization, stability theory, and phase space analysis.

442. Partial Differential Equations
Spring. 3(3-0) P: (MTH 235 or MTH 255H or LBS 220)
Classification and canonical forms for second order partial differential equations. Well posed boundary and initial value problems for the wave equation, the heat equation and the Laplace equation.

443. Boundary Value Problems for Engineers
Fall. 3(3-0) P: (MTH 235 or MTH 255H or LBS 220) R: Not open to students in the Department of Mathematics.

451. Numerical Analysis I
Fall, 3(3-0) P: (CSE 101 or CSE 131 or CSE 230) and (MTH 235 or MTH 255H or LBS 220)
Not open to students with credit in MTH 351.

452. Numerical Analysis II
Spring. 3(3-0) P: (MTH 451)
A continuation of MTH 451.

461. Metric and Topological Spaces
Fall. 3(3-0) P: (MTH 235 or MTH 255H or LBS 220)

471. Computational Complexity
Fall. 3(3-0) P: (MTH 234 or MTH 254H or LBS 320)

472. Mathematical Logic
Spring. 3(3-0) P: (MTH 234 or MTH 254H or LBS 220)
Logic and formal systems, syntax and semantics. Completeness and axiomatizability. Decidable and undecidable theories and Godel's theorems. Peano arithmetic.

481. Discrete Mathematics I
Fall, Spring. 3(3-0) P: (MTH 310)

482. Discrete Mathematics II
Spring. 3(3-0) P: (MTH 481)
Recurrence and generating functions, Ramsey theory, Block designs, Latin squares, Eulerian and Hamiltonian paths. Minimum spanning trees, network flows.

490. Directed Studies
Fall, Spring, Summer. 1 to 4 credits. A student may earn a maximum of 9 credits in all enrollments for this course. R: Approval of department.
Faculty directed study in a selected mathematical topic.

496. Capstone in Mathematics
Fall, Spring. 3(3-0) R: Completion of Tier I writing requirement. Approval of department.
A capstone course integrating several areas of mathematics.

801. Current Issues in Mathematics Education
Fall. 3(3-0) R: Approval of department.
Recent developments in K-16 mathematics curriculum, teaching, learning, and evaluation.

802A. Critical Content of School Mathematics: Algebra and Analysis
Spring of odd years. 3(3-0) P: MTH 310, MTH 320, MTH 801.
Foundations and development, evolution and applications in the school curriculum. Connections among content areas. Learning and teaching mathematics.

802B. Critical Content of School Mathematics: Geometry and Discrete Mathematics
Spring of even years. 3(3-0) P: MTH 330, MTH 481, MTH 801. R: Open only to graduate students.
Foundations and development, evolution and applications in the school curriculum. Connections among content areas. Learning and teaching mathematics.

803. Topics in Mathematics Education Research
Spring. 3(3-0) P: MTH 802A or MTH 802B.
Research in mathematics education and its effect on policy, curriculum, and the teaching and learning of mathematics.

810. Error-Correcting Codes
Spring. 3(3-0) P: MTH 411 or MTH 414 or MTH 415.
Block codes, maximum likelihood decoding, Shannon's theorem. Generalized Reed-Solomon codes, modification of codes, subfield codes. Antiterm and Goppa codes, cyclic codes and BCH codes.

818. Algebra I
Fall. 3(3-0) P: MTH 411.
Group theory: Sylow theory, permutation groups, Jordan-Holder theory, Abelian groups, free groups. Ring theory: algebra of ideals, unique factorization, polynomial rings, finitely generated modules over FIDs.

819. Algebra II
Spring. 3(3-0) P: MTH 418.
Modules and vector spaces, projective modules, tensor algebra. Fields and Galois groups, algebraic and transcendental numbers, noncommutative rings. The Jacobson radical, the structure of semisimple rings with the descending chain condition.

822. Calculus on Manifolds
Fall. 3(3-0) P: (MTH 421) R: MTH 414 or equivalent.

828. Real Analysis I
Fall. 3(3-0) P: MTH 421, MTH 461.
829. Complex Analysis I
Spring. 3(3-0) P: MTH 421, MTH 425.

840. Chaos and Dynamical Systems
Spring. 3(3-0) P: (MTH 320 and MTH 414) BB: (MTH 441) Some experience with mathematical software such as Mathematica or Matlab. Chaotic or random motions in differential and difference equations.

841. Boundary Value Problems I
Fall. 3(3-0) P: MTH 414, MTH 421. Methods for solving boundary and initial value problems for ordinary and partial differential equations.

842. Boundary Value Problems II
Spring. 3(3-0) P: MTH 841. Continuation of MTH 841.

849. Partial Differential Equations

850. Numerical Analysis I
Fall. 3(3-0) P: MTH 414, MTH 421. Convergence and error analysis of numerical methods in applied mathematics.

851. Numerical Analysis II

852. Numerical Methods for Ordinary Differential Equations

864. Geometric Topology
Spring. 3(3-0) P: (MTH 421) Topology of surfaces and higher dimensional manifolds, studied from combinatorial, algebraic or differential viewpoints. SA: MTH 464

865. Geometry and Topology I
Fall. 3(3-0) P: MTH 411, MTH 421 or approval of department. Fundamental group and covering spaces, van Kampen's theorem. Homology theory, Differentiable manifolds, vector bundles, transversality, calculus on manifolds. Differential forms, tensor bundles, deRham theorem, Frobenius theorem.

869. Geometry and Topology II
Spring. 3(3-0) P: MTH 868. Continuation of MTH 868.

870. Set Theory and Foundations of Mathematics
Spring. 3(3-0) P: MTH 411 or MTH 421. Zermelo-Fraenkel axioms. Cardinals and ordinals and their arithmetic. Axiom of choice and maximal principles. Transfinite induction and recursion, consistency and independence.

880. Combinatorics
Fall. 3(3-0) P: MTH 411 or MTH 482. Enumerative combinatorics, recurrence relations, generating functions, asymptotics, applications to graphs, partially ordered sets, generalized Mobius inversions, combinatorial algorithms.

881. Graph Theory
Spring. 3(3-0) P: MTH 880. Graph theory, connectivity, algebraic and topological methods. Networks, graph algorithms, Hamiltonian and Eulerian graphs, extremal graph theory, random graphs.

903. Topics in Mathematics Education Research
Spring of even years. 3(3-0) P: MTH 860A or MTH 860B. Research in mathematics education and its effect on policy, curriculum, and the teaching and learning of mathematics.

910. Commutative Algebra I
Fall of odd years. 3(3-0) P: MTH 819. Noetherian rings and modules, localization and tensor products, primary decomposition, Krull dimensions, graded rings and modules, Hilbert's Nullstellensatz, integral extensions, discrete valuation rings, Dedekind domains.

911. Commutative Algebra II
Spring of even years. 3(3-0) P: MTH 910. Ext and Tor, regular sequences, Cohen-Macaulay rings, regular rings, Gorenstein rings, completion, modules of differentials, Cohen's structure theorems.

912. Group Theory I
Fall of even years. 3(3-0) P: MTH 819. Permutation groups, solvable and nilpotent groups, simple groups. Representation and character theory. Extension theory and cohomology groups.

913. Group Theory II
Spring of odd years. 3(3-0) P: MTH 912. Groups of Lie type, linear groups, locally finite groups, free groups and free products, the subgroup theorems.

914. Lie Groups and Algebras I
Fall of odd years. 3(3-0) P: MTH 819. Nilpotent and semisimple algebras, the adjoint representation, root spaces, Weyl groups, Dynkin diagrams, classification of simple algebras.

915. Lie Groups and Algebras II
Spring of even years. 3(3-0) P: MTH 914. Weights, symmetric spaces, groups of Lie type, finite groups of Lie type, Lang's theorem.

920. Functional Analysis I

921. Functional Analysis II
Fall of even years. 3(3-0) P: (MTH 829 and MTH 920) Topological vector spaces, convexity, Krein-Milman theorem, Banach algebras, operators on Banach spaces, spectral theorem, C* algebras.

922. Harmonic Analysis
Fall of odd years. 3(3-0) P: (MTH 829 and MTH 920) Fourier series, mean and pointwise convergence, conjugate functions, Fourier transform, Plancherel theorem, Paley-Wiener theorem, interpolation of operators, Hausdorff-Young theorem.

928. Real Analysis II

930. Riemannian Geometry I
Fall. 3(3-0) P: MTH 869. Riemannian metrics, connections, curvature, geodesics. First and second variation, Jacobi fields, conjugate points. Rauch comparison theorems, Hodge theorem, Bochner technique, spinors. Further topics on curvature or submanifold theory.

931. Riemannian Geometry II
Spring. 3(3-0) P: MTH 930. Continuation of MTH 930.

935. Complex Manifolds I
Fall of odd years. 3(3-0) P: MTH 829, MTH 869. Riemann surfaces, Serre duality, Riemann-Roch theorem. Weierstrass points, Abel's theorem, Pucker formulas, Hermitian metrics, connections, curvature, Hodge theorem. Kahler metrics, Kodaira vanishing theorem, Chern classes.

936. Complex Manifolds II
Spring of even years. 3(3-0) P: MTH 935. Continuation of MTH 935.

940. Applied Analysis I
Fall. 3(3-0) P: MTH 828. Sobolev spaces, trace theorem, imbedding theorems, sectorial forms. Linear elliptic boundary and eigenvalue problems.

941. Applied Analysis II
Spring. 3(3-0) P: MTH 940. Fixed point theorems. Variational methods. Applications to nonlinear integral and elliptic differential equations. Semigroup theory.
942. Foundations of Applied Mathematics I
Fall, 3(3-0) P: MTH 948, MTH 949.

943. Foundations of Applied Mathematics II
Spring, 3(3-0) P: MTH 942.
Continuation of MTH 942.

960. Algebraic Topology I
Fall, 3(3-0) P: MTH 869.
Cohomology, products, duality, basic homotopy theory, bundles, obstruction theory, spectral sequences, characteristic classes, and other related topics.

961. Algebraic Topology II
Spring, 3(3-0) P: MTH 960.
Continuation of MTH 960.

990. Reading in Mathematics
Fall, Spring, Summer. 1 to 3 credits. A student may earn a maximum of 8 credits in all enrollments for this course. R: Approval of department. Individualized study for doctoral level students.

991. Special Topics in Algebra
Fall, Spring. 3 to 6 credits. A student may earn a maximum of 18 credits in all enrollments for this course. R: Approval of department. Advanced topics in algebra.

992. Special Topics in Analysis
Fall, Spring. 3 to 6 credits. A student may earn a maximum of 18 credits in all enrollments for this course. R: Approval of department. Advanced topics in analysis.

993. Special Topics in Geometry
Fall, Spring. 3 to 6 credits. A student may earn a maximum of 18 credits in all enrollments for this course. R: Approval of department. Advanced topics in geometry.

994. Special Topics in Applied Mathematics
Fall, Spring. 3 to 6 credits. A student may earn a maximum of 18 credits in all enrollments for this course. R: Approval of department. Advanced topics in applied mathematics.

995. Special Topics in Numerical Analysis and Operations Research
Fall, Spring. 3 to 6 credits. A student may earn a maximum of 18 credits in all enrollments for this course. R: Approval of department. Advanced topics in numerical analysis or operations research.

996. Special Topics in Topology
Fall, Spring. 3 to 6 credits. A student may earn a maximum of 18 credits in all enrollments for this course. R: Approval of department. Advanced topics in topology.

998. Special Topics in Combinatorics and Graph Theory
Fall, Spring. 3 to 6 credits. A student may earn a maximum of 18 credits in all enrollments for this course. R: Approval of department. Advanced topics in combinatorics and graph theory.

999. Doctoral Dissertation Research
Fall, Spring, Summer. 1 to 24 credits. A student may earn a maximum of 90 credits in all enrollments for this course. R: Approval of department.

MECHANICAL ENGINEERING ME
Department of Mechanical Engineering
College of Engineering

201. Thermodynamics
Fall, Spring, 4(3-3) P: (CEM 141) and (MTH 234)
Not open to students with credit in CHE 311 or MSM 351.

332. Fluid Mechanics
Fall, Spring, 4(3-3) P: (MTH 306) and (CHE 311 or ME 201 or MSM 351) and (ME 391 or concurrently) and completion of Tier I writing requirement. R: Open only to juniors or seniors in the Department of Mechanical Engineering or in the Engineering Mechanics major. Statics, control volume equations, similarity, exact fluid solutions. Turbulence, pipe flow, boundary layer flow, compressible flow, and Navier-Stokes equations.

371. Mechanical Design I
Fall, Spring, 3(3-0) P: (CEM 141) and (MTH 234)
Not open to juniors or seniors in the Department of Mechanical Engineering or in the Biosystems Engineering or in the Engineering Mechanics major. Analysis of displacement, velocity and acceleration in mechanical linkages. Kinematics and dynamics of machines.

391. Mechanical Engineering Analysis
Fall, Spring, 3(3-0) P: (MTH 235) R: Open only to juniors or seniors in the Department of Mechanical Engineering or in the Biosystems Engineering or in the Engineering Mechanics major. Analytical and numerical methods for the modeling and analysis of mechanical engineering systems. Applications to vibrating elements, heat transfer, linear springs, and coupled spring-mass systems.

410. Heat Transfer
Fall, Spring, 3(3-0) P: (ME 322 or CE 321 or CHE 311) and (ME 391) and completion of Tier I writing requirement. R: Open only to juniors or seniors in the Department of Mechanical Engineering or in the Biosystems Engineering or in the Engineering Mechanics major. Steady state and transient heat conduction. Natural and forced convection based on boundary layer theory. Application of Nusselt number correlations. Radiant heat transfer principles and applications including radiation networks.

412. Heat Transfer Laboratory
Fall, Spring, 1(1-2) P: (ME 410) and completion of Tier I writing requirement. R: Open only to juniors or seniors in the Department of Mechanical Engineering. Practices and measurement techniques for heat transfer and thermal systems. Experimental problem solving applied to heat transfer.

414. Vehicle Thermal System Design
Spring, 3(2-2) P: (ME 410) R: Open only to seniors in the College of Engineering. Analysis and design of general heat exchange systems applied to automotive vehicle systems including heaters, air conditioning, electronic, and cabin systems. Students will work in teams to design, build, and test heat exchanger systems. A global engineering experience via the internet may be included.

416. Computer Assisted Design of Thermal Systems
Fall, 3(4-0) P: (ME 410 or concurrently) R: Open only to juniors or seniors in the Department of Mechanical Engineering or in the Biosystems Engineering major. Computer-aided design, cataloging and processing design information. Modeling of thermal equipment. Simulation and optimization of thermal systems. Computer based design projects.

422. Introduction to Combustion
Fall, 3(3-0) P: (ME 332 or concurrently) R: Open only to juniors or seniors in the Department of Mechanical Engineering. Thermodynamics, chemistry, fluid mechanics, and heat transfer principles applied to combustion.

432. Intermediate Fluid Mechanics
Spring, 3(3-0) P: (ME 332) R: Open only to juniors or seniors in the Department of Mechanical Engineering or in the Engineering Mechanics major. Deformable control volumes, Navier-Stokes equations, vorticity and circulation. Exact solutions. Turbulence, boundary layer flows, compressible flows.

433. Intermediate Fluid Mechanics Laboratory
Spring, 1(0-3) P: (ME 432 or concurrently) R: Open only to juniors or seniors in the Department of Mechanical Engineering. Visualization and measurement of flow, jets and wakes. Flow separation and boundary layers.

440. Aerospace Engineering Fundamentals
Fall, 3(2-0) P: (ME 322 or concurrently) R: Open only to juniors or seniors in the Department of Mechanical Engineering or in the Engineering Mechanics major. Aerodynamics, propulsion and flight mechanics. Vehicle propulsion engine performance and design characteristics.

441. Aerospace Engineering Design
Spring, 3(3-0) P: (ME 332) R: Open only to juniors or seniors in the Department of Mechanical Engineering or in the Engineering Mechanics major. Computer analysis experiments associated with aerospace vehicle design. Application of aerospace engineering principles in design such as propulsion, aerodynamics, stability and control.