999. Research
Fall, Winter, Spring, Summer. Variable credit. Approval of department.

SOUTH ASIAN LANGUAGES
See Linguistics and Oriental and African Languages.

SPANISH
See Romance Languages.

STATISTICS AND PROBABILITY

College of Natural Science
Introductory courses are further classified as follows:
315, 316—sequence for undergraduate students of Business Administration.
201—survey course.
421, 422, 423—minimal sequence for students planning to use statistical methods in their research.
441, 442, 443—minimal sequence in theory of statistics. Qualified students should take the 861, 862, 863 sequence instead.
861, 862, 863—sequence for students preparing to do advanced work in statistics.
881, 882, 883—sequence in analytic probability theory and stochastic processes at graduate mathematics level.

201. Statistical Methods
Fall, Winter, Spring, Summer. 4(4-0) MTH 108 or 111. Primarily for students in psychology, sociology, anthropology, political science, economics, agriculture, and forestry. Credit may not be earned in more than one of the following: 201, 315, 421. Descriptive statistics, elementary probability and combinatorics. The binomial distribution. Random variables, their expectations and variances. Central Limit Theorem, estimation and inference. Simple tests based on the binomial, normal, t, chi-square and F distributions.

315. Introduction to Probability
(21L) Fall, Winter, Spring, Summer. 4(4-0) MTH 111. Credit may not be earned in more than one of the following: 201, 315, 421. Set and algebra of sets. Chance experiments, outcomes and events. Probabilities of events. Conditional probability, independent trials, Bayes’ theorem. Introduction to statistical inference relevant to business decision problems.

316. Fundamentals of Statistical Inference
Fall, Winter, Spring, Summer. 4(5-0) 215. Primarily for students in the College of Business. Interdepartmental with the Marketing and Transportation Administration Department. Description of sample data, applications of probability theory, sampling, estimation, tests of hypotheses.

317. Quantitative Business Research Methods
Fall, Winter, Spring, Summer. 4(5-2) 316. Interdepartmental with and administered by the Marketing and Transportation Administration Department. Application of statistical techniques to business decision-making. Topics covered include applications of linear regression and correlation, analysis of variance, selected non-parametric tests, time series, and index numbers.

341. Probability for Teachers
Spring. 4(4-0) MTH 201 or approval of department. Primarily for majors in mathematical education. Probability theory will be studied as a mathematical structure. Although some examples of the use of the theory will be discussed (as the use of some theorems is discussed in a course in plane geometry) the major emphasis will be on understanding the structure of probability theory.

351. Introduction to Statistics
Spring. 4(4-0) MTH 214. Probability models, discrete random variables, the binomial, hyper-geometric and Poisson distributions, statistical inference based on the binomial distribution, continuous random variables, test of hypothesis and confidence intervals based on the normal distribution.

421. Statistics I
Fall, Winter, Spring, Summer. 4(4-0) MTH 108. Credit may not be earned in more than one of the following: 201, 215, 421. This course and 422, 423 form a one year sequence in statistics for those without a calculus background. 421 provides an introduction to a few of the main ideas of probability and statistics. The course sequences 441-2-3 and 801-2-3 form one year sequences in statistics for those with a calculus background. Those expecting to use statistics in their graduate research should consider one of the full year sequences. Descriptive statistics, elementary probability and combinatorics. The binomial distribution. Random variables, their expectations and variances. The Central Limit Theorem, Estimation and inference. Simple tests based on the binomial, normal, t, chi-square and F distributions.

422. Statistics II
Fall, Winter, Spring, Summer. 3(3-0) 421. Nonparametric tests: sign test, Wilcoxon’s rank sum test, Spearman’s rank correlation test, run tests. Multiple regression analysis. Least squares estimation and tests for simple linear hypotheses.

423. Statistics III
Fall, Winter, Spring, Summer. 3(3-0) 422. Application of multiple regression analysis to analysis of variance problems. Design of experiments including randomized block designs, Latin squares, factorial designs, and balanced incomplete block designs.

441. Probability and Statistics I: Probability
Fall, Winter, Spring, Summer. 4(4-0) MTH 215. Mathematical probability as a basis for the theory of statistics. Discrete and continuous probability models, conditional probability and independence, random variables, central limit theorem, sampling distributions.

442. Probability and Statistics II: Inference
Winter, Spring. 4(4-0) 441; MTH 334 or concurrently. Estimation, confidence intervals, test of hypotheses, linear hypotheses.

443. Probability and Statistics III: Inference
Fall, Spring. 4(4-0) 442. Multiple linear regression, analysis of variance, goodness of fit tests, certain non-parametric tests.

490. Statistical Problems
Fall, Winter, Spring. 1 to 6 credits. Approval of department. Individualized study adapted to the preparation and interests of the student.

825. Sample Surveys
Fall. 3(3-0) 423 or 442 or 862. Application of statistical sampling theory to survey designs involving simple random, stratified, and systematic sampling; sub-sampling, double sampling; ratio and regression estimates; other topics.

826. Nonparametric Statistics
Spring. 4(4-0) 423 or 862. Current tests of hypotheses which may be made without specification of the underlying distribution. Rank tests and tests based on permutations of observations. Tolerance and confidence sets. Large-sample distributions. Applications to research in the social and natural sciences.

833. Mathematical Programming
Spring. 3(3-0) EC 800, or 812A, MTH 234. Interdepartmental with the Agricultural Economics and Economics Departments and administered by the Agricultural Economics Department. Linear programming. Theory of linear economic models. Topics in nonlinear programming.

841. Linear Statistical Models
Fall. 4(4-0) 443 or 863. Use of linear statistical models. Curve fitting, simple and multiple regression analysis, multiple and partial correlation coefficients, the analysis of variance, simultaneous confidence intervals, more complex experimental designs.

852. Methods in Operations Research I
Winter. 3(3-0) 441 or 861. Optimization techniques and probability models with a wide variety of applications: linear programming, including special problems; network analysis, including PERT, dynamic programming, game theory, queuing theory. Acquaintance with matrices advisable.

853. Methods in Operations Research II
Spring. 3(3-0) 852. Continuation of 852. Inventory theory; Markov chains with applications; simulation as adjacent to mathematical models; advanced topics in linear programming; non-linear programming.

861. Theory of Probability and Statistics I
Fall. 4(4-0) MTH 424 or 427 or concurrently. Discrete probability models, random variable expectation, combinatorial analysis, conditional probability and independence, generating functions, some special discrete distributions, continuous probability models.

862. Theory of Probability and Statistics II
Winter. 4(4-0) 861; MTH 425 or 428 or concurrently. Continuous probability models, density transformations, some special continuous distributions, limit laws. Introduction to statistical inference, estimation of parameters, hypothesis testing.
863. Theory of Probability and Statistics III
Spring. 4(4-0) 862; MTH 334, 426 or 429 or concurrently.
Continuation of hypothesis testing, sufficiency, Rao-Blackwellization, some non-parametric methods, linear models.

864. Stochastic Models in Biology
Fall. 3(3-0) 441 or 861.
Stochastic processes. Selected topics from growth processes, epidemic theory, prey-predator models, mathematical genetics.

865. Theory of Experimental Designs
Fall. 4(4-0) 863 and MTH 631 or approval of department.
Experimentation: Cochran's theorem; review of sampling theory; simple designs and statistical analyses; factorial designs and confounding and the group theoretic aspects of these designs; geometrical problems of construction of sets of Lattia and Graeco-Latin squares.

871. Theory of Probability and Statistics I
Fall. 4(4-0) 863; MTH 521 or concurrently.

872. Theory of Probability and Statistics II
Winter. 4(4-0) 871; MTH 823 or concurrently.
Basic concepts of decision theory. Most powerful tests. Standard statistical methods for use in the binomial, Poisson and normal situation; sequential and non-parametric methods; linear models.

873. Theory of Probability and Statistics III
Spring. 4(4-0) 872; MTH 927 or concurrently; or approval of department.

876. Statistical Inference in Economics I
Fall. 3(3-0) 443 or 865; EC 812A or 801; or approval of department, Interdepartmental with the Agricultural Economics and the Economics Departments and administered by the Economics Department. Review and extension of single-equation regression models. Properties of least-squares estimators under alternative specifications. Problems of analyzing measurement data. Errors in variable, autoregressive and heteroscedastic models.

877. Statistical Inference in Economics II
Winter. 3(3-0) EC 870 or approval of department. Interdepartmental with the Agricultural Economics and Economics Departments and administered by the Economics Department. Specification interpretation and estimation of simultaneous equation models. Nonlinear models. Bayesian approach to estimation problems. Recent developments in econometrics.

878. Statistical Inference in Economics III
Spring. 3(3-0) EC 877 or approval of department. Interdepartmental with the Agricultural Economics and Economics Departments and administered by the Economics Department. Validation and application of dynamic econometric models. Decision models. Bayesian approach to estimation problems. Recent developments in econometric methods and in applied econometric research.

881. Probability and Stochastic Processes I
Fall. 3(3-0) MTH 891 or concurrently.

882. Probability and Stochastic Processes II
Winter. 3(3-0) MTH 852 or concurrently.

883. Probability and Stochastic Processes III
Spring. 3(3-0) MTH 823 or concurrently.

884. Stochastic Processes and Technological Applications
Winter. 3(3-0) 441 or 861.

885. Stochastic Models in the Physical Sciences
Spring. 3(3-0) 886 or approval of department.
Selected models from the physical sciences. These may include topics from the theory of queues, the theory of dams, and branching processes in cosmic ray theory.

890. Statistical Problems
Fall, Winter, Spring, Summer. Variable credit. Approval of department.

899. Research
Fall, Winter, Spring, Summer. Variable credit. Approval of department.

927. Theory of Measure and Integration
Spring. 4(4-0) MTH 881. Interdepartmental with and administered by the Mathematics Department. Introduction to the theory of integration over abstract spaces. Topics include: measure spaces; measurable and integrable functions; modes of convergence, theorems of Egoroff, Luzin, Riesz-Fischer, Lebesgue, absolute continuity, and the Radon-Nikodym theorem; product measures and Fubini's theorem. Applications to some of the classical theories of integration and summability.

937. Systems Simulation
Fall. 4(4-0) MCT 826, STT 493, MTH 928. Interdepartmental with and administered by the Management Department. The concept of a model, model building, characteristics of simulation models. Techniques of computer simulation. Simulation models in research and management planning/control. Validation and experimental design. Special purpose languages.

946. Mathematical Programming For Business
Fall. 4(4-0) MCT 836, MTH 334, 426, STT 863. Interdepartmental with and administered by the Management Department. Large mathematical programs with special structure. Duality and decomposition in mathematical programming. Basic theory of dynamic programming; multistage decision processes and the principle of optimality. Risk, uncertainty, and introduction to stochastic and adaptive control processes.

953. Advanced Applied Stochastic Processes
Winter. 4(4-0) MCT 836, 937. Interdepartmental with and administered by the Management Department. Selected topics from the following areas: Semi-Markov, Markov-renewal and regenerative process models; Markov and semi-Markov decision processes; decision theory, applications from production, inventory, reliability, queuing, and gaming theory.

971. Advanced Theory of Statistics I
Fall. 4(4-0) 873, MTH 927, 981 or concurrently.

972. Advanced Theory of Statistics II
Winter. 4(4-0) 971; 982 or concurrently.

973. Advanced Theory of Statistics III
Spring. 4(4-0) 972.
Continuation of 972.

981. Advanced Theory of Probability I
Fall. 4(4-0) 883; MTH 927 or approval of department.

982. Advanced Theory of Probability II
Winter. 4(4-0) 981 or approval of department.
Central limit problem: the classical limit problem, the bounded variances case, and limit laws for infinite-dimension random variables. Conditional probabilities and expectations. Martingales with discrete time.
983. **Advanced Theory of Probability III**
Spring. 4(4-0) 982 or approval of department.

990. **Problems in Statistics and Probability**
Fall, Winter, Spring, Summer. 1 to 4 credits. May re-enroll for a maximum of 10 credits.

Seminar or individual study on an advanced topic in statistics.

995. **Topics in Statistics and Probability**
Fall, Winter, Spring. Variable credit.

Nonparametric statistics, multivariate statistical analysis, statistical time series analysis, Bayesian statistics, reliability theory, stochastic approximation, design of experiments, sets of decision problems, stochastic processes, sequential analysis, other topics.

999. **Research**
Fall, Winter, Spring, Summer. Variable credit. Approval of department.

STUDIO ART

See Art.

SURGERY

College of Human Medicine

608. **Surgery Clerkship**
Fall, Winter, Spring, Summer. 1 to 17 credits. May re-enroll for a maximum of 43 credits.

An introduction to the surgical patient, stressing surgical diagnosis, pre-operative evaluation and post-operative care. Objectives are designed to help the student attain acceptable levels of surgical competence for physicians.

609. **Otolaryngology Clerkship**
Fall, Winter, Spring, Summer. 1 to 17 credits. May re-enroll for a maximum of 34 credits.

Common otolaryngologic disorders, emergencies, including diagnosis and treatment, and judgments concerning proper management by primary physicians.

610. **Plastic Clerkship**
Fall, Winter, Spring, Summer. 1 to 17 credits. May re-enroll for a maximum of 34 credits.

Principles of wound healing and tissue repair. Indications and applications of plastic procedures.

611. **Urology Clerkship**
Fall, Winter, Spring, Summer. 1 to 17 credits. May re-enroll for a maximum of 34 credits.

Demonstration of clinical manifestations of genito-urinary disease, investigative methods and techniques of diagnosis and management, familiarity with urologic emergencies and performance of basic urologic skills.

612. **Rectal Surgery**
Fall, Winter, Spring, Summer. 1 to 17 credits. May re-enroll for a maximum of 34 credits.

Data collection, physical examination, and problems formulated relating to colon and rectal disease. Involvement in special techniques, examinations, and surgical procedures is an important aspect of the experience.

613. **Orthopedic Clerkship**
Fall, Winter, Spring, Summer. 1 to 17 credits. May re-enroll for a maximum of 34 credits.

Diagnostic and management information and skills, including emergencies, in common orthopedic problems.

614. **Neurosurgery Clerkship**
Fall, Winter, Spring, Summer. 1 to 17 credits. May re-enroll for a maximum of 34 credits.

A hospital-based experience to provide the student with familiarity with the field and understanding of the contribution of neurosurgery in medicine generally.

615. **Ophthalmology Clerkship**
Fall, Winter, Spring, Summer. 1 to 17 credits. May re-enroll for a maximum of 34 credits.

Development of skills and knowledge in ophthalmoscopy, neuro-ophthalmology, visual function, and management of problems such as glaucoma, the red eye, and trauma.

616. **Thoracic Surgery Clerkship**
Fall, Winter, Spring, Summer. 1 to 17 credits. May re-enroll for a maximum of 34 credits.

Problem-solving in thoracic medicine and surgery, also stressing pulmonary physiology, use of diagnostic tools and tests, and indications for surgical procedures.

617. **Emergency Medicine Clerkship**
Fall, Winter, Spring, Summer. 1 to 17 credits. May re-enroll for a maximum of 34 credits.

Exposure to acute problems of wide variety is provided by this experience. Evaluation, management and disposition of patients is seen in the framework of the continuing patient care system.

SYSTEMS SCIENCE

See Electrical Engineering and Systems Science.

TELEVISION AND RADIO

College of Communication Arts

100. **Foundations of Broadcasting**
(271.) Fall, Spring, Summer. 3(3-0)

Origan, development, nature, and function of radio and television in modern society.

120. **Telecommunication in the United States**
Fall, Winter, Spring. 3(3-0)

History, economics, public control, programming, social effects and future of telecommunication; primarily radio and television broadcasting and cable communication. Citizens responsibilities in the development of telecommunication systems and services.

150. **Introduction to Telecommunication Systems**
Spring. 3(3-0)

Nature, development, economies, social control and influence of the telecommunication media in modern society.

201. **Fundamentals of Radio Broadcasting**
(372.) Fall, Winter, Spring, Summer.

Basic orientation to the radio studio, with laboratory experiences in production, writing, and performance.

202. **Fundamentals of Television Broadcasting**
(352.) Fall, Winter, Spring.

Basic orientation to the television studio, with laboratory experiences in production, writing, and performance.

250. **History of the Motion Picture**
Fall, Winter. 4(2-4) Sophomores.

Development of the motion picture from its beginning to the present, emphasizing social background and cultural values. Screening of significant films from various periods and countries.

333. **Television Directing**
(453.) Fall, Winter, Spring.

Production and directing methods with assigned experiences in the television studio.

335. **Television and Radio Audience Studies**
Winter, Summer. 3(3-0) Juniors.

Analysis and evaluation of broadcast audience measurement services and other feedback systems. Broadcast audience characteristics, attitudes and behavior.

350. **Advanced Radio Production**
(450.) Fall, Winter, Spring.

201 and approval of department. Planning, coordinating and producing the radio program. Emphasis on documentary and studio productions utilizing original ideas and methods.

351. **Television Studio Production**
Fall, Spring.

202 and approval of department. Advanced television crew operations. Writing and production of programs directed by students in 451.

386. **Broadcast Promotion**
Winter, Spring.

202 and Juniors. Purpose, creation and production of promotional ideas and material in broadcasting. Introduces the student to the promotional facet of broadcasting, relating it to increasing sales, audience size and improving public relations.