Discussions of recent advances and reports by A-42.

Fall, 3(3-0) CEM 353; CEM 492 or approval of department.
Organic reactions are presented in a mechanistic framework. Reactions which proceed via carboxylation, carboxylation, free radicals, carbones, arynes and other reactive intermediates, and concerted reactions are included.

881. Structure of Organic Compounds
Winter, 3(3-0) CEM 860 or approval of department.
Structural and stereochemical principles will be developed and illustrated. Spectroscopic data will be used to illustrate the principles and to determine structure, with an emphasis on nuclear magnetic resonance spectroscopy.

882. Advanced Synthetic Organic Chemistry
Spring, 3(3-0) CEM 880 or approval of department.
The strategy and methods of organic synthesis will be discussed.

884. Structural Elucidation by Instrumental Methods
Fall, 3(3-0) Approval of department.
A practical instrumental analysis course with the major emphasis on the interpretation of data rather than a detailed description of the instrumentation. The fundamental principles behind the various measurements will be discussed in a general way, and important instrumental limitations will be noted.

891. Selected Topics in Inorganic Chemistry
Fall, Spring, 3(3-0) or 2(2-0) May reenroll for a maximum of 9 credits if different topic is taken. Rare earth elements, recent advances in the chemistry of metals or nonmetals, high-temperature chemistry. Coordination chemistry and nonaqueous solvents.

892. Selected Topics in Analytical Chemistry
Fall, Winter, Spring, 3(3-0) or 2(2-0) May reenroll for a maximum of 9 credits if different topic is taken. Among topics which may be discussed are: advances in electroanalytical chemistry or spectroscopy; nonaqueous solvents; complexation equilibria; surface chemistry; analytical chemistry of polymers.

893. Seminar in Analytical Chemistry
Fall, Winter, Spring, 1(1-0) May reenroll for a maximum of 3 credits. Discussions of recent advances and reports by graduate students on research problems.

894. Selected Topics in Organic Chemistry
Fall, Winter, Spring, 2(2-0) or 3(3-0) May reenroll for a maximum of 12 credits if different topic is taken. Approval of department. Topics may be selected from heterocyclic chemistry, natural products, free radicals, carbohydrons, organic sulfur or nitrogen compounds, acidity functions, isotope effects, photochemistry and others.

895. Seminar in Organic Chemistry
Fall, Winter, Spring, 1(2-0) May reenroll for a maximum of 3 credits. Discussions of recent advances and reports by graduate students on research problems.

896. Statistical Thermodynamics
Winter, Spring, 3(3-0) May reenroll for a maximum of 9 credits if different topic is taken. Approval of department. Partition functions, spectroscopic measurements and thermodynamic applications. Nonequlibrium statistical mechanics and thermodynamics. Time correlation functions and spectroscopic line shapes, light scattering, and magnetic relaxation. Transport properties of fluids and gases.

897. Selected Topics in Physical Chemistry
Fall, Winter, 3(3-0) May reenroll for a maximum of 9 credits if different topic is taken. Approval of department. Mathematical preparation for quantum chemistry. Selected topics as: kinetics and photochemistry, molecular and surface chemistry, molecular spectroscopy, electron and magnetic properties of matter, application of statistical mechanics to chemical problems.

900. Master's Thesis Research
Fall, Winter, Spring, Summer. Variable credit. Approval of department. Research in inorganic, analytical, organic, and physical chemistry.

909. Seminar in Inorganic Chemistry
Fall, Winter, Spring, 1(2-0) May reenroll for a maximum of 3 credits. Discussions of recent advances and reports by graduate students on research problems.

924. Selected Topics in Analytical Chemistry
Fall, Winter, Spring, 3(3-0) or 2(2-0) May reenroll for a maximum of 9 credits if different topic is taken. Among topics which may be discussed are: advances in electroanalytical chemistry or spectroscopy; nonaqueous solvents; complexation equilibria; surface chemistry; analytical chemistry of polymers.

935. Seminar in Analytical Chemistry
Fall, Winter, Spring, 1(1-0) May reenroll for a maximum of 3 credits. Discussions of recent advances and reports by graduate students on research problems.

936. Selected Topics in Organic Chemistry
Fall, Winter, Spring, 2(2-0) or 3(3-0) May reenroll for a maximum of 12 credits if different topic is taken. Approval of department. Topics may be selected from heterocyclic chemistry, natural products, free radicals, carbohydrons, organic sulfur or nitrogen compounds, acidity functions, isotope effects, photochemistry and others.

958. Seminar in Organic Chemistry
Fall, Winter, Spring, 1(2-0) May reenroll for a maximum of 3 credits. Discussions of recent advances and reports by graduate students on research problems.

959. Statistical Thermodynamics
Winter, Spring, 3(3-0) May reenroll for a maximum of 9 credits if different topic is taken. Approval of department. Partition functions, spectroscopic measurements and thermodynamic applications. Nonequlibrium statistical mechanics and thermodynamics. Time correlation functions and spectroscopic line shapes, light scattering, and magnetic relaxation. Transport properties of fluids and gases.

967. Selected Topics in Physical Chemistry
Fall, Winter, 3(3-0) May reenroll for a maximum of 9 credits if different topic is taken. Approval of department. Mathematical preparation for quantum chemistry. Selected topics as: kinetics and photochemistry, molecular and surface chemistry, molecular spectroscopy, electron and magnetic properties of matter, application of statistical mechanics to chemical problems.

988. Selected Topics in Physical Chemistry
Winter, Spring, 3(3-0) May reenroll for a maximum of 9 credits if different topic is taken. Approval of department. Topics may be selected from analysis and interpretation of the spectra of molecules, advanced molecular structure, magnetic resonance, spectroscopy, X-rays and crystal structure, statistical mechanics.

991. Selected Topics in Quantum Chemistry
Fall, Winter, 3(3-0) May reenroll for a maximum of 9 credits if different topic is taken. Approval of department. Principles of quantum mechanics and application to chemical problems. Selected topics from spectroscopy, properties of atoms and molecules in electric and magnetic fields, and theories of molecular electronic structure.

998. Seminar in Physical Chemistry
Fall, Winter, Spring, 1(1-0) May reenroll for a maximum of 3 credits. Discussions of recent advances and reports by graduate students on research problems.

999. Doctoral Dissertation Research
Fall, Winter, Spring, Summer. Variable credit. Approval of department. Research in analytical, inorganic, organic, and physical chemistry.

CHINESE
See Linguistics and Germanic, Slavic, Asian and African Languages.

CIVIL AND ENVIRONMENTAL ENGINEERING

College of Engineering
Civil Engineering
C E

251. Elementary Surveying
Spring. 4(3-3) Not open to majors.
Use of the tape, compass, level, and transit with simple maps, traverse closure and area computations. Profile, cross section and stadia surveys. U.S. land system.

252. Surveying I
Fall, Spring. 5(4-3) Engineering majors or approval of department. Instruments, theory of measurements, error analysis, stadia, horizontal and vertical curves. U.S. Public Land System, observation for meridians.

280. Introduction to Environmental Engineering
Fall, Spring. 4(4-0) CEM 141A, or CEM 151, MTH 112, CPS 112 or GPS 251. Hydrology; ground water and surface water supply systems; wastewater treatment, methods of pollution control for solid waste, air, and noise.

305. Structural Analysis I
Fall, Winter. 3(3-0) MMM 211. Stability and determinacy; linearity. Plane trusses; shear and bending in beams and frames. Virtual work calculation of forces and displacements in statically-determinate plane structures.

306. Structural Analysis II

308. Engineering Materials I
Fall, Winter, Spring. 4(3-3) MMM 211 or concurrently. Structure; composition; physical, mechanical and rheological properties of non-metallic construction materials. Emphasis on aggregates, asphalt, inorganic cements, concrete, and wood.
Civil and Environmental Engineering — Descriptions of Courses

312. Soil Mechanics
Winter, Spring, Summer. 4(3-3) MCM
Engineering properties of soils and their measurement. Effective stress concept; permeability; fluid flow in soil; stress-strain behavior; soil strength; compaction and consolidation of soils; field exploration and design problems.

321. Introductory Fluid Mechanics
Fall, Winter. 4(3-2) MTH 316.
Fluid properties; hydraulics; control volume approach to conservation of mass, momentum and energy; dimensional analysis and dynamic similitude; fluid resistance; pipe and open channel flows; boundary layer concepts.

346. Transportation
Winter, Spring, Summer. 4(4-0) MTH 113.
Planning, design, and evaluation of transportation systems; highway, street, and intersection capacity; basic elements of geometric design.

347. Geometric Design of Highways
Fall, Winter. 4(3-3) C E 346 or concurrently.
Geometric design of streets and highways as related to capacity, construction costs, and safety. State and national design standards and practices.

370. Cost and Optimization Engineering
Fall, Winter. 3(3-0) MTH 113.
Formulation of engineering decisions governed by current and future costs and returns. Comparison and optimization of alternative engineering projects, products and processes.

372. Construction Estimating
Fall, Winter. 3(3-0) Juniors.
Cost studies of construction activities with emphasis on labor productivity and operating characteristics of equipment under various site conditions. Interpretation of drawings and specifications.

374. Legal Aspects of Engineering
Spring. 3(3-0) Juniors.
The professional engineer's relationship with the legal aspects of engineering. Special emphasis on contract documents.

390. Civil Engineering Analysis
Fall, Winter. 3(0-3) MTH 310, CPS 112.
Analysis of civil engineering problems by numerical methods. Use of microcomputers to analyze problems. Technical reports to present methods and computed results.

392. Civil Engineering Fundamentals for Planners
Winter of even-numbered years. 4(4-0) Junior Urban Planning and Landscape Architecture majors.
Site planning; utility systems; subdivision review including street design, grading, density, and costs; transportation planning; and project evaluation.

400. Structural Mechanics I
Fall. 4(4-0) C E 306, C E 390.
Miscellaneous topics in displacement calculation by virtual work. Matrix formulation of the general principles of framed structural analysis. Exhaustive study of the flexibility and stiffness methods.

405. Structural Design in Steel
Fall, Winter. 4(4-0) C E 308 or concurrently, C E 390.
Beams, columns, tension and compression members, connections. Elastic, plastic and ultimate strength concepts.

406. Structural Design in Concrete
Winter, Spring. 4(4-0) C E 306, C E 308, C E 390.

407. Structural Design Concepts
Spring. 3(3-0) C E 405, C E 406.
Develop and expand design concepts through study, investigation and project design of various structural systems. Criteria for material selection and creative design of unusual structural systems pursued.

410. Structural Mechanics II
Winter. 4(4-0) C E 400, CPS 112.
Continuation of C E 400. Matrix analysis of framed structures with extensive use of computer programs.

418. Foundation Engineering
Fall, Spring. 3(0-3) C E 312, C E 390.
Bearing capacity and settlement of shallow foundations; analysis and design of single piles and pile groups; stress distribution in soil masses; site investigation, data evaluation for field and laboratory tests.

419. Stability of Soil Masses
Winter. 3(3-0) C E 312, C E 390.
Stability of natural and cut slopes; design of embankments and fills; soil placement and compaction; seepage through soil masses; slope stabilization techniques; lateral earth pressures, retaining walls, and braced excavations.

421. Hydrology I
Fall. 4(3-2) C E 280, C E 321, C E 390.
Engineering hydrology; frequency and precipitation analysis; streamflow analysis and the unit hydrograph; flood prediction; rainfall-runoff correlations; urban hydrology.

422. Open Channel Flow I
Winter. 3(2-2) C E 321 or M E 333, C E 390 or M E 351.
Fundamentals of free surface flow; steady uniform and nonuniform concepts; energy and momentum principles; subcritical and supercritical regimes; gradually and rapidly varied flows; design applications; laboratory assignments.

423. Closed conduit Hydraulics
Spring. 3(2-2) C E 321 or M E 333, C E 390 or M E 351.
Steady flow in piping; numerical analysis of pipe networks; theory of turbomachinery; fluid measurements; design of water supply systems; introduction to unsteady flow; laboratory assignments.

441. Highway Operations
Fall. 3(3-0) C E 346, STT 351 or approval of department.
Driver and vehicle characteristics affecting traffic flow; traffic flow density, headway and speed measurements; signaling and signal control for efficient intersection operation, parking characteristics and capacity analysis.

442. Airport Planning and Design
Fall, Spring. 4(3-2) C E 346.
The planning and design of the components of the airport system including ground access facilities; aircraft characteristics; the air traffic control system; airport configuration; capacity analysis; management systems.

448. Transportation Planning
Winter. 3(3-0) C E 346 or C E 392; STT 351 or approval of department.
Urban transportation facilities needs and programs. Design of transportation models for urban highways and public transit including trip generation, trip distribution, mode split and traffic assignment. Transport agencies function and services.

449. Highway Engineering
Spring. 4(3-3) C E 308, C E 347.
Design concepts of roadways, facilities, drainage and pavement design. Maintenance, construction and supervision methods and procedures.

471. Scheduling Construction Activities
Winter. 3 credits. Approval of department.
Techniques for coordinating and controlling construction projects. Scheduling under the constraints of deadlines, uncertain time estimates and limited resources. Computer programs and data files for effective management.

481. Water and Wastewater Analysis
Fall. 4(3-3) C E 380, STT 351.
Quantitative analysis; bacteriologic and chemical characteristics of water and wastewater; principles of softening, iron removal, coagulation and chlorination; laboratory examination of water and wastewater including turbidity, solids, coliiforms, chlorine, etc.

483. Water and Wastewater Treatment
Winter. 4(3-3) C E 380, C E 321 or concurrently, C E 390.
Water treatment theory and design including sedimentation, coagulation, softening, iron removal and chlorination; wastewater treatment theory and design including grit chambers, activated sludge, trickling filter, and anaerobic digesters.

485. Environmental Health Engineering
Spring. 4(3-2) MPH 300, C E 280, C E 321 or concurrently, STT 351.
Design of small water, waste water and solid waste facilities. Epidemiology of communicable disease transmission by air, water, food and arthropods. Engineering measures to control disease spread.

494. Civil Engineering Design Project
Fall, Winter, Spring. 3(2-2) May reenroll for a maximum of 6 credits. Seniors, approval of department.
Planning, specifications and design of a civil engineering project or facility.

499. Civil Engineering Projects
Fall, Winter, Spring, Summer. 1 to 4 credits. May reenroll for a maximum of 6 credits. Approval of department.
Original site engineering project of specific interest to the student and a faculty member. Student's proposal describing problem required prior to approval.
801. Structural Modeling and Experimental Methods
Fall. 3(3-2) C E 406, MM 405 or approval of department. Experimental methods in structural analysis and design. Models, materials, fabrication, loading and instrumentation. Experimental stress analysis.

802. Structural Dynamics I
Fall. 3(3-0) C E 405, C E 406, or approval of department. Basic concepts in structural dynamics; dynamic loading on structures due to blasts and earthquakes; dynamic properties of structures; methods of analysis; design approach to blast and earthquake resistant structures; dynamic behavior of bridges and other topics.

803. Fiber Reinforced Concrete
Fall. 3(2-2) C E 406 or approval of department. Concepts and advantages of fiber reinforced concrete; types, design, and manufacturing techniques. Mechanical, physical, and chemical properties. Constitutive modeling, design techniques and applications.

804. Advanced Structural Theory I
Winter. 4(4-0) C E 400, or approval of department. Energy principles and their application in the analysis of elastic structures. Advanced force and displacement methods and their matrix formulation. Introduction to finite element methods.

805. Advanced Reinforced Concrete

806. Prestressed Concrete Design

807. Random Vibration of Structural and Mechanical Systems
Spring of odd-numbered years. 3(3-0) C E 802 or M E 823, STT 351 or STT 441, or approval of department. Interdepartmental with the departments of Mechanical Engineering, and Metallurgy, Mechanics, and Materials Science. Probabilistic modeling of random excitations (e.g., earthquake, aerodynamic and ocean wave loadings); response of single and multiple degree-of-freedom systems to random excitation; designing against failure; nonstationary and nonlinear problems.

808. Finite Element Method
Fall, Winter, Spring. 4(4-0) Approval of department. Interdepartmental with the departments of Metallurgy, Mechanics, and Materials Science and Agricultural Engineering. Administered by the Department of Metallurgy, Mechanics, and Materials Science. Theory and application of the finite element method to the solution of continuum type problems in heat transfer, fluid mechanics and stress analysis.

815. Principles of Highway and Airport Soils
Fall. 4(4-0) C E 418 or approval of department. Foundation problems as related to highways and airports, relation of subsoil conditions to design and construction, analytical review of laboratory and field results.

817. Mechanical Properties of Soils
Fall. 4(3-3) C E 418, C E 419 or approval of department. Mechanical properties of soil including stress-strain behavior; conditions of failure and soil strength; consolidation theory and permeability. Laboratory determination of soil properties including interpretation of experimental data for use in practice.

818. Advanced Soil Mechanics
Winter. 4(4-0) C E 418, C E 419; or approval of department. Foundations and earth retaining structures; bearing capacity, lateral resistance and settlement of deep foundations; earth pressures on braced excavations and sheet pile walls; design of caissons and cofferdams.

819. Soil Stabilization in Geotechnical Engineering
Winter. 3(3-0) C E 418 or approval of department. Techniques to improve the performance of soil engineering applications; compactions, blending, admixture, grouting, electromosion, vibroflotation, compaction piles, thermal treatment, load bearing and hydraulic fills, precompression, reinforced earth.

820. Frozen Ground Engineering
Spring. 3(3-0) C E 418, C E 419 or approval of department. Physical, mechanical, and thermal properties of frozen ground; soil frost susceptibility; heat flow in sills; thaw behavior; construction ground freezing including analysis and design of frozen earth retaining structures.

821. Porous Media Flow I

823. Hydrology II
Winter of even-numbered years. 3(3-0) C E 421, C E 422, STT 351 or approval of department. Use of regression and correlation analysis in hydrology. Groundwater recession. Unit hydrograph theory. Hydrologic river and watershed routing. Watershed models for rural and urban environments.

824. Coastal Engineering
Fall of even-numbered years. 3(3-0) C E 422 or approval of department. Linear wave theory. Effects of shoaling, refraction, diffraction. Wind generated waves. Wave runup and overtopping. Wave forces on structures. The beach and longshore sediment transport.

826. Environmental Fluid Mechanics I
Winter of even-numbered years. 3(3-0) C E 422 or approval of department. Fundamentals: the convective-diffusion equation; solution methods; analytical solutions; simplified solutions, numerical modeling. Molecular diffusion; momentum, mass and heat transport; turbulent diffusion; the effects of stratification.

827. Environmental Fluid Mechanics II
Winter of odd-numbered years. 3(3-0) C E 826 or approval of department. Continuation of C E 826 showing adaptation of theory to describe transport in environments selected from the following: rivers, lakes, estuaries, groundwaters, the atmosphere, nearfield regions. Physical modeling.

828. Open Channel Flow II
Spring. 3(3-0) C E 422 or M E 333 or approval of department. Advanced topics in steady flow analysis. Unsteady flow phenomena; method of characteristics; propagation of discontinuities; gradually- and rapidly-varied unsteady flow analysis; computer based design applications.

829. Fluid Transients
Fall. 3(3-0) M E 232 or approval of department. Interdepartmental with the Department of Mechanical Engineering. Application of unsteady flow concepts and wave mechanics to hydraulic engineering; method of characteristics, surges and waterhammer in piping systems; resonance phenomena.

830. Intermediate Fluid Mechanics
Fall. 3(3-0) M E 332 or C E 321. Interdepartmental with and administered by the Department of Mechanical Engineering. Deformable control volumes, Navier-Stokes equations, dimensionless variables, vorticity and circulation, turbulent flow, inviscid flow, and boundary layer theory.

840. Pavement Design
Spring of even-numbered years. 3(3-0) C E 449 or approval of department. Pavement types and wheel loads, stresses in flexible pavements, stresses in rigid pavements, pavement behaviors under loadings; climate effects on pavement performance, evaluating subsoil strengths, subgrades, and pavement design criteria.

841. Optimisation of Urban Traffic Flows
SY 841.) Fall of even-numbered years. 3(3-0) C E 346, STT 351 or approval of department. Traffic flow models used in design of computerized traffic control systems. Optimal freeway ramp metering algorithms. Offline and online optimization of traffic signal timing.

842. Pavement Rehabilitation
Spring of odd-numbered years. 4(4-0) C E 449 or approval of department. Strengthening existing pavements, pavement overlay design criteria, epoxy and polyester resin repair and rehabilitation, evaluation of resurfacing practices for bituminous and cement pavements.

843. Traffic Engineering Characteristics
Winter. 3(3-0) C E 346, STT 351 or approval of department. Safety analyses, flow and capacity characteristics, statistical properties of traffic, queuing characteristics at intersections, delay characteristics and analyses.
544. Highway and Traffic Safety Spring of odd-numbered years. 3(3-0) C E 843. Highway safety improvement programs; identification of hazardous locations; selection and evaluation of countermeasures; programming improvements.

545. Environmental Impacts of Transportation Facility Design Decisions Spring of even-numbered years. 3(3-0) C E 346 or C E 392, C E 448, or approval of department. The context in which current transportation planning and design decisions are made; legislation; socio-economic effects; air, noise, and water pollution. Preparation of environmental impact statements.

546. Statewide Transportation Planning Fall of odd-numbered years. 3(3-0) C E 448 or approval of department. Highway inventory, road use studies and programming, analysis of highway costs, economic considerations in location and design.

547. Advanced Geometric Design of Highways Winter of even-numbered years. 3(3-0) C E 347. Advanced geometric design of highways and freeways, including the redesign of existing systems with development and evaluation of geometric alternatives.

548. Travel Demand Forecasting Fall of even-numbered years. 3(3-0) C E 448. Advanced topics in travel demand; disaggregate and behavioral models, error analysis, and model sensitivity.

549. Design of Research Programs I Spring. 2(2-0) Approval of department. To receive credit C E 849 and C E 850 must be completed satisfactorily except by prior arrangement with instructor. Two term sequence to design a major research program not thesis related, e.g., response to a request for a proposal. Includes experiment design, detailed literature review and synthesis.

550. Design of Research Programs II Summer. 2(2-0) C E 849. To receive credit C E 849 and C E 850 must be completed satisfactorily except by prior arrangement with instructor. Continuation of C E 849.

551. Special Problems in Civil Engineering Fall, Winter, Spring, Summer. 1 to 8 credits. May reenroll for a maximum of 12 credits in C E 880 and S E 880 combined. Approval of department. Research problems of limited scope not pertaining to thesis accomplished under C E 890 or C E 999.

552. Special Topics in Civil Engineering Fall, Winter, Spring, Summer. 2 to 4 credits. May reenroll for a maximum of 9 credits. Approval of department. Selected topics in new or developing areas of civil engineering.

553. Master's Thesis Research Fall, Winter, Spring, Summer. Variable credit. Approval of department.

554. Doctoral Dissertation Research Fall, Winter, Spring, Summer. Variable credit. Approval of department.

555. Advanced Theory and Design of Reinforced Concrete II Spring. 3(3-0) C E 805. Continuation of C E 805 with application of theory to analysis and design of tanks, rigid frames, and shells.


557. Elastic Thin Shells Spring. 4(4-0) C E 804 or M M M 815 or approval of department; MTH 421. Interdepartmental with the Department of Metallurgy, Mechanics, and Materials Science. Elements of differential geometry, membrane theory of shells, Pucher's stress function, deformation and bending of shells of revolution and shallow shells.

558. Theory of Plates Winter. 4(4-0) C E 804 or M M M 815 or approval of department; MTH 422. Interdepartmental with and administered by the Department of Metallurgy, Mechanics, and Materials Science. Bending of thin elastic plates with various shapes and boundary conditions; application of energy principles and approximate methods of solution; thick plates, large deflection theory; sandwich plates.

559. Earth Structure Spring. 3(3-0) C E 817 or approval of department. Embankments, earth dams, natural and cut slopes, stability of circular and composite slip surfaces, performance of embankments on soft foundations; seepage through earth dams; instrumentation for field performance evaluation.

560. Soil Dynamics Winter. 4(4-0) C E 817 or approval of department. Characteristics of ground motions during earthquakes; dynamic soil properties; liquefaction and settlement under transient and repeated loading; foundation design for vibratory loads; wave propagation in soil media.

561. Porous Media Flow II Winter of odd-numbered years. 3(3-0) C E 806, C E 821. Mathematical formulations for unsteady groundwater flows and convection/dispersion phenomena. Emphasis placed upon finite-difference and finite-element solution techniques, computer based analysis of field data, and design applications.

562. Urban Public Transport: Issues and Technology Fall of odd-numbered years. 3(3-0) Approval of department. Planning and operating urban transportation systems; system technology. Regional and rapid rail systems, light rail, buses, paratransit, transportation system management.

563. Doctoral Dissertation Research Fall, Winter, Spring, Summer. Variable credit. Approval of department.

Environmental Engineering ENE

564. Environmental Engineering Seminar (S E 800.) Fall, Winter, Spring. 1(1-0) May reenroll for a maximum of 3 credits. Graduate major in C E or ENE. Current research, reports, and literature reviews.

565. Dynamics of Environmental Systems Fall. 4(4-0) C E 481. Thermodynamics, kinetics, and mass transfer of environmental transformations. Environmental modeling, systems analysis, reactor theory, and process design. Applications to air, water and soil pollution, waste treatment, and hazardous waste management.

566. Physical Chemical Processes of Environmental Engineering (S E 802.) Winter. 5(4-3) C E 483. Analysis of physical and chemical principles which form the basis of air and water pollution control and solid waste disposal; process dynamics, sedimentation, coagulation, filtration, adsorption, absorption, oxidation.

567. Biological Processes of Environmental Engineering (S E 804.) Winter. 4(4-0) MPH 200, ENE 802. Aerobic and anaerobic degradation of liquid and solid wastes. Biochemical reactions; activated sludge and trickling filter kinetics; sludge digestion and composting.

568. Biological Waste Treatment Laboratory (S E 805.) Spring. 1(0-3) ENE 894. Treatability studies to develop parameters for design of biological waste treatment systems; reactor kinetics; oxygen uptake; sludge settling rate; biomass production.

569. Hazardous and Industrial Waste Management (S E 816.) Fall. 3(3-0) Approval of department. RCRA; waste and process survey, sampling and analysis; treatability studies; process modification; advanced treatment processes; case studies; field trips to industrial sites required.

570. Air Resource Management (S E 822.) Spring of even-numbered years. 4(4-0) ENE 822. Characteristics of air contaminants and noise; source and source inventory; microclimatology and pollutant transport; pollutant effects, introduction to sampling and control.

571. Solid Waste Management (S E 832.) Spring of odd-numbered years. 4(4-0) C E 485 or approval of department. Generation rates; storage; collection; transfer and transport; processing; resource recovery; landfill; siting; design; operation; closure and monitoring; hazardous waste.

572. Special Problems in Environmental Engineering (S E 880.) Fall, Winter, Spring, Summer. 1 to 6 credits. May reenroll for a maximum of 12 credits in C E 880 and ENE 880 combined. Approval of department. Solution of environmental engineering problems, of limited scope not pertaining to thesis.
899. Master's Thesis Research
(S E 899) Fall, Winter, Spring, Summer. Variable credit. Approval of department.

916. Advanced Environmental Control
(S E 916) Spring. (4-1-0) ENE 894.
Design of advanced methods for control of environmental pollutants.

999. Doctoral Dissertation Research
(S E 999) Fall, Winter, Spring, Summer. Variable credit. Approval of department.

CLASSICAL STUDIES
See Romance and Classical Languages.

COMMUNICATION COM
College of Communication Arts and Sciences

100. Human Communication
Fall, Winter, Spring, Summer. 3(3-0).
Process and functions of communication. Principles underlying communication behavior. Practice in analyzing communication situations and in speaking and writing.

115. Oral Communication
Fall, Winter, Spring, Summer. 3(3-0) COM 100 or approval of department.
Principles and practice in adapting to audiences, creating and structuring messages, and developing effective delivery of formal and informal speeches. Critical evaluation of speeches by instructor and peers.

125. Interpersonal Communication
Fall, Winter, Spring, Summer. 3(3-0) COM 100.
Develop students' abilities to become more effective, responsible participants in interpersonal communication relationships, with emphasis on relating communicatively with others.

199. Methods of Inquiry
Fall, Winter, Spring, Summer. 3(3-0) COM 125.
Major theoretic orientations toward communication. Primary tools of scholarly inquiry.

205. Persuasion
Fall, Winter, Spring. 4(4-0) COM 100.
Process of influencing human behavior through persuasive communication. Experience in creating persuasive messages and in evaluating the acceptability of persuasive attempts.

210. Leadership and Group Communication
Fall, Winter, Spring. 4(4-0) COM 100.
Principles and practice in the utilization of communication for effective leadership, with special emphasis on group communication.

250. Argumentation
Fall, Winter, Spring. 4(4-0) COM 198.
Development and use of arguments; recent perspectives in argumentation; rhetorical and empirical study of argumentative messages.

299. Individual Projects
Fall, Winter, Spring. 1 to 15 credits. May reenroll for a maximum of 15 credits. COM 199, approval of project proposal by department.
Independent research, experience in communication laboratories, or tutorial work in communication skills. Approved through Fall 1989.

300. The Effects of Mass Communication
Fall, Winter, Spring, Summer. 4(4-0) COM 100.
Interdepartmental with and administered by the Department of Telecommunication.
Major social effects of mass media on audience behavior. Political communication. Media effects on children. Message strategies producing attitude change. Interrelationship between mass media and interpersonal communication. Decision making in mass media.

315. Organizational Communication
Fall, Winter, Spring. 4(4-0) COM 100.
Principles and practice in the management of communication systems, with emphasis on conflict resolution, information exchange, innovativeness, and information management.

350. Signs and Sign-Behavior
Fall, Winter, Spring, Summer. 4(4-0) COM 100.
Theories of symbolic behavior. Language structure and communicative functions.

405. Quantitative Strategies in Communication Research
Fall, Spring. 4(4-0) Seniors.
Design and statistical strategies in communication research. Project design and evaluation schema. Basic data handling and presentation.

413. Seminar in Communication Education
Spring. 4(4-0) T E 322.
Philosophies of curricular and co-curricular programs in communication education. Internship experience in those programs. Approved through Summer 1990.

425. Communication Campaign Analysis
Fall. 4(4-0) COM 300 or approval of department.
Design of persuasive and information campaigns. Techniques and strategies for analyzing and influencing mass audience. Principles and practice in constructing messages and selecting media. Political and public service campaign focus.

430. Information and Technology
Winter. 4(4-0) COM 315 or approval of department.
Concepts and principles of information and information technology, with emphasis on effects on organizational processes.

431. Conflict in Communication
Winter. 4(4-0) COM 125 or approval of department.
Elaboration of theories in conflict resolution; development of strategies to resolve conflict situations; personal analysis of communication patterns that can affect conflict.

450. Fund-Raising and Grant Writing
Fall of even-numbered years. 4(4-0) Juniors.
Fund raising for nonprofit organizations: corporate, individual, and foundation giving. Grant writing.

460. Critical Perspectives on Communication
Fall, Winter, Spring. 4(4-0) COM 100.
Interdependence of communication and other societal factors, emphasizing criteria for ethical and social appropriateness.

475. Relational Communication
Spring. 4(4-0) COM 125.
Theories and current research on relational communication, including stages of relational communication development; verbal and nonverbal relational messages of intimacy, similarity, arousal, privacy and dominance; role of culture and context.

495. The Internship Experience
Fall, Winter, Spring. 1 to 12 credits. May reenroll for a maximum of 12 credits. COM 100, COM 125, COM 199, 3 other COM classes; junior major; approval of department.
The internship provides hands-on job experience in the professional field and a real world laboratory to test theories learned in the classroom.

499. Special Projects
Fall, Winter, Spring. 1 to 15 credits. May reenroll for a maximum of 15 credits. Approval of project proposal by department. Independent research, group research, student-directed group projects.

804. Communication Research
Fall. 4(4-0) COM 820 or approval of instructor.
Theoretical issues in the areas of interpersonal, organizational and mediated communication.

805. Communication Research
Winter. 4(4-0) First year graduate majors.
Communication research strategy and methodology. Scientific process, bases for derivation and verification of hypotheses, and basic methods of designing research in communication.

806. Communication Research
Spring. 4(4-0) COM 805; first-year graduate majors.
Continuation of COM 805.

815. Organizational Communication
Spring. 4(4-0)
Structure and function of communication in organizations, with emphasis on concepts and principles needed for effective management of organizational communication processes.

820. Communication Theory and Process
Fall. 4(4-0)
Theoretical models of communication, with emphasis on the applications of communication theory to various professional communication areas.