CHINESE

See Linguistics and Oriental and African Languages

CIVIL AND SANITARY ENGINEERING

College of Engineering

Civil Engineering C E

251. Elementary Surveying
Fall, Spring. 4(3-2) Trigonometry, EGR 160 or 267. Not open to majors. Use of the tape, compass, level, and transit; traverses; geodetic and astronomic observations; reduction to planimetric. Profile, cross-section surveys; U.S. Public Land Survey; observation for meridian.

252. Surveying I
Fall, Spring. 5(4-3) Trigonometry. Instruments, theory of measurements, error analysis, stadia, horizontal and vertical curves, U.S. Public Land System, observation for meridian.

260. Introduction to Environmental Engineering
Fall, Winter, Spring. 4(4-0) EGR 141 or 121, MTH 112, CPS 120. Hydrology, ground water and surface water supply systems; wastewater treatment, methods of pollution control for solid waste, air, and noise.

305. Structural Mechanics I
Winter, Spring. 4(4-0) MTH 211. Stability and determinacy of structures. Two- and three-dimensional determinate structures. Indeterminate structural analysis by displacement and force methods based upon equilibrium, compatibility and load-deformation relations.

308. Engineering Materials I
Winter, Spring. 4(3-3) MTH 211 or concurrently. Structure: composition, physical, mechanical and rheological properties of non-metallic construction materials. Emphasis on aggregates, asphalt, inorganic cements, concrete, and wood.

311. Urban Utilities
Winter. 3(3-0) Capacities, limitations and cost of public and semi-public utilities as they relate to the planning and design of the urban environment. Topics include transportation, water supply, storm drainage, sewage collection and treatment, solid waste and municipal finance.

312. Soil Mechanics I
Spring, Summer. 4(3-3) MTH 211. Engineering properties of soils and their measurement. Effective stress concept; permeability; fluid flow in soils; stress-strain behavior; soil strength; compaction and consolidation of soils; field exploration and design problems.

321. Introductory Fluid Mechanics
Fall, Winter, Spring. 5(4-2) MTH 306. Fluid properties; hydrostatics; control volume approach to conservation of mass, momentum and energy; dimensional analysis and dynamic similarity; fluid resistance; pipe and open channel flows; boundary layer concepts.

342. Survey of Transportation Systems
Fall, 4(4-0) Juniors; not open to majors. Survey of engineering aspects of all forms of transportation with emphasis on highway transportation including highway systems, planning, economic and financial aspects, geometrics and traffic studies.

346. Transportation
Fall, Winter, Summer. 3(3-0) MTH 214. Planning, design and evaluation of transportation systems. Operational characteristics of transportation modes, traffic flow and techniques for system selection.

347. Transportation Facilities
Winter. 4(3-3) 251 or 252. Geometric design of highway and airport facilities as these considerations affect capacity, traffic control and economics of transport systems. Financing and administration of transport systems.

353. Surveying II
Spring. 4(3-3) 251 or 252. Continuation of 251 including photogrammetric methods, astronomical observations for latitude, longitude and meridian. Introduction to geodetic methods.

370. Cost and Optimization Engineering
Fall, Winter. 3(3-0) MTH 113. Formulation of engineering decisions governed by current and future costs and returns. Comparison and optimization of alternative engineering projects, products and processes.

372. Construction Estimating
Fall, Spring. 3(3-0) Juniors. Cost studies of construction activities with emphasis on labor productivity and operating characteristics of equipment under various site conditions. Interpretation of drawings and specifications.

374. Legal Aspects of Engineering
Spring. 3(3-0) Juniors. The professional engineer's relationship with the legal aspects of engineering. Special emphasis on contract documents.

390. Civil Engineering Analysis
Fall, Spring. 4(4-0) MTH 215 and CPS 120. Analysis of civil engineering problems by numerical and statistical methods. Approximation methods and error analysis. Application to computer use.

400. Structural Mechanics II
Fall, Summer. 4(4-0) 305. Miscellaneous topics in displacement calculation by virtual work. Matrix formulation of the general principles of framed structural analysis. Exhaustive study of the flexibility and stiffness methods.

405. Structural Design in Steel
Fall, Winter. 4(4-0) 303. Beams, columns, tension and compression members, connections. Elastic, plastic and ultimate strength concepts.

406. Structural Design in Concrete
Winter, Spring. 4(4-0) 305. Reinforced concrete beams, columns, slabs, footings and retaining walls. Elastic theory and ultimate strength concepts. Prestressed theory and design.

407. Structural Design Concepts
Spring. 3(3-0) 405, 406. Develop and expand design concepts through study, investigation and project design of various structural systems. Criteria for material selection and creative design of unusual structural systems pursued.

410. Structural Mechanics III
Winter. 4(4-0) 400, CPS 120. Continuation of 400. Matrix analysis of framed structures, introduction to inelastic behavior of structures. Use of programmed computer solution techniques.

419. Soil Mechanics II
Fall. 4(4-0) 012. Foundation engineering, immediate, consolidation, and secondary settlements; stress distribution in soil masses; lateral earth pressures on structures; bearing capacity; shallow foundations; introduction to stability analysis of earth structures.

421. Hydrology
Fall, Spring. 4(3-3) 289, 321, 390. Engineering hydrology: surface and precipitation analysis; streamflow analysis and unit hydrograph; flood prediction; rainfall-runoff correlations; urban hydrology.

422. Hydraulic Systems
Winter. 4(4-2) 321, 390 or M E 351. Steady flow in pipe networks; open channel flow; turbomachinery; groundwater hydraulics; introduction to unsteady flows. Applications to water supply systems; aquifer analysis, tunnels and water hammer.

441. Highway Operations
Spring. 3(3-0) 348 or 342. Driver and vehicle characteristics affecting traffic flow; traffic flow density, headway and speed measurements; signing and signal control for efficient intersection operation; parking characteristics and capacity analysis.

442. Airport Planning and Design
Fall. 4(3-2) 346. The planning and design of the components of the airport system including ground access facilities, aircraft characteristics, the air traffic control system; airport configuration; capacity analysis; management systems.

445. Transportation Planning
Winter. 3(3-2) 446 or 451. Urban transportation facilities needs and programs. Design of transportation models for urban highways and public transit including trip generation, trip distribution, mode split and traffic assignment. Transport agencies function and services.

449. Highway Engineering
Spring. 3(3-2) 308, 347. Design concepts of roadways, facilities, drainage and pavement design. Maintenance, construction and supervision methods and procedures.

471. Scheduling Construction Activities
Fall. 3 credits. Approval of department. Techniques for coordinating and controlling construction projects. Scheduling under the constraints of deadlines, uncertain time estimates and limited resources. Computer programs and data files for effective management.
Descriptions — Civil and Sanitary Engineering
of Courses

481. Water and Wastewater Analysis
Fall. 3(2-3) 280.
Quantitative analytic and chemical characteristics of water and wastewater; principles of softening, iron removal, coagulation and chlorination; laboratory examination of water and wastewater including turbidity, solids, coliforms, chlorine, etc.

483. Water and Wastewater
Trend
Spring. 3(3-0) 280, 421, 422 or concurrently. Not open to graduate majors in sanitary engineering.
Water treatment theory and design including sedimentation, coagulation, softening, iron removal and chlorination; wastewater treatment theory and design including grit chambers, activated sludge, trickling filter, and anaerobic digesters.

485. Environmental Health Engineering
Winter. 3(3-0) MPH 200, C E 290.
Epidemiology of communicable disease transmitted by air, water, food and arthropods. Engineering measures to control disease spread. Incidence and prevalence rates, well design, cross-connections, disinfection, sanitary inspection. Case studies.

499. Civil Engineering Projects
Fall, Winter, Spring. Summer. Variable credit. May re-enroll for a maximum of 8 credits. Approval of department.
Original civil engineering problem of specific interest to the student and a faculty member. Student's proposal describing problem required prior to approval.

500. Operations Research Techniques for Civil Engineers
Fall. 3(3-0) Graduate standing.
Elements of deterministic methods of operations research with emphasis on computational techniques and applications to civil engineering problems such as structural design, water supply, transportation, and construction management.

502. Structural Dynamics I
Winter. 3(3-0) 405, 406, or approval of department.
Basic concepts in structural dynamics; dynamic loading on structures due to blasts and earthquakes; creep in structures; methods of analysis; design approach to blast and earthquake resistant structures; dynamic behavior of bridges and other topics.

504. Advanced Structural Theory I
Winter. 4(4-0) 400, or approval of department.

505. Advanced Theory of Reinforced Concrete I
Winter. 3(3-0) 406.
Deflection, tension, shrinkage, plastic flow, and ultimate strength of concrete structures. Prestressed concrete.

507. Model Analysis
Fall. 3(2-3) 406.
Basic theory of the analysis of structures by means of models. Laboratory work on models; Begg's deformer and electric resistance type gauges for the measurement of static and dynamic strains.

509. Finite Element Method
Fall. 4(4-0) Approval of department.
Interdepartmental with the departments of Metallurgy, Mechanics and Materials Science and Agricultural Engineering and administered by the Department of Metallurgy, Mechanics and Materials Science.
Theory and application of the finite element method to the solution of continuum type problems in heat transfer, fluid mechanics and stress analysis.

815. Principles of Highway and Airports
Winter. 4(4-0) 347.
Foundation problems related to highways and airports, relation of soil conditions to design and construction, analytical review of laboratory and field results.

817. Mechanical Properties of Soils
Fall. 4(3-3) 419 or approval of department.
Mechanical properties of soil including stress-strain behavior; conditions of failure and shear strength; consolidation theory and permeability. Laboratory determination of soil properties including interpretation of experimental data for use in practice.

818. Advanced Soil Mechanics
Winter. 4(4-0) 419; 417 recommended.
Foundations and earth retaining structures; bearing capacity, lateral resistance and settlement of deep foundations; earth pressures on braced excavations and sheet pile walls; design of caissons and cofferdams.

819. Soil Stabilization in Geotechnical Engineering
Summer. 3(3-0) 419.
Techniques to improve the performance of soil in engineering applications; compaction, blending, admixture, grouting, electroosmosis, vibroflotation, compaction piles, thermal treatment, load bearing and hydraulic fills, precompaction, reinforced earth.

820. Geotechnical Engineering for Cold Regions
Spring. 3(3-0) 419 or approval of department.
Physical and thermal properties of ice and frozen soils; ground thermal regime; mechanical properties of frozen ground; thaw consolidation problems; foundation design; slope stability problems; and artificial freezing for construction.

821. Flow of Fluids in Porous Media
Fall. 3(3-0) 422 or approval of department.

827. Environmental Fluid Mechanics
Spring of even-numbered years. 4(4-0) 422 or approval of department.
Review of turbulent flow and transport processes in water quality control. Analysis and solution of ecological problems related to diffusion and disposal in rivers, estuaries, lakes and the ocean environment.

828. Open Channel Flow
Winter. 3(3-0) 422 or approval of department.
Fundamentals of free surface flow; steady uniform and nonuniform concepts; energy and momentum principles; subcritical and supercritical regimes; gradually and rapidly varied flow; design applications.

829. Fluid Transients
Spring of odd-numbered years. 4(4-0) 488 or approval of department.
Application of unsteady flow concepts and wave mechanics to hydraulic engineering; method of characteristics; rakes and waterhammer in piping systems; unsteady open channel flow; oscillatory waves; similitude and models. For students interested in fluid mechanics.

840. Pavement Design
Spring of even-numbered years. 3(3-0) 449.
Pavement types and wheel loads, stresses in flexible pavements, stresses in rigid pavements, pavement behaviors under loadings, climate effects on pavement performance, evaluating subsurface strengths, subgrades, and pavement design criteria.

841. Optimization of Urban Traffic Flow
Fall of odd-numbered years. 3(4-0) 449.
Approval of department. Interdepartmental with and administered by Systems Science.
Traffic flow models used in design of computerized traffic control systems. Optimal freeway ramp metering algorithms and online optimization of traffic signal timing.

842. Pavement Rehabilitation
Spring of odd-numbered years. 4(4-0) 449.
Strengthening existing pavements, pavement overlay design criteria, epoxy and polyester resin repair and rehabilitation, evaluation of resurfacing practices for bituminous and cement pavements.

843. Traffic Engineering Characteristics
Winter. 3(3-0) 346, STT 421.
Safety analyses, flow and capacity characteristics, statistical properties of traffic, queuing characteristics at intersections, delay characteristics and analyses.

844. Traffic Engineering Theory and Control
Spring. 3(3-0) 843.
Application of the theory of traffic flow to the design and control of traffic streams. Dispatching, scheduling and network analysis. Application to highways, airport operation and urban transportation models.

845. Environmental Impacts of Transportation Facility Design Decisions
Spring. 3(3-0) 342 or 346, 448; or approval of department.
The context in which current transportation planning and design decisions are made; legislative; socio-economic effects; air, noise, and water pollution. Preparation of environmental impact statements.

846. Highway Planning
Fall. 3(3-0) 346 or approval of department.
Highway inventory, road use studies and programming, analysis of highway costs, economic considerations in location and design.

847. Geometric Design of Highways
Winter. 3(3-0) 346 or approval of department.
Design of streets and highways including intersections, parking facilities, capacity, channelization and roadway appurtenances.
848. Transportation Models
Spring. 3(3-0) 448.
Analysis of transportation modeling process, including error propagation and parameter sensitivity analysis. Comparative attributes of zonal size and model sequence decisions on the evaluation of system alternatives.

850. Special Problems in Civil Engineering
Fall, Winter, Spring. Summer. Variable credit. Approval of department.
Research problems of limited scope not pertaining to thesis accomplished under 899 or 999.

899. Research
Fall, Winter, Spring. Summer. Variable credit. Approval of department.

905. Advanced Theory and Design of Reinforced Concrete II
Spring. 3(3-0) 805.
Continuation of 803 with application of theory to analysis and design of tanks, rigid frames, and shells.

906. Advanced Structural Steel Design
Spring. 3(3-0) 406.
Analysis and design of multiple-story building frames, continuous trusses and rigid-frame girders bridges in structural steel. Plastic design.

909. Elastic Thin Shells
Spring. 4(4-0) 804 or MMM 815 or approval of department; MTI 431. Interdepartmental with the Department of Metallurgy, Mechanics and Materials Science.
Elements of differential geometry, membrane theory of shells, Euler's stress function, deformation and bending of shells of revolution and shallow shells.

911. Theory of Plates
Winter. 4(4-0) 804 or MMM 815 or approval of department; MTI 432. Interdepartmental with and administered by the Department of Metallurgy, Mechanics and Materials Science.
Bending of thin elastic plates with various shapes and boundary conditions; application of energy principles and approximate methods of solution; thick plates; large deflection theory; sandwich plates.

915. Earth Structures
Spring. 3(3-0) 817 or approval of department.
Embankments, earth dams, natural and cut slopes; stability of circular and composite slip surfaces; performance of embankments on soft foundations; excavation through earth dams; instrumentation for field performance evaluation.

916. Soil Dynamics
Winter. 3(3-0) 817 or approval of department.
Characteristics of ground motions during earthquakes; dynamic soil properties; liquefaction and settlement under transient and repeated loadings; foundation design for vibratory loads; wave propagation in soil media.

941. Mass Transit Routing and Scheduling
Fall of even-numbered years. 3(3-0) 848 or approval of department.
Routing algorithms for mass transit vehicles in urban networks; dispatching of vehicles by dynamic programming and other algorithms; variable headway, variable route transit system studies.

999. Research
Fall, Winter, Spring. Summer. Variable credit. Approval of department.

Sanitary Engineering

802. Physical Chemical Processes of Environmental Engineering
Fall. 4(3-3) C E 491 or concurrently. Analysis of physical and chemical principles which form the basis of air and water pollution control and solid waste disposal; process dynamics, sedimentation, coagulation, filtration, adsorption, absorption, oxidation.

804. Biological Processes of Environmental Engineering
Fall. (4-4) M H 209, C E 280, S E 802.
Aerobic and anaerobic degradation of liquid and solid wastes. Bioclimatic reactions; activated sludge and trickling filter kinetics; sludge digestion and composting.

812. Water Treatment Plant Design
Fall. 3(3-0) C E 370, 483, 528, S E 802.
Theory and design of water treatment processes. Coagulation and flocculation; sedimentation; filtration; disinfection.

814. Wastewater Treatment Plant Design
Spring. 4(3-3) C E 370, 483, 528, S E 804.
Theory and design of wastewater treatment processes. Racks, screens, sedimentation basins, trickling filters, aeration tanks, digesters.

816. Treatment of Industrial Wastes
Fall. 3(3-0) C E 370, 483, S E 804.
Theory of industrial waste management. Application of physio-chemical and biological treatment to selected industries. Examples include: apparel; food processing; materials processing and chemical industry.

822. Air Resource Management
Fall. 4(4-0) 804 or approval of department; MTI 433. Characteristics of air contaminants and noise; sources and source inventory; microclimatology and pollutant transport; pollutant effects, introduction to sampling and control.

899. Research
Fall, Winter, Spring. Summer. Variable credit. Approval of department.

922. Air Pollution Control
Winter of odd-numbered years. 4(4-0) C E 321; S E 802, 822.
Application of physical and chemical principles to control of gaseous and particulate air pollutants. Cyclones, bag houses, electrostatic precipitators, adsorption, absorption, combustion.

924. Air Sampling and Analysis
Spring of odd-numbered years. 4(4-3) 822.
Theory and design of air sampling programs. Quantitative analysis of ambient air samples and stack samples. Analysis of sulfur oxides, nitrogen oxides and particulates.

999. Research
Fall, Winter, Spring. Summer. Variable credit. Approval of department.

CLASSICAL STUDIES
See Romance and Classical Languages

COMMUNICATION COM

College of Communication Arts and Sciences

100. Human Communication I
Fall, Winter, Spring. Summer. 3(3-0)
Process and functions of communication. Principles underlying communication behavior. Practice in analyzing communication situations and in speaking and writing.

101. Human Communication II
Fall, Winter, Spring. Summer. 3(3-0)
Continuation of 100, with greater emphasis on speaking and writing, and on analyzing increasingly complex communication situations.

115. Oral Communication
Fall, Winter, Spring. Summer. 4(4-0)
Principles and practice in adapting to audiences, creating and structuring messages, and developing effective delivery of formal and informal speeches. Critical evaluation of speeches by instructor and peers.

199. Methods of Inquiry
Fall, Winter, Spring. Summer. 3(3-0)
Majors only. 101.
Major theoretical orientation toward communication. Primary tools of scholarly inquiry.

205. Persuasion
Fall, Winter, Spring. Summer. 4(4-0)
Major social effects of mass media on audience behavior. Political communication. Media effects on children. Message strategies producing persuasive messages and in evaluating the acceptability of persuasive attempts.

210. Leadership
Fall, Winter, Spring. 4(4-0) 100.
Principles and practice in the utilization of communication for effective leadership.

299. Individual Projects
Fall, Winter, Spring. Summer. Variable credit. May re-enroll for a maximum of 15 credits. 199, approval of project proposal by department. Independent research, experience in communication laboratories, or tutorial work in communication skills.

300. The Effects of Mass Communication I
Fall, Winter, Spring. Summer. 4(3-0)
Majors must enroll in 300R concurrently.

300R. Effects of Communication II
Fall, Winter, Spring. Summer. 1 credit. Majors. 300 concurrently.
In-depth consideration of effects of communication.

†Name changed effective July 1, 1973. Formerly College of Communication Arts.