443. Negotiable Instruments, Secured Transactions, Property
Spring, 3(3-0) 441.
The law of negotiable instruments, secured transactions, and property. Case study method used.

445. Real Estate Law
Winter, 3(3-0) 341 or 441.

446. Interstate and International Business Law
Spring, 3(3-0) 341, 440 or 441.

447. Hotel Law
Winter, Spring, 4(4-0) 440.
Legal aspects of the hospitality industry.

468. Field Studies
Fall, Winter, Spring, Summer. Variable credit. May re-enroll for a maximum of 8 credits. Approval of department. Planned program of observation and work in selected business firms. Analysis and reports.

486. Business Risks and Insurance
(AFA 486.) Winter, 3(3-0) 330 or 340 in business administration. Business insurance as it relates to business risks and decision making. Emphasis on business exposures, coverages and problems of the risk manager.

487. Management of Insurance Enterprise
(AFA 487.) Spring, 3(3-0) 340 or approval of department. Organizational requirements and functional operations of insurance enterprise with emphasis on methods of ratemaking, reserves, financial statement and investment requirements, loss adjustment, underwriting, and marketing. Statutory limitations on management freedom.

848. The Legal Environment of Business
Winter, Summer, 4(4-0)
Critical examination of the environment in which business operates. Analysis of the components and elements of the legal environment of business and the structural framework in which law functions.

549. Legal Environment of International Business
Spring, Summer, 4(4-0)
Commercial and financial transactions in international business, foreign agencies, branches, subsidiaries. Aspects of labor relations, antitrust, taxation, and transportation as related to foreign operations. Litigation and arbitration in the international business community.

871. Seminar: Office Administration
Winter, Summer, 3 credits. May re-enroll for a maximum of 6 credits. Approval of department. Problems, practices, and policies involved in office administration. Methods of establishing, analyzing, standardizing, and controlling administrative systems and procedures in the office.

878. Seminar in Business Law
Fall, Winter, Spring, 4(4-0) May re-enroll for a maximum of 6 credits. 848 or approval of department. Public policy with regard to contracts, antitrust, securities transactions, labor relations of the firm, viewed from the legislative, judicial, and executive vantage points.

884. Insurance Companies as Financial Institutions
(AFA 884.) Winter, 4(4-0) Analysis of insurance company investment behavior in the capital market. Emphasis on liquidity requirements, interest rates, legal and organizational requirements affecting investment decisions. Micro and macro aspects are investigated.

886. Seminar in Insurance Problems
(AFA 886.) Spring, 4(4-0) Analysis of insurance problems affecting the public interest. Special emphasis on problems due to changing economic and social conditions. Insurance regulatory, financial, marketing and social problems are evaluated.

900. Special Problems
Fall, Winter, Spring, Summer. Variable credit. Approval of department.

CHEMICAL ENGINEERING

College of Engineering

222. Pollution of the Environment—Causes and Cures
Spring, 3(3-0) Nonmajors; no science or technical background required. Pollution of air, water and land. Abutlement of foods. Overtaxing waste facilities. Depleting natural resources. Interaction of engineers, industry, government, and the public in creating and combating these problems.

300. Material and Energy Balances
Fall, 3(3-0) One year general chemistry, MTH 214.
Chemical engineering calculations. Material and energy balances in physical and chemical non-flow and flow systems. Behavior of ideal and real gas systems. Heats of reaction. Applications to chemical engineering systems.

311. Thermodynamics for Chemical Engineering
Winter, 3(3-0) 361.

312. Transfer Processes and Separations I
Winter, 3(3-0) 300, MTH 215.
Thermodynamics of fluid flow. Frictional effects for laminar and turbulent motion of compressible and incompressible fluids. Dimensional analysis and similarity. Treatment of fluid flow as a momentum transfer process.

313. Transfer Processes and Separations II
Spring, 3(3-0) 312.

314. Transfer Processes and Separations III
Spring, 3(3-0) 311, 313 or concurrently.
Mass transfer in continuous contacting systems. Mass transfer in interphase transfer and contacting of immiscible phases.

361. Chemical Thermodynamics
Fall, Spring, 3(4-0) One year general chemistry, one year general physics; MTH 215. Interdepartmental and jointly administered with the Chemistry Department. Thermodynamics. Properties of gases. Laws of thermodynamics, properties of ideal and nonideal solutions, thermodynamics of chemical reactions, activities in non-ionic systems.

381. Chemical Engineering Analysis
Fall, Spring, 3(3-0) Students may not receive credit in both 381 and MTH 341. MTH 215. Interdepartmental with the Mathematics Department. Formulation of ordinary and partial differential equations describing chemical systems. Boundary value problems, numerical methods, matrices, and applications, to chemical engineering systems.

415. Transfer Processes and Separations IV
Fall, 3(3-0) 314.
Mass transfer in stagewise processes. Counter-current processes, fractionation, contacting efficiencies, and simultaneous momentum, heat and mass transfer.

423. Chemical Engineering Laboratory
(422.) Winter, 3(3-0) 415.
Assigned laboratory problems, requiring team effort. Experimental work, involving momentum, heat and mass transfer; separation processes, such as distillation, filtration, and drying; reactor kinetics, automatic process control.

424. Transport Phenomena and Physical Properties Laboratory
Spring, 3(3-0) 313 or concurrently. Experiments involving the transport processes and measurement of physical, chemical and thermodynamic properties of various materials. Comparison of theoretical and experimental results.

425. Chemical Reaction Engineering
Fall, 3(3-0) 381 or approval of department. Quantitative treatment of mechanisms and rates of chemical reactions. Catalysis. Design and analysis of flow and non-flow reactors. Interpretation of laboratory kinetic data.

442. Polymer Science and Engineering
Winter, 3(3-0) One year organic chemistry, 361.

443. Chemical Engineering of the Solid State
Spring, 3(3-0) CEM 491.
Structure and properties of inorganic and organic solids. Relation of bond type and steric configuration to mechanical, electrical, thermal, optical properties. Macromolecular structure influence on physical properties. Surface phenomena. Applications.

446. PolymORIZATION
Fall, 3(3-0) One year organic chemistry, elementary physical chemistry. Interdepartmental with and administered by the Chemistry Department. Formation and characterization of polymers of high molecular weight will be emphasized.
451. Process Systems Control
Winter. 3(3-0) 428.
Foundations of control theory for chemical processes. Integration of present and developing practice with modern theory.

460. Problems and Reports
Fall, Winter, Spring. 1 to 9 credits. Library and laboratory investigations of problems relating to departmental research.

481. Theory and Design
Winter. 3(3-0) 415.
Applicable chemical engineering principles in design calculations. Selection of the optimum design for equipment, functional units, and for the overall process. Influence of design on capital investment, operating cost, product loss, and product quality.

482. Process Design
Spring. 3(3-0) 481.
Integrated design of the complete chemical engineering process. Process engineering, project engineering, instrumentation, and layout.

495. Process Optimization Methods
Fall, Spring. 3(3-0) MTH 213, knowledge of linear algebra. Interdepartmental with Systems Science.
Methods for determining optimum design and operating policies of systems of varying complexity. Includes classical methods, mathematical programming and modern methods.

500. Theory of Nuclear Reactors
Fall. 3(3-0) PHY 269 and MTH 215 or approval of department.
Theory and design of nuclear research and power reactors. Nuclear transformation, fission and energy conversion. Derivation of chain reaction design criteria, and calculation of flux-power distribution. Analysis of reactor safety, reliability and economics.

501. Transport Phenomena
Fall. 3(3-0) 314, 351.
Fundamental treatment of momentum, energy and mass transport. Use of partial differential equations and equations of change for chemical engineering applications. Analogies among the phenomena, dimensional analysis, and boundary layer theory.

801. Advanced Chemical Engineering Calculations I
Winter. 3(3-0) 801.
Chemical engineering applications of advanced mathematical methods. Formulation and solution of mathematical equations which describe physical problems. Computer solutions.

802. Advanced Chemical Engineering Calculations II
Winter. 3(3-0) 801.
Continuation of 801.

811. Advanced Chemical Engineering Thermodynamics I
Fall. 3(3-0) 311, 361, CRM 481.
Advanced treatment of the laws of thermodynamics. Cryogenic processes. Corresponding state and higher parameters in computing properties of chemical compounds and solutions.

817. Advanced Chemical Reaction Engineering I
Spring. 3(3-0) 428.

825. Theory, Applicability and Engineering of Radioisotopes
Winter of even-numbered years. 3(3-0) PHY 498 or CEM 461 or approval of department.
Principles of utilization of radioisotopes in research and production problems for engineering and science majors. Fundamentals and preparation techniques of radioisotopes. Selection, specification, measurement and disposal for typical technical problems.

826. Flow of Heat I
Spring. 3(3-0) 415.
Steady and unsteady state heat transfer. Conduction and convection in flow and non-flow systems.

828. Optimization of Static Nonlinear Systems
Winter, Summer. 3(3-0) 461 or knowledge of linear programming. Interdepartmental with and administered by Systems Science.
Problem formulation and classification, Kuhn-Tucker theory in nonlinear programming, gradient and search methods, techniques for quadratic, integer, geometric, and dynamic programming.

831. Distillation, Absorption, and Extraction—Ideal Stages
Fall. 3(3-0) 415. May precede or follow 832.

832. Distillation, Absorption and Extraction—Phase Contactors
Winter. 3(3-0) 415. May precede or follow 831.
Mass transfer in distillation, absorption, and extraction processes. Continuous and stagewise phase contactors. Column hydrodynamics and plate efficiency.

841. Advanced Transport Phenomena
Winter. 3(3-0) MTH 315, B.S. in engineering or physical science.

847. Physical Chemistry of Macromolecules
Winter of odd-numbered years. 3(3-0) MTH 315 or approval of department. Interdepartmental with Chemistry Department.
Thermodynamics—phase equilibria of polymer solutions; configuration and conformation of chain molecules; characterization of polymer molecule weight and distribution; theoretical and experimental results for dilute solution viscosity and diffusity; polyelectrolytes.

881. Seminar
Fall, Winter, Spring, Summer. 1(0-2) May re-enroll for a maximum of 3 credits allowed toward M.S. degree and 6 credits toward Ph.D. degree.
Detailed laboratory investigation of one or more specialized aspects of chemical engineering, such as recent theoretical developments in one of the unit operations; presentations of these studies to a seminar group. Participation generally required each term of residence.

886. Selected Topics in Chemical Engineering
Fall, Winter, Spring. Summer. 3(3-0) May re-enroll for a maximum of 9 credits if a different topic is taken.
A newly developing area of chemical engineering selected by the department for offering each term. Information on the specific topic to be covered should be obtained from the department office before registration.

888. Research Survey
Fall, Winter, Spring, Summer. 1 to 3 credits. May re-enroll for a maximum of 3 credits.
Literature search, problem analysis, and layout of a complete research program.

893. Special Problems
Fall, Winter, Spring. Summer. Variable credit. Approval of department.

899. Research
(BGR 899.) Fall, Winter, Spring, Summer. Variable credit. Approval of department.

912. Advanced Chemical Engineering Thermodynamics II
Spring of even-numbered years. 3(3-0) Approval of department.

918. Advanced Chemical Reaction Engineering II
Winter of even-numbered years. 3(3-0) Approval of department.
Quantitative treatment of current literature in chemical kinetics and reaction engineering.

927. Flow of Heat II
Fall of even-numbered years. 3(3-0) Approval of department.
Fundamentals of radiant heat transfer. Computer techniques in the design of radiant and convective heat transfer equipment.

965. Special Topics in Optimal Process Theory
Spring of odd-numbered years. 3(3-0) 828 or approval of department. Interdepartmental with Systems Science.
Continuation of 828 and special topics from the literature in nonlinear, stochastic, and dynamic programming.

999. Research
(BGR 999.) Fall, Winter, Spring, Summer. Variable credit. Approval of department.

CHEMISTRY

College of Natural Science
Credit cannot be earned in more than one course of each of the following groups: 130 and 141, 151 and 141, 142 and 153, 132 and 241 or 351, 262 and 352, 383 and 491, 381 and 384, 394 and 472.

130. Introductory Chemistry I
Fall, Winter, Summer. 4(3-3) MTH 168 or 111 or concurrently.
General discussion of principles. Atomic and molecular structure and spectra; stoichiometry; gases, liquids, solids, solutions, and changes of state. Laboratory experiments via film, TV tape or live demonstration.