The College of Engineering prepares its students to solve technical, as well as social, economic, and global problems while instilling the essence of engineering – the iterative process of designing, predicting performance, building, and testing. Our engineering programs provide future engineers with firm knowledge and understanding of the fundamental engineering sciences, of engineering methods for the application of this knowledge and the project management and communications skills to bring designs to fruition. Programs require a strong base in mathematics, computing, and the sciences as the tools of the engineer. An engineering education provides a teams-based, systems approach to societal problems and therefore prepares students for a wide range of career options, including those outside engineering.

UNDERGRADUATE PROGRAMS

Programs With a Major in the Engineering Professional Fields

The Bachelor of Science degree may be earned in programs designed to prepare students for work in biosystems engineering, chemical engineering, civil engineering, computer engineering, electrical engineering, environmental engineering, materials science and engineering, and mechanical engineering.

Programs With a Major in the Engineering Sciences

The Bachelor of Science degree may also be earned in engineering sciences with a major in computer science or applied engineering sciences. A required cognate combines the Computer Science major with studies such as business management, the social and behavioral or physical sciences, or a foreign language. The Applied Engineering Sciences major is an interdisciplinary program that combines a broad foundation in core engineering disciplines with a required concentration area in business law, computer science, packaging, supply chain management, technical sales, or media and information.

Engineering Education Abroad

The field of engineering increasingly requires global perspective. Education abroad provides unparalleled cultural learning experiences that can strengthen academic goals, fit degree requirements, while providing opportunities for students to study in a variety of countries. Students interested in education abroad should contact the Engineering Education Abroad office as early as possible.

Minors

Students who are enrolled in bachelor’s degree programs in the college may elect the Minor in Environmental and Sustainability Studies. For additional information, refer to the statement on Minor in Environmental and Sustainability Studies in the College of Natural Science section of this catalog.

Students who are enrolled in bachelor’s degree programs in The Eli Broad College of Business, the College of Communication Arts and Sciences, and the College of Engineering may elect the Minor in Information Technology. For additional information, refer to the statement on Minor in Information Technology in The Eli Broad College of Business section of this catalog or contact The Eli Broad College of Business.

Students who are enrolled in the Bachelor of Science degree in Computer Science in the College of Engineering may elect a Minor in Game Design and Development. For additional informa-
Undergraduate Programs

ENGINEERING

Experiential Education - The Center for Spartan Engineering

The College of Engineering offers a variety of opportunities for students to gain real-world experience in the field of engineering. These programs prepare students for work in industry or to enter graduate programs in engineering, medicine, law, or business. They include cooperative education, engineering internships, and undergraduate research. Cooperative Engineering Education is a program of alternating full-time employment in industry and full-time study on campus. Employment provides practical on-the-job experience by exposing students to types of work done by engineers. Locations of jobs are nationwide and students are given the opportunity to explore other regions of the country.

Engineering internships are usually one-time-only, career-based experiences usually completed during the summer semester. Internships provide practical on-the-job experience in the field of engineering. Undergraduate research opportunities are also available at Michigan State University and throughout the United States. Students who are considering graduate school are encouraged to participate in an undergraduate research program for exposure to research opportunities and protocol at the graduate level.

Each of these options can be eligible for engineering credit through EGR 393, a low-cost, pass-fail experiential education course. Any student who completes a combination of three full-time registered experiences in a pre-professional position that have been approved and assessed by the College of Engineering will receive a Certificate of Experiential Education. Students interested in any of these programs should contact The Center for Spartan Engineering in Room 1340 Engineering Program.

Honors Study

The College of Engineering encourages honors students to develop distinctive programs of study in engineering or computer science to satisfy their Honors College requirements. Honors advisors will help students tailor a program to suit a student's individual interests and abilities. This often includes the Honors Option by which students may earn Honors credits in courses approved by departments both within and outside the college.

Accreditation

The following degree programs have been accredited by ABET: Biosystems Engineering, Chemical Engineering, Civil Engineering, Computer Engineering, Computer Science, Electrical Engineering, Environmental Engineering, Materials Science and Engineering, and Mechanical Engineering.

Licensure as a Professional Engineer

In Michigan, the Michigan Board of Professional Engineering provides an opportunity for students during their senior year to take the first half of a sixteen-hour, two-part examination as the first step toward licensure. Provided the degree is to be awarded within six months and the degree program is one that has been accredited by ABET or determined as equivalent by the Michigan Board of Professional Engineering. After a minimum of four years of experience, the applicant may take the second half of the examination.

Freshmen

Students admitted to the university are enrolled in the Neighborhood Student Success Collaborative, but may declare a pre-engineering major preference in the College of Engineering. Such students are guided by a professional advisor from the college. All students are encouraged to review their progress with an advisor each semester. Students become eligible for admission to the college upon completion of the requirements listed below in the Admission to the College section of this catalog.

Students interested in engineering but not yet sure of a major may be an Engineering No-Preference major until attaining 56 credits, but students are encouraged to make their major selection as early as possible.

Students who elect a pre-engineering major preference should be strongly prepared in mathematics and sciences. Additional work in these areas is highly desirable and may make advanced placement in courses possible. Students entering with less than the minimum mathematics prerequisites may take some of the necessary courses after entering the University. However, such students will need additional time to complete the work for the degree.

The Engineering CoRe Experience

The CoRe Experience integrates first-year engineering academics and co-curricular/residential activities to support the academic, professional, and personal growth of engineering students during their first year at Michigan State University. CoRe seeks to demonstrate to students the importance of engineering and the positive impact that engineers make on society and the world around them. Along with community and corporate partners, we bring real-world expertise and challenges into the classroom and residential environment, reinforcing the relevance of engineering to solving global challenges.

CoRe’s academic program is based on the principle that engagement in meaningful engineering experiences early in students’ undergraduate careers supports their success and persistence to graduation. Through our courses, EGR 100: Introduction to Engineering Design and EGR 102: Introduction to Engineering Modeling, we strive to engage students across the disciplines in team-based projects that pique their interest and give them a window into what professional engineering really is. CoRe co-curricular activities connect students to each other, to the College of Engineering, and to corporate partners, helping students persist and succeed as engineering students and campus citizens.

Supportive Services

The college provides a full range of supportive services including professional academic advising, tutoring, services for underrepresented and female students, career guidance and employment assistance, faculty connections, and peer mentors.

Admission to the College

Admission to the College of Engineering and a specific major provides access to enroll in certain courses required for the major. Enrollment in the College of Engineering are limited.

Admission is based on the cumulative grade-point average of all courses taken and a grade-point average calculated on mathematics, physical and biological sciences, and engineering courses.

For additional information, students should contact the Office of the Associate Dean for Undergraduate Studies, College of Engineering.

Minimum criteria for admission to the college are:

1. Completion of at least 28 credits earned after matriculation to Michigan State University.

For additional information, refer to the statement on Minor in Game Design and Development in the Department of Media and Information section of this catalog.
2. Completion of Mathematics 132 and 133 with a minimum grade of 2.0 in each course.
3. A minimum grade-point average of 2.0 in all mathematics courses.
4. Completion of Chemistry 141 or 151 or approved substitution or waiver. Computer Science majors are not required to fulfill this requirement.
5. Completion of Physics 183.
6. Completion of Engineering 102 or Computer Science and Engineering 231 or Computer Science and Engineering 220 or approved substitution or waiver.
7. Completion of Engineering 100.

Freshmen and sophomores who have declared specific engineering majors (excluding Engineering No-Preference) are automatically reviewed at the end of every semester, and are either admitted or informed of their progress. Others may apply for admission during each semester, and applications will be reviewed after the end of each semester. Students must be admitted to a degree-granting college at the time they have completed 56 credits.

Admission to a Second Bachelor's Degree Program

Students seeking admission to a second bachelor’s degree program must meet the same requirements as for admission to the college.

Graduation Requirements for All Majors

1. The University requirements for bachelor's degrees as described in the *Undergraduate Education* section of the catalog: 120 credits, including general elective credits, are required for the Bachelor of Science degree in Computer Science and the Bachelor of Science degree in Applied Engineering Sciences; and 128 credits, including general elective credits, are required for the Bachelor of Science degree in the other Engineering majors.

 Students who are enrolled in majors leading to the Bachelor of Science degree in the College of Engineering may complete an alternative track to Integrative Studies in Biological and Physical Sciences that consists of the following courses:

 a. One of the following courses: Biological Science 161; Plant Biology 105; Entomology 205; Integrative Biology 150; Microbiology and Molecular Genetics 141, 201, 301; Physiology 250.

 b. Two of the following courses: Chemistry 141, Chemistry 151, Physics 183 or 183B, Physics 184 or 184B.

 c. One of the following laboratory courses: Plant Biology 106; Chemistry 161; Physics 191.

 Credits earned in the alternative track may also be counted toward college and major requirements for the Bachelor of Science degree.

2. The requirements of the College of Engineering for the Bachelor of Science degree that are listed below:

 b. Chemistry 141 or 151. Computer Science majors are not required to complete Chemistry 141 or 151.

 c. Physics 183 or 183B and 184 or 184B.

 d. Engineering 100.

 e. One technical computing course depending on intended major: CSE 220 (Electrical Engineering), CSE 231 (Computer Science, Computer Engineering, Mechani-
The Minor in Energy, administered by the College of Engineering, provides students with a foundation in energy science that focuses on topics of fundamental physical principles guiding energy generation, utilization, conservation, engineering applications and the impact of energy within a societal and geological context. Students gain a perspective in energy science that is applicable to many disciplines and highly interdisciplinary. It offers opportunities for students to prepare to work in industry, research, or government, as well as preparation for graduate studies in energy science.

The minor is available as an elective to students who are enrolled in bachelor’s degree programs in the College of Engineering. With the approval of the department and college that administer the student’s degree program, the courses that are used to satisfy the minor may also be used to satisfy the requirements for the bachelor’s degree. At least 9 credits counted towards the requirements for this minor must be unique. Unique credits must not be used to fulfill another university, college, or major requirement in the student’s program.

Students who plan to complete the requirements of the minor should consult the undergraduate advisor in the College of Engineering. Students accepted into the minor must be admitted to the College of Engineering and have completed items 1 and 2 of the requirements stated below. Enrollment for some courses may not be available and may be limited. Application forms are available at www.egr.msu.edu/academics/multi-disciplinary.

Requirements for the Minor in Energy

Complete a minimum of 21 credits from the following.

1. One of the following course (3 credits):
 - BE 230 Engineering Analysis of Biological Systems
 - CHE 201 Material and Energy Balances
 - MTE 250 Materials Science and Engineering

2. One of the following courses (3 or 4 credits):
 - BE 351 Thermodynamics for Biological Engineering
 - CHE 321 Thermodynamics for Chemical Engineering
 - ME 201 Thermodynamics

3. One of the following courses (3 credits):
 - CSE 456 Electric Power and Control
 - ECE 202 Circuits and Systems I
 - ECE 345 Electronic Instrumentation and Systems

4. One of the following courses (3 credits):
 - ME 417 Design of Alternative Energy Systems
 - MTE 410 Materials Foundations for Energy Applications

5. One of the following courses (3 credits):
 - AFS 310 Sustainable Systems Analysis
 - CSUS 200 Introduction to Sustainability
 - EEP 255 Ecological Economics

6. Two of the following courses (6 to 8 credits):
 - AFRE 629 Economics of Environmental Resources
 - BE 469 Sustainable Bioenergy Systems
 - CHE 468 Biomass Conversion Engineering
 - CSS 467 BioEnergy Feedstock Production
 - CSUS 200 Introduction Sustainability
 - CSUS 491 Special Topics in Community Sustainability
 - ECE 305 Electromagnetic Fields and Waves
 - ECE 320 Energy Conversion and Power Electronics
 - ECE 323 Power System Analysis
 - ECE 425 Solid State Power Conversion
 - ECE 476 Electro-Optics
 - ECE 821 Advanced Power Electronics and Applications
 - EEP 320 Environmental Economics
 - ENE 481 Environmental Chemistry: Equilibrium Concepts
 - ENE 489 Air Pollution; Science and Engineering
 - FOR 414 Renewable Wood Products
 - GLG 201 The Dynamic Earth
 - GLG 301 Geology of Continents and Oceans
 - GLG 471 Applied Geophysics
 - ISP 221 Earth Environment and Energy
 - MC 450 International Environmental Law and Policy
 - ME 417 Design of Alternative Energy Systems
 - ME 422 Introduction to Thermodynamics
 - ME 442 Turbomachinery
 - ME 444 Automotive Engines
 - MSE 410 Materials Foundry Energy Applications
 - MSE 460 Electronic Structure and Bonding in Materials and Devices

A course used to fulfill requirement 4, 5, or 6 above may not be used to fulfill requirement 6. Not all courses will be available to all majors and students must meet all course prerequisites and restrictions.
TEACHER CERTIFICATION OPTION

A computer science disciplinary minor in the College of Engineering is available for teacher certification.

Students who elect the computer science disciplinary minor must contact the Department of Computer Science and Engineering.

For additional information, refer to the statement on TEACHER CERTIFICATION in the Department of Teacher Education section of this catalog.

GRADUATE STUDY

The College of Engineering offers programs leading to the Master of Science and Doctor of Philosophy degrees in the following fields:

- biomedical engineering
- chemical engineering
- civil engineering
- computational mathematics, science and engineering
- computer science
- electrical engineering
- engineering mechanics
- environmental engineering
- materials science and engineering
- mechanical engineering

Programs leading to the Master of Science and Doctor of Philosophy degrees in biosystems engineering are offered through the College of Agriculture and Natural Resources.

All programs are designed to provide a fundamental approach to basic engineering principles with emphasis on scientific methods, and to lead to careers in engineering research and development or teaching. Advanced work in the major field of specialization is combined with supporting courses in one or more other fields to develop individuals capable of creative work in engineering science and areas of application.

Students who are enrolled in Master of Science degree programs in the Department of Biosystems and Agricultural Engineering may elect a Specialization in Food Safety. For additional information, refer to the statement on the specialization in the College of Veterinary Medicine section of this catalog.

Master of Science

In addition to meeting the requirements of the University as described in the Graduate Education section of this catalog, students must meet the requirements specified below.

Admission

Regular Status. Admission to a master's degree program with regular status may be granted by the department, subject to the availability of resources and to the approval of the dean, upon consideration of the likelihood that the applicant will be able to pursue a master's program successfully without taking collateral courses. As evidence of eligibility for admission, the student may offer any of the following:

a. The possession of a bachelor's degree in an accredited program in engineering with a grade–point average not lower than 3.00 for the final two years of the undergraduate program, or with standing in the upper quarter of the graduating class in the student's major.

b. The possession of a bachelor's degree in engineering or a related field where the applicant has shown very high academic achievement, as certified by the department.

c. Evidence of ability and resolution to complete a master's program, as attested by the department upon review of the applicant's academic record, test scores, experience, reference statements, professional qualifications, proposed studies, and other relevant information.

Provisional Status. Admission to a master's degree program with provisional status may be granted by the department, subject to the approval of the dean:

a. To an applicant qualified for regular admission except that collateral courses are deemed necessary, or

b. To an applicant whose record is incomplete.

If collateral courses are required, the minimum acceptable grades and the semesters by which those courses must be completed will be specified on the admission form. The provisional status will be changed to regular status when the conditions specified on the admission form have been met, as certified by the department and approved by the dean.

Program Filing

The student’s program of study must be approved before the student completes 6 credits of graduate work in order for the student to continue to enroll in the master's degree program.

For any independent study or selected topics course that is included in the student's approved program of study, the subject material and the instructor must be specified.

Modification of Program

With reference to the student's approved program of study, none of the following types of changes will be approved:

1. Adding or deleting a course for which a grade has already been assigned under any of the three grading systems (numerical, Pass–No Grade, or Credit–No Credit).

2. Adding or deleting a course for which grading was postponed by the use of the DF–Deferred marker.

3. Adding or deleting a course which the student dropped after the middle of the semester and for which "W" or "N" or "0.0" was designated.

4. Adding or deleting a course during the final semester of enrollment in the master's degree program.

Requirements for the Master of Science Degree

The student must:

1. Complete a minimum of 30 credits in 400–, 800–, and 900–level courses under either Plan A (with thesis) or Plan B (without thesis). Courses below the 400 level may not be counted toward the requirements for the degree.

a. Requirements for Plan A: The student must:

 (1) Complete a minimum of 20 credits in courses at the 800–900 level.

 (2) Complete at least 4, but not more than 8, credits in Master's Thesis Research (course number 899 in the department of the student's major).

 (3) Provide to the major professor and to the department a hard–bound copy of the thesis made from the original unbound manuscript submitted to the Office of The Graduate School. Arrangements for delivery of the copies shall be made when the original manuscript is submitted to the Office of The Graduate School.

b. Requirements for Plan B: The student must:

 (1) Complete a minimum of 18 credits in courses at the 800–900 level.

 2. Pass the final certifying examination administered by the student's department. It is the student's responsibility to obtain
detailed information about this examination from the department.

Academic Standards

1. **Grades.** The student must earn a grade of 2.0 or higher in each course in the approved program of study. The student must repeat any course for which the grade earned was below 2.0.

2. **Cumulative Grade–Point Average.** The student must maintain a cumulative grade–point average of at least 3.00 in the courses in the approved program of study.

3. **Probational Status.** A student is placed on probational status if the student's cumulative grade–point average for the courses in the approved program of study is below 3.00. A student in probation status is not allowed to carry more than 7 credits per semester or to enroll in any course the primary focus of which is independent study.

4. **Retention In and Dismissal From the Program.**
 a. **Cumulative Grade–Point Average.** Should a student's cumulative grade–point average fall below 3.00 after having completed 16 or more credits in courses in the approved program of study, the student may be enrolled in probational status in the master's degree program for one additional semester. If at the end of the additional semester the student's cumulative grade–point average is 3.00 or higher, the student may continue to enroll in the master's degree program. If at the end of the additional semester the student's cumulative grade–point average is still below 3.00, the student will be dismissed from the program.
 b. **Academic Progress and Professional Potential.** Each student's academic progress and professional potential are evaluated by March 15 of each year. A student who in the judgment of the faculty is making satisfactory academic progress and has professional potential may continue to enroll in the master's degree program. A student who in the judgment of the faculty is not making satisfactory academic progress or lacks professional potential will be dismissed from the program.

Transfer Credits

As a member of the Michigan Coalition for Engineering Education (MCEE), Michigan State University will accept up to one less than half of the course credits required for the Master of Science degree program in the College of Engineering in transfer from other MCEE member institutions provided that (1) the student earned a grade of at least 3.0, or the equivalent, in the related courses; (2) the credits were not earned in research or thesis courses; and (3) the total number of credits accepted in transfer from MCEE member institutions and from other institutions does not exceed one less than half of the credits required.

Doctor of Philosophy

In addition to meeting the requirements of the university as described in the Graduate Education section of this catalog, students must meet the requirements specified below.

Admission

Regular Status. Admission to a doctoral degree program with regular status may be granted by the department, subject to the availability of resources and to the approval of the dean, upon consideration of the likelihood that the applicant will be able to pursue a doctoral program successfully without taking collateral courses. As evidence of eligibility for admission, the student may offer any of the following:

 a. The possession of a master's degree in engineering or a related field.
 b. The completion of the equivalent of a master's degree program in the major field.
 c. Evidence of ability and resolution to complete a doctoral program, as attested by the department upon review of the applicant's academic record, test scores, experience, reference statements, professional qualifications, proposed studies, and other relevant information.

Admission to the doctoral program without a master's degree, or the equivalent thereof, will require special consideration by the department and the dean.

Provisional Status. Admission to a doctoral degree program with provisional status may be granted by the department, subject to the approval of the dean:

 a. To an applicant qualified for regular admission except that collateral courses are deemed necessary, or
 b. To an applicant whose record is incomplete.

If collateral courses are required, the minimum acceptable grades and the semesters by which those courses must be completed will be specified on the admission form. The provisional status will be changed to regular status when the conditions specified on the admission form have been met, as determined by the department and approved by the dean.

Guidance Committee

The student's guidance committee is appointed by the department chairperson in consultation with the student and the appropriate faculty members, with the approval of the dean. At least two members of the guidance committee shall be from the major department and at least one member shall be from a department outside of the major department. The chairperson of the guidance committee will be appointed by the department chairperson after consultation with the student and the person recommended to chair the committee.

Guidance Committee Report

The student's program of study shall be submitted for approval to the department and to the Dean by no later than the end of the student's second semester of enrollment in the doctoral program. For any independent study or selected topics course that is included in the student's program of study, the subject matter and the instructor must be specified.

The student's program of study must be approved in order for the student to continue to enroll in the doctoral degree program beyond the second semester.

Modification of Program

With reference to the student's approved guidance committee report, none of the following types of changes will be approved:

1. Adding or deleting a course for which a grade has already been assigned under any of the three grading systems (numerical, Pass–No Grade, or Credit–No Credit).
2. Adding or deleting a course for which grading was postponed by the use of the DF–Deferred marker.
3. Adding or deleting a course which the student dropped after the middle of the semester and for which "W" or "N" or "0.0" was designated.
4. Adding or deleting a course during the final semester of enrollment in the doctoral degree program.
Requirements for the Doctor of Philosophy Degree
The student must:
1. Pass the qualifying examination administered by the student’s department. It is the student’s responsibility to obtain detailed information about this examination from the department.
2. Pass the doctoral comprehensive examination at least six months prior to the final oral examination in defense of the dissertation. The examination may be retaken no more than twice. It is the student’s responsibility to obtain detailed information about this examination from the department.
3. Provide to the major professor and to the department a hard–bound copy of the dissertation made from the original unbound manuscript submitted to the Office of the Graduate School. Arrangements for delivery of the copies shall be made when the original manuscript is submitted to the Office of The Graduate School.

Academic Standards
1. Grades. The student must earn a grade of 2.0 or higher in each course in the approved guidance committee report, including collateral courses and courses accepted in transfer. The student must repeat any course for which the grade earned was below 2.0.
2. Cumulative Grade–Point Average. The student must maintain a cumulative grade–point average of at least 3.00 in courses in the approved guidance committee report, with the exception of collateral courses and courses accepted in transfer.
3. Deferred Grades. A student may accumulate no more than 3 deferred grades (identified by the DF–Deferred marker) in courses other than those courses the primary focus of which is independent study.
4. Probational Status. A student is placed on probational status if either or both of the following conditions apply:
 a. The student's cumulative grade–point average for the courses in the approved guidance committee report is below 3.00.
 b. The student has accumulated more than three deferred grades (identified by the DF–Deferred marker) in courses other than those courses the primary focus of which is independent study.
A student in probational status is not allowed to carry more than 7 credits per semester or to enroll in any course the primary focus of which is independent study.
5. Retention In and Dismissal From the Program.
 a. Cumulative Grade–point Average. Should a student's cumulative grade–point average fall below 3.00 after having completed half of the courses in the approved guidance committee report, the student may be enrolled in probational status in the doctoral degree program for one additional semester. If at the end of the additional semester the student’s cumulative grade–point average is 3.00 or higher, the student may continue to enroll in the doctoral degree program. If at the end of the additional semester the student’s cumulative grade–point average is still below 3.00, the student will be dismissed from the program.
 b. Deferred Grades. Should a student accumulate more than 3 deferred grades (identified by the DF–Deferred marker) in courses other than those courses the primary focus of which is independent study, the student may be enrolled on probational status in the doctoral degree program. If at the end of the additional semester the student has no more than 3 deferred grades, the student may continue to enroll in the doctoral degree program. If at the end of the additional semester the student still has more than 3 deferred grades, the student will be dismissed from the program.

Academic Progress and Professional Potential

GRADUATE SPECIALIZATION IN ENVIRONMENTAL TOXICOLOGY
The College of Engineering, the College of Agriculture and Natural Resources, the College of Natural Science, and the College of Veterinary Medicine administer the Graduate Specialization in Environmental Toxicology. The College of Agriculture and Natural Resources is the primary administrative unit. For additional information, refer to the Graduate Specialization in Environmental Toxicology statement in the College of Agriculture and Natural Resources section of this catalog.

DEPARTMENT of BIOMEDICAL ENGINEERING

Christopher H. Contag, Chairperson

The mission of the Department of Biomedical Engineering is to train young investigators in quantitative analyses, engineering principles and innovative design concepts for the purpose of using these approaches to create novel solutions to the most pressing healthcare needs. These approaches are used to drive the principles of precision health by enabling predictive analytics, real time monitoring, early diagnosis, rapid intervention, and quantitative measures of outcome from basic science to practical application with an overarching goal to improve human health.

GRADUATE STUDY

BIOMEDICAL ENGINEERING

The Master of Science Degree in Biomedical Engineering prepares graduates to review technical literature related to a biomedical engineering research problem and communicate those results through oral presentations and written publications.

Master of Science

In addition to meeting the requirements of the university, and of the College of Engineering, students must meet the requirements specified below.

Admission
For admission to the master’s degree in biomedical engineering on regular status, the student must:
1. have a baccalauréate degree in biomedical engineering or related field;
Requirements for the Master of Science Degree in Biomedical Engineering

The master’s degree program in biomedical engineering is available under either Plan A (with thesis) or Plan B (without thesis). A total of 30 credits is required for the degree. The student’s program of study is selected in consultation with a faculty advisor and the graduate program director. No more than 6 credits of 400-level courses may be counted towards the degree requirements.

Student’s must complete the following core course:

<table>
<thead>
<tr>
<th>Course</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 803 Research Methods</td>
<td>3</td>
</tr>
</tbody>
</table>

Additional Requirements for Plan A

1. Completion of the following course:
 BME 892 Biomedical Engineering Seminar 1

2. Complete of at least 4, but not more than 6, credits of BME 899 Master’s Thesis Research.

3. Pass a final oral examination in defense of the thesis.

Additional Requirements for Plan B

1. Pass a final examination or evaluation.

Doctor of Philosophy

The Doctor of Philosophy degree in Biomedical Engineering prepares graduates to review technical literature related to a biomedical engineering research problem and communicate those results through oral presentations and written publications.

In addition to meeting the requirements of the university, and of the College of Engineering, students must meet the requirements specified below.

Admission

For admission to the doctoral degree in biomedical engineering on regular status, the student must:

1. have a bachelor’s degree in biomedical engineering or related field;
2. have a grade-point average that would indicate success in graduate study.

Applicants who are admitted without a bachelor’s degree in biomedical engineering may be required to complete collateral course work to make up deficiencies. Collateral course work will not count towards the fulfillment of degree requirements.

International applicants are required to submit their scores on the Graduate Record Examination (GRE).

Requirements for the Doctor of Philosophy Degree in Biomedical Engineering

The doctoral degree program in biomedical engineering program of study is selected in consultation with a faculty advisor and the graduate program director. A minimum of 22 credits of course work beyond the bachelor’s degree is required in addition to doctoral dissertation research. No more than 6 credits of 400-level courses may be counted towards the degree requirements.

Student’s must complete the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 803 Research Methods</td>
<td>3</td>
</tr>
<tr>
<td>BME 841 Translational Innovations Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>BME 892 Biomedical Engineering Seminar</td>
<td>1</td>
</tr>
<tr>
<td>BME 899 Doctoral Dissertation Research</td>
<td>24</td>
</tr>
</tbody>
</table>

Requirements for the Bachelor of Science Degree in Biosystems Engineering

1. The University requirements for bachelor’s degrees as described in the Undergraduate Education section of this catalog; 128 credits, including general elective credits, are required for the Bachelor of Science degree in Biosystems Engineering.

The University’s Tier II writing requirement for the Biosystems Engineering major is met by completing Biosystems Engineering 487. That course is referenced in item 3. a below.

Students who are enrolled in the College of Engineering may complete the alternative track to Integrative Studies in Biological and Physical Sciences that is described in item 1. under the heading Graduation Requirements for All Majors in the College statement. Certain courses referenced in requirement 3. below may be used to satisfy the alternative track.

2. The requirements of the College of Engineering for the Bachelor of Science degree.

The credits earned in certain courses referenced in requirement 3. below may be counted toward College requirements as appropriate.

3. The following requirements for the major:

 a. All of the following courses: .. 47
 BE 101 Introduction to Biosystems Engineering 1
 BE 230 Engineering Analysis of Biological Systems 3
 BE 332 Engineering Properties of Biological Materials 3
 BE 360 Biosystems Engineering Laboratory Practice 3
 BE 350 Heat and Mass Transfer in Biosystems 3
 BE 351 Thermodynamics for Biological Engineering 3
 BE 361 Microbial Systems Engineering 3
 BE 385 Engineering Design and Optimization for Biological Systems 3
 BE 485 Biosystems Design Techniques 3
 BE 487 Biosystems Design Project (W) 3
 BS 161 Cell and Molecular Biology 3
 BS 162 Cell and Molecular Population Biology 3
 CE 221 Statics .. 3
 CE 274 Graphics for Civil and Environmental Engineers . 3
 CEM 143 Survey of Organic Chemistry 4
 CEM 161 Chemistry Laboratory I 2
 BS 171 Cell and Molecular Biology Laboratory 2
 BS 172 Organismal and Population Biology Laboratory 2

 b. One of the following courses (2 credits):
 IBIO 341 Fundamental Genetics 3
 IBO 355 Ecology .. 3
 MMG 301 Introduction to Microbiology 3
 PLB 301 Introductory Plant Physiology 3
 PSL 250 Introductory Physiology 4
 CREDITS

 c. One of the following courses: 3 or 4
 BLD 450 Eukaryotic Pathogens 3
 CSS 442 Agricultural Ecology 3
 CSS 451 Biotechnology Applications for Plant Breeding and Genetics .. 3
 FOR 406 Applied Forest Ecology: Silviculture 3
 FSC 440 Food Microbiology 3
 MMG 425 Microbial Ecology 3
 MMG 445 Microbial Biotechnology (W) 3
 PLB 400 Introductory to Food Mechanics 4
 PLB 424 Algal Biology 4
 PSL 425 Physiological Biophysics 3
 ECE 445 Biomedical Instrumentation 3
 BLD 430 Molecular Laboratory Diagnostics 2
 BLD 434 Clinical Immunology 3
 BLD 450 Eukaryotic Pathogens 3
 BLD 494 Biofluid Mechanics and Heat Transfer 3
 CHE 481 Biochemical Engineering 3
 CHE 482 Diffuse-Source Pollution Engineering 3
 CREDITS

 d. Four of the following courses: 12
 BE 444 Biosensors for Medical Diagnostics 3
 BE 449 Human Health Risk Analysis for Engineering Controls .. 3
 BE 456 Electric Power and Control 3
 BE 469 Sustainable Bioenergy Systems 3
 BE 477 Food Engineering: Fluids 3
 BE 478 Food Engineering: Solids 3
 BE 481 Water Resources Systems Analysis and Modeling 3
 BE 482 Diffuse-Source Pollution Engineering 3
 CHE 468 Biomass Conversion Engineering 3
 ECE 445 Biomedical Instrumentation 3
 CREDITS

 e. Two of the following courses (6 to 8 credits):
 BE 457 Bioenergy Feedstock Systems Analysis 3
 CHE 481 Biochemical Engineering 3
 CHE 482 Advanced Biochemical Engineering 3
 CHE 582 Multidisciplinary Bioprocessing Laboratory 3
 CSS 451 Biotechnology Applications for Plant Breeding and Genetics .. 3
 FOR 406 Applied Forest Ecology: Silviculture 3
 GLO 471 Applied Geosciences 3
 MC 450 International Environmental Law and Policy 3
 ME 417 Design of Alternative Energy Systems 3
 ME 422 Introduction to Continuum Mechanics 3
 MMG 445 Microbial Biotechnology (W) 3
 PLB 402 Biology of Fungi 4
 PLB 424 Algal Biology 4

Biomedical Engineering

To earn a Bachelor of Science degree in Biosystems Engineering with a biomedical engineering concentration, students must complete degree requirements 1., 2., and 3. above and the following:

1. Both of the following courses (6 credits):
 BE 444 Biosensors for Medical Diagnostics 3
 BE 449 Human Health Risk Analysis for Engineering Controls .. 3

2. One of the following courses (3 credits):
 BLD 450 Eukaryotic Pathogens 3
 PSL 425 Physiological Biophysics 3

3. Two of the following courses (5 or 6 credits):
 BLD 204 Mechanisms of Disease 3
 BLD 430 Molecular Laboratory Diagnostics 2
 BLD 434 Clinical Immunology 3
 BLD 450 Eukaryotic Pathogens 3
 ECE 445 Biomedical Instrumentation 3
 GC 494 Biofluid Mechanics and Heat Transfer 3
 ME 425 Biomaterials and Biocompatibility 3
 PSL 425 Physiological Biophysics 3

Courses used to fulfill requirement 2. in this concentration may not be used to fulfill this requirement.

Ecosystems Engineering

To earn a Bachelor of Science degree in Biosystems Engineering with a ecosystems engineering concentration, students must complete degree requirements 1., 2., and 3. above and the following:

1. All of the following courses (9 credits):
 BE 481 Water Resources Systems Analysis and Modeling 3
 BE 482 Diffuse-Source Pollution Engineering 3
 MMG 425 Microbial Ecology 3

2. Two of the following courses (5 or 6 credits):
 CE 422 Applied Hydraulics 3
 CSS 210 Fundamentals of Soil Science 3
 CSS 330 Soil Chemistry 2
 CSS 360 Soil Biology 3
 CSS 442 Agricultural Ecology 3
 CSS 455 Environmental Pollutants in Soil and Water 3
 FOR 404 Forest Ecology 3
 FW 417 Wetland Ecology and Management 3
 FW 420 Stream Ecology 3
 FW 443 Restoration Ecology 3

Food Engineering

To earn a Bachelor of Science degree in Biosystems Engineering with a food engineering concentration, students must complete degree requirements 1., 2., and 3. above and the following:

1. All of the following courses (9 credits):
 BE 477 Food Engineering: Fluids 3
 BE 478 Food Engineering: Solids 3
 FSC 440 Food Microbiology 3

2. Two of the following courses, one of which must be at the 400-level (6 or 7 credits):
 BMB 200 Introduction to Biochemistry 4
 FSC 211 Principles of Food Science 3
 FSC 401 Food Chemistry 3
 FSC 430 Food Processing: Fruits and Vegetables 3
 FSC 431 Food Processing: Cereals 3
 FSC 432 Food Processing: Dairy Foods 3
 FSC 433 Food Processing: Marine Foods 3

LINKED BACHELOR’S-MASTER’S DEGREE IN BIOSYSTEMS ENGINEERING

Bachelor of Science Degree in Biosystems Engineering

Master of Science Degree in Biosystems Engineering

The department welcomes applications from Michigan State University Biosystems Engineering undergraduate students in their junior and senior year. Admission applications must be made during the prior spring semester for an anticipated spring graduation or the prior fall semester for an anticipated fall graduation to...
allow admission before the final semester as a Biosystems Engineering undergraduate. Admission to the program requires a minimum undergraduate grade-point average of 3.5 and an approved program of study for the Master of Science degree in Biosystems Engineering at the time of admission. Admission to the Linked Bachelor’s-Master’s program allows the application of up to 9 credits toward the master’s program for qualifying 400-level and above course work taken at the undergraduate level at Michigan State University or another postsecondary accredited institution of comparable academic quality. The number of approved credits, not to exceed 9, are applied toward the credit requirement of the master’s degree. Credits applied to the Linked Bachelor’s-Master’s program are not eligible to be applied to any other graduate degree program.

GRADUATE STUDY
The department offers Master of Science and Doctor of Philosophy programs in biosystems engineering through the College of Agriculture and Natural Resources. For information about those programs, refer to the statement on the Department of Biosystems and Agricultural Engineering in the College of Agriculture and Natural Resources section of this catalog.

Students who are enrolled in Master of Science degree programs in the Department of Biosystems and Agricultural Engineering may elect a Specialization in Food Safety. For additional information, refer to the statement on the specialization in the College of Veterinary Medicine section of this catalog.

DEPARTMENT of CHEMICAL ENGINEERING and MATERIALS SCIENCE

Donald Morelli, Chairperson

The undergraduate and graduate programs of the Department of Chemical Engineering and Materials Science have been training top-quality graduates for over 75 years. Graduates from the Department of Chemical Engineering and Materials Science are highly sought after to create solutions for important technological and societal problems. The faculty is dedicated to strong classroom instruction and world-class research focused in the areas of energy and sustainability, advanced materials and nanotechnology, and biotechnology and bioengineering.

UNDERGRADUATE PROGRAMS

The Department of Chemical Engineering and Materials Science offers two Bachelor of Science degree programs, one in chemical engineering and one in materials science and engineering. Students learn to convert low-value raw materials into high-value products. Students learn how to analyze and understand different processes and how, at the macroscopic and molecular levels, these processes result in different properties in the final product. Emphasis is placed on developing students who understand the technical aspects of production, the environmental, economic, and societal impact of engineering, and who possess a desire for lifelong learning and growth. Optional concentrations are available for students to focus their programs of study on areas of particular interest.

Graduates are trained to succeed in multidisciplinary teams that interface between disciplines. They work across a broad spectrum of fields including industrial chemicals, automotive, metals, plastics, petroleum processing, pharmaceuticals, textiles, food, electronics, energy related materials, sensors, and biomedical technology. Within these fields, our graduates are involved in research and development of products and processes, in the design and operation of manufacturing facilities, and in management and product quality control.

CHEMICAL ENGINEERING

Chemical engineers convert raw materials to finished products via pathways involving chemical and physical changes. The principles of mass, energy, and momentum conservation, chemical reactions, thermodynamics, and economics are applied to develop new products and to design and operate manufacturing facilities to produce products that benefit society. Chemical engineering principles are, in turn, based on the sciences of chemistry, biology, mathematics, and physics, which form the underlying foundation of the discipline.

Students in this degree program will study the application of chemical engineering principles to biochemical and biomedical systems, nanoscale devices, polymer processing, and novel energy systems. Principles of sustainability, environmentally-friendly "green" processing, entrepreneurship, and other emerging topics are also addressed in courses and concentrations.

The Bachelor of Science Degree program in Chemical Engineering is accredited by the Engineering Accreditation Commission of ABET, www.abet.org.

Requirements for the Bachelor of Science Degree in Chemical Engineering

1. The University requirements for bachelor’s degrees as described in the Undergraduate Education section of this catalog: 128 credits, including general elective credits, are required for the Bachelor of Science degree in Chemical Engineering.

The University’s Tier II writing requirement for the Chemical Engineering major is met by completing Chemical Engineering 316 and 433. Those courses are referenced in item 3. a. below.

Students who are enrolled in the College of Engineering may complete the alternative track to Integrative Studies in Biological and Physical Sciences that is described in Item 1. under the heading Graduation Requirements for All Majors in the College statement. The alternative track requirement for Integrative Studies in Biological Sciences in Chemical Engineering is Biological Science 161. Certain courses referenced in requirement 3. below may be used to satisfy the alternative track.

2. The requirements of the College of Engineering for the Bachelor of Science degree.

The credits earned in certain courses referenced in requirement 3. below may be counted toward College requirements as appropriate.

3. The following requirements for the major:

 a. All of the following courses: .. 58

 b. One of the following: .. 4 or 6

 (1) SMB 401 Comprehensive Biochemistry 4

 (2) BMB 461 Advanced Biochemistry I 3

 SMB 462 Advanced Biochemistry II 3

 c. One of the following courses: 3
Concentrations in Chemical Engineering

In response to increasing interest in the application of chemical engineering principles to related fields, the Department of Chemical Engineering and Materials Science offers concentrations in biochemical engineering, biotechnology, biomaterials, environmental engineering, food science, and polymer science and engineering to students wishing an area of concentration in the degree. Concentrations are available to, but not required of, any student enrolled in the Bachelor of Science degree program in chemical engineering. The concentration will be noted on the student's transcript.

NOTE: Completing the Bachelor of Science degree in chemical engineering with a concentration may require more than 128 credits. For any concentration, up to 3 credits of Independent Study (CHE 490) related to the subject area may be applied with approval of the Department of Chemical Engineering and Materials Science.

Biochemical Engineering

To earn a Bachelor of Science degree in Chemical Engineering with a biochemical engineering concentration, students must complete requirements 1., 2., 3.a., and 3.b. above and the following:

All of the following courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE 481</td>
<td>Biochemical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>MMG 301</td>
<td>Introductory Microbiology</td>
<td>3</td>
</tr>
</tbody>
</table>

One of the following tracks:

Track 1 (12 or 13 credits):

- **The following course (4 credits):**
 - BMB 401 Comprehensive Biochemistry | 4 |

Three of the following courses (8 or 9 credits):

- BMB 805 Protein Structure, Design, and Mechanism | 3 |
- BMB 829 Methods of Macromolecular Analysis and Synthesis | 2 |
- CHE 882 Advanced Biochemical Engineering | 3 |
- CHE 883 Multidisciplinary Bioprocessing Laboratory | 3 |
- MMG 409 Eukaryotic Cell Biology | 3 |
- MMG 421 Prokaryotic Cell Physiology | 3 |
- MMG 431 Microbial Genetics | 3 |

Track 2 (11 or 12 credits):

- Both of the following courses (6 credits):
 - BMB 461 Advanced Biochemistry I | 3 |
 - BMB 462 Advanced Biochemistry II | 3 |
- Two of the following courses (5 or 6 credits):
 - BMB 805 Protein Structure, Design, and Mechanism | 3 |
 - BMB 829 Methods of Macromolecular Analysis and Synthesis | 2 |
 - CHE 882 Advanced Biochemical Engineering | 3 |
 - CHE 883 Multidisciplinary Bioprocessing Laboratory | 3 |
 - MMG 409 Eukaryotic Cell Biology | 3 |
 - MMG 421 Prokaryotic Cell Physiology | 3 |
 - MMG 431 Microbial Genetics | 3 |

Bioenergy and Bioproducts

To earn a Bachelor of Science degree in Chemical Engineering with a bioenergy and bioproducts concentration, students must complete requirements 1., 2., 3.a., 3.b., and 3.d. above and the following:

All of the following courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE 481</td>
<td>Biochemical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CHE 882</td>
<td>Advanced Biochemical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CHE 883</td>
<td>Multidisciplinary Bioprocessing Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>FOR 466</td>
<td>Natural Resource Policy</td>
<td>3</td>
</tr>
<tr>
<td>MC 450</td>
<td>International Environmental Law and Policy</td>
<td>3</td>
</tr>
<tr>
<td>BE 869</td>
<td>Life Cycle Assessment for Bioenergy and Bioproduct Systems</td>
<td>3</td>
</tr>
</tbody>
</table>

One of the following courses (3 credits):

- BE 489 Sustainable Bioenergy Systems | 3 |

- CHE 882 Advanced Biochemical Engineering | 3 |
- CHE 883 Multidisciplinary Bioprocessing Laboratory | 3 |
- FOR 466 Natural Resource Policy | 3 |
- MC 450 International Environmental Law and Policy | 3 |

Biomedical Engineering

To earn a Bachelor of Science degree in Chemical Engineering with a biomedical engineering concentration, students must complete requirements 1., 2., 3.a., 3.b., and 3.d. above and the following:

All of the following courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE 481</td>
<td>Biochemical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>MMG 409</td>
<td>Eukaryotic Cell Biology</td>
<td>3</td>
</tr>
<tr>
<td>PSL 431</td>
<td>Human Physiology I</td>
<td>4</td>
</tr>
</tbody>
</table>

One of the following courses (3 credits):

- CHE 883 Multidisciplinary Bioprocessing Laboratory | 3 |
- ME 494 Biofluid Mechanics and Heat Transfer | 3 |
- MSE 425 Biomaterials and Biocompatibility | 3 |

One of the following courses not taken above:

- 3 or 4

- BMB 471 Advanced Biochemistry Laboratory | 3 |
- CHE 883 Multidisciplinary Bioprocessing Laboratory | 3 |
- BIO 341 Fundamental Genetics | 3 |
- ME 494 Biofluid Mechanics and Heat Transfer | 3 |
- MSE 425 Biomaterials and Biocompatibility | 3 |

Environmental

To earn a Bachelor of Science degree in Chemical Engineering with an environmental concentration, the student must complete requirements 1., 2., and 3.a., 3.b., and 3.d. above and the following:

Both of the following courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE 481</td>
<td>Biochemical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>MSE 425</td>
<td>Biomaterials and Biocompatibility</td>
<td>3</td>
</tr>
</tbody>
</table>

Three of the following courses:

- EEP 255 Ecological Economics | 3 |
- EEP 320 Environmental Economics | 3 |
- EEP 405 Corporate Environmental Management (W) | 3 |
- CHE 883 Environmental Chemistry: Equilibrium Concepts | 3 |
- CHE 843 Water and Wastewater Engineering | 3 |
- ENE 489 Air Pollution: Science and Engineering | 3 |
- BIO 446 Environmental Issues and Public Policy | 3 |

Food Science

To earn a Bachelor of Science degree in Chemical Engineering with a food science concentration, students must complete requirements 1., 2., 3.a., 3.b., 3.c., and 3.d. above and all of the following:

All of the following courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSC 401</td>
<td>Food Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>FSC 440</td>
<td>Food Microbiology</td>
<td>3</td>
</tr>
<tr>
<td>MMG 301</td>
<td>Introductory Microbiology</td>
<td>3</td>
</tr>
</tbody>
</table>

One of the following courses:

- 3

- BE 477 Food Engineering: Fluids | 3 |
- BE 478 Food Engineering: Solids | 3 |
- FSC 325 Food Processing: Unit Operations | 3 |
- FSC 455 Food and Nutrition Laboratory | 3 |
- FSC 470 Integrated Approaches to Food Product Development | 3 |

Polymer Science and Engineering

To earn a Bachelor of Science degree in Chemical Engineering with a polymer science and engineering concentration, students must complete requirements 1., 2., 3.a., 3.b., and 3.d. above and all of the following:

All of the following courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 221</td>
<td>Statics</td>
<td>3</td>
</tr>
<tr>
<td>CHE 472</td>
<td>Composite Materials Processing</td>
<td>3</td>
</tr>
<tr>
<td>ME 222</td>
<td>Mechanics of Deformable Solids</td>
<td>3</td>
</tr>
</tbody>
</table>

Two of the following courses:

- 6 or 7

- CHE 871 Material Surfaces and Interfaces | 3 |
- CHE 872 Polymers and Composites: Manufacturing, Structure and Performance | 3 |
- MSE 370 Synthesis and Processing of Materials | 3 |
- MSE 425 Introduction to Composite Materials | 3 |
- PKG 323 Packaging with Plastics | 4 |

MATERIALS SCIENCE and ENGINEERING

Materials Science and Engineering majors learn to select and create materials used to realize engineering designs in fields such as bioengineering, microelectronics and aerospace. They also learn how to manipulate the elements of matter into the atomic arrangements that insure efficient and cost-effective materials performance, demanded by today's advanced applications.

Through the core course work, students gain the scientific and engineering foundation needed to design metallic, ceramic, polymeric, and composite materials and, in turn, components manufactured from these materials. Students may enhance the knowledge they gain in metals, ceramics, and polymers by complementing a concentration in biomedical materials, manufacturing, polymers, or metallurgy. Students may also choose to enroll in electives of complementary fields such as business, electronic materials or statistics. Honors students are encouraged to re-
Requirements for the Bachelor of Science Degree in Materials Science and Engineering

1. The University requirements for bachelor's degrees as described in the Undergraduate Education section of this catalog; 126 credits including general elective credits, are required for the Bachelor of Science degree in Materials Science and Engineering.

The University’s Tier II writing requirement for the Materials Science and Engineering major is met by completing Materials Science and Engineering 466. That course is referenced in item 3.a below.

Students who are enrolled in the College of Engineering may complete the alternative track to Integrative Studies in Biological and Physical Sciences that is described in item 1. under the heading Graduation Requirements for All Majors in the College statement. Certain courses referenced in requirement 3.b below may be used to satisfy the alternative track.

2. The requirements of the College for the Bachelor of Science degree.

The credits earned in certain courses referenced in requirement 3. below may be counted toward College requirements as appropriate.

3. The following requirements for the major:

 a. All of the following courses (12 credits):

Course Code	Course Name	Credits
CEM 152	Principles of Chemistry	3
CEM 161	Chemistry Laboratory I	1
ECE 345	Electronic Instrumentation and Systems	3
ME 222	Mechanics of Deformable Solids	3
MSE 250	Materials Science and Engineering	3
MSE 260	Electronic Magnetic, Thermal and Optical Properties of Materials	3
MSE 310	Phase Equilibria in Materials	3
MSE 320	Mechanical Properties of Materials	3
MSE 331	Materials Characterization Methods I	3
MSE 360	Fundamentals of Microstructural Design	3
MSE 370	Synthesis and Processing of Materials	3
MSE 381	Materials Characterization Methods II	2
MSE 466	Design and Failure Analysis (W)	3
STT 351	Probability and Statistics for Engineer	3

 b. Four of the following courses (12 credits):

Course Code	Course Name	Credits
CEM 161	Chemistry Laboratory I	1
CHE 471	Physical Chemistry	3
CEM 252	Chemistry Laboratory II	1
CEM 351	Organic Chemistry	3
CEM 452	Physical Chemistry	3
ECE 471	Electrical Circuits and Devices	3
ECE 472	Electronic Devices and Circuits	3
ME 222	Mechanics of Deformable Solids	3
ME 425	Biocompatibility	3
MSE 250	Materials Science and Engineering	3
MSE 260	Electronic Magnetic, Thermal and Optical Properties of Materials	3
MSE 310	Phase Equilibria in Materials	3
MSE 320	Mechanical Properties of Materials	3
MSE 331	Materials Characterization Methods I	3
MSE 360	Fundamentals of Microstructural Design	3
MSE 370	Synthesis and Processing of Materials	3
MSE 381	Materials Characterization Methods II	2
MSE 466	Design and Failure Analysis (W)	3
STT 351	Probability and Statistics for Engineer	3

 c. Complete at least 6 credits from 400-level courses within the College of Engineering.

 d. Complete at least 3 credits in courses selected from a list of approved technical electives available from the Department of Chemical Engineering and Materials Science.

Concentrations in Materials Science and Engineering

Students may elect to complete a more focused set of courses to enhance their ability to function at the interface with another scientific, engineering, or business discipline. Concentrations are available to, but not required of, any student enrolled in the Bachelor of Science degree in Materials Science and Engineering. Completing the Bachelor of Science degree in Materials Science and Engineering with a concentration may require more than 128 credits. The concentration will be noted on the student’s transcript.

Biomedical Materials Engineering

To gain interdisciplinary skills in human biology and earn a Bachelor of Science degree in Materials Science and Engineering with a biomedical engineering concentration, students must complete requirement 3.a. above and the following (28 credits):

1. All of the following courses (16 credits):

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTR 350</td>
<td>Human Gross Anatomy for Pre-Health Professionals</td>
<td>3</td>
</tr>
<tr>
<td>CEM 351</td>
<td>Organic Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>ME 495</td>
<td>Tissue Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>MSE 425</td>
<td>Biomedical Materials and Biocompatibility</td>
<td>3</td>
</tr>
<tr>
<td>ZOL 341</td>
<td>Fundamental Genetics</td>
<td>4</td>
</tr>
</tbody>
</table>

2. Two of the following courses (3 credits):

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 477</td>
<td>Manufacturing Processes</td>
<td>3</td>
</tr>
<tr>
<td>MSE 474</td>
<td>Ceramics and Refractory Materials</td>
<td>3</td>
</tr>
<tr>
<td>MSE 460</td>
<td>Electronic Structure and Bonding in Devices</td>
<td>3</td>
</tr>
<tr>
<td>MSE 465</td>
<td>Design and Application of Engineering Materials</td>
<td>3</td>
</tr>
<tr>
<td>MSE 476</td>
<td>Physical Metallurgy of Ferrous and Aluminum Alloys</td>
<td>3</td>
</tr>
</tbody>
</table>

3. At least 6 credits from a list of approved technical electives

Manufacturing Engineering

To gain interdisciplinary skills with business and design engineers for manufacturing projects and earn a Bachelor of Science degree in Materials Science and Engineering with a manufacturing engineering concentration, students must complete requirement 3.a. above and the following (21 credits):

1. All of the following courses (12 credits):

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 415</td>
<td>Computer Aided Manufacturing</td>
<td>3</td>
</tr>
<tr>
<td>MSE 477</td>
<td>Manufacturing Processes</td>
<td>3</td>
</tr>
<tr>
<td>ME 478</td>
<td>Product Development</td>
<td>3</td>
</tr>
<tr>
<td>MSE 465</td>
<td>Design and Application of Engineering Materials</td>
<td>3</td>
</tr>
</tbody>
</table>

2. Three of the following courses (9 credits):

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>GBL 323</td>
<td>Introduction to Business Law</td>
<td>3</td>
</tr>
<tr>
<td>MSE 426</td>
<td>Introduction to Composite Materials</td>
<td>3</td>
</tr>
<tr>
<td>MSE 474</td>
<td>Ceramic and Refractories</td>
<td>3</td>
</tr>
<tr>
<td>MSE 476</td>
<td>Physical Metallurgy of Ferrous and Aluminum Alloys</td>
<td>3</td>
</tr>
</tbody>
</table>

Completion of this concentration fulfills requirement 2. of the admission requirements for the Master of Science degree in Manufacturing and Engineering Management offered by The Eli Broad College of Business.

Metallurgical Engineering

To enhance the student’s ability to characterize, process, and design with metals in association with mechanical engineers and earn a Bachelor of Science degree in Materials Science and Engineering with a metallurgical engineering concentration, students must complete requirement 3.a. above and the following (21 credits):

1. All of the following courses (18 credits):

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 423</td>
<td>Intermediate Mechanics of Deformable Solids</td>
<td>3</td>
</tr>
<tr>
<td>MSE 475</td>
<td>Computer Aided Design of Structures</td>
<td>3</td>
</tr>
<tr>
<td>ME 477</td>
<td>Manufacturing Processes</td>
<td>3</td>
</tr>
<tr>
<td>MSE 481</td>
<td>Spectroscopic and Diffraction Analysis of Materials</td>
<td>3</td>
</tr>
<tr>
<td>MSE 465</td>
<td>Design and Structure of Engineering Materials</td>
<td>3</td>
</tr>
<tr>
<td>MSE 476</td>
<td>Physical Metallurgy of Ferrous and Aluminum Alloys</td>
<td>3</td>
</tr>
</tbody>
</table>

2. One of the following courses (3 credits):

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 415</td>
<td>Computer Aided Manufacturing</td>
<td>3</td>
</tr>
<tr>
<td>MSE 426</td>
<td>Introduction to Composite Materials</td>
<td>3</td>
</tr>
</tbody>
</table>

Polymeric Engineering

To gain interdisciplinary skills to facilitate interactions with chemical engineers and earn a Bachelor of Science degree in Materials Science and Engineering with a polymeric engineering concentration, students must complete requirement 3.a. above and the following (21 credits):

1. All of the following courses (18 credits):

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE 311</td>
<td>Fluid Flow and Heat Transfer</td>
<td>3</td>
</tr>
<tr>
<td>CHE 472</td>
<td>Composite Materials Processing</td>
<td>3</td>
</tr>
<tr>
<td>CHE 473</td>
<td>Chemical Engineering Principles in Polymers and Materials Systems</td>
<td>3</td>
</tr>
<tr>
<td>MSE 426</td>
<td>Introduction to Composite Materials</td>
<td>3</td>
</tr>
<tr>
<td>MSE 460</td>
<td>Electronic Structure and Bonding in Materials</td>
<td>3</td>
</tr>
</tbody>
</table>

2. Complete at least 3 credits in courses selected from a list of approved technical electives available from the Department of Chemical Engineering and Materials Science.

MINOR IN MATERIALS SCIENCE AND ENGINEERING

The Minor in Materials Science and Engineering, which is administered by the Department of Chemical Engineering and Materials Science, provides students with a basic foundation in materials science that is applicable to many disciplines. The minor also offers opportunities for students to work in industry, research, or government, as well as to prepare for graduate study in materials science.

The minor is available as an elective to students in a bachelor’s degree program in the College of Engineering, other than the Bachelor of Science Degree in Materials Science and Engineering. With the approval of the college, the courses that are used to satisfy the minor may also be used to satisfy the requirements for the bachelor’s degree.

Students who plan to complete the requirements for the minor must apply to the Department of Chemical Engineering and Materials Science. To be admitted into the minor, the student must be admitted into the College of Engineering. Enrollment for some MSE courses may be limited. Application forms are available at www.chems.msu.edu.
Requirements for the Minor in Materials Science and Engineering

Complete 18 credits from the following:

1. Both of the following courses (6 credits):
 - MSE 250: Materials Science and Engineering
 - MSE 360: Fundamentals of Microstructural Design

2. One of the following courses (3 credits):
 - MSE 260: Electronic, Magnetic, Thermal and Optical Properties of Materials
 - MSE 310: Phase Equilibria in Materials
 - MSE 320: Mechanical Properties of Materials
 - MSE 370: Synthesis and Processing of Materials

3. Three of the following courses (9 credits):
 - MSE 310: Phase Equilibria in Materials
 - MSE 320: Mechanical Properties of Materials
 - MSE 370: Synthesis and Processing of Materials
 - MSE 410: Materials Foundations for Energy Applications
 - MSE 425: Biomaterials and Biocompatibility
 - MSE 460: Electronic Structure and Bonding in Materials and Devices
 - MSE 465: Design and Application of Engineering Materials
 - MSE 466: Design and Failure Analysis (W)
 - MSE 467: Manufacturing Processes
 - MSE 474: Ceramic and Refractory Materials
 - MSE 476: Physical Metallurgy of Ferrous and Aluminum Alloys
 - MSE 477: Spectroscopic and Diffraction Analysis of Materials

A course used to fulfill requirement 2. above may not be used to fulfill this requirement.

LINKED BACHELOR’S-MASTER’S DEGREE IN CHEMICAL ENGINEERING

Bachelor of Science Degree in Chemical Engineering

Master of Science Degree in Chemical Engineering

The department welcomes applications from Michigan State University Chemical Engineering undergraduate students in their junior and senior year. Admission applications must be made during the prior spring semester for an anticipated spring graduation or the prior fall semester for an anticipated fall graduation to allow admission before the final semester as a Chemical Engineering undergraduate. Admission to the program requires a minimum undergraduate grade-point average of 3.5 and an approved program of study for the Master of Science degree in Chemical Engineering at the time of admission. Admission to the Linked Bachelor’s-Master’s program allows the application of up to 9 credits toward the credit requirement of the master’s degree. Credits applied to the Linked Bachelor’s-Master’s program are not eligible to be applied to any other graduate degree program.

CHEMICAL ENGINEERING

Emphasis in the graduate programs in chemical engineering is placed upon a fundamental approach to chemical engineering principles and the applications of chemistry and advanced mathematics. Selected topics in chemical engineering are developed from a fundamental viewpoint, with opportunity for study and research in such areas as process design; thermodynamics; chemical reaction engineering; mass, heat, and momentum transfer; separations; polymers and composite materials; nanomaterials; and biochemical and biomedical engineering. The department has three primary thematic areas: energy and sustainability, nanotechnology and materials, and biotechnology and medicine.

Master of Science

In addition to meeting the requirements of the University and of the College of Engineering, students must meet the requirements specified below.

Admission

An applicant for admission to the master’s degree program in chemical engineering must hold a bachelor’s degree in chemical engineering or a related field and must have a grade–point average that would indicate success in graduate study.

International applicants must submit their scores on the Graduate Record Examination General Test.

Students who are admitted to the program with a bachelor's degree in a field related to chemical engineering will be required to complete the following collateral courses, in addition to the courses that are required for the master's degree:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE 432</td>
<td>3</td>
</tr>
<tr>
<td>CHE 433</td>
<td>3</td>
</tr>
<tr>
<td>CHE 804</td>
<td>3</td>
</tr>
<tr>
<td>CHE 805</td>
<td>3</td>
</tr>
</tbody>
</table>

Equivalent undergraduate–level chemical engineering courses may be substituted for Chemical Engineering 804 and 805.
Requirements for the Master of Science Degree in Chemical Engineering

The students must complete a total of 30 credits for the degree under Plan A (with thesis) or Plan B (without thesis), and meet the requirements specified below. Students in Plan A must complete a minimum of 20 credits at the 800-level or above. Students in Plan B must complete a minimum of 18 credits at the 800-level or above. Courses at the 400-level are acceptable as long as the minimum credit requirement is met at the 800-level. Courses below the 400-level are not acceptable.

Requirements for Both Plan A and Plan B:

1. Core Courses. All of the following courses: 15
 CHE 801 Advanced Chemical Engineering Calculations 3
 CHE 802 Research Methods .. 3
 CHE 821 Advanced Chemical Engineering Thermodynamics 3
 CHE 822 Advanced Transport Phenomena 3
 CHE 831 Advanced Chemical Reaction Engineering 3
2. Supporting Courses. Six credits in courses outside the Department of Chemical Engineering and Materials Science approved by the student’s academic advisor. 6

Additional Requirements for Plan A
1. Complete 6 credits of CHE 899 Master’s Thesis Research
2. Additional elective credits as approved by the student’s academic advisor.

Additional Requirements for Plan B
1. Complete 6 to 9 credits in a coordinated technical minor as approved by the student’s academic advisor.
2. Pass a final examination, oral or written, given by the student’s academic advisor.

Doctor of Philosophy

In addition to meeting the requirements of the university and of the College of Engineering, students must meet the requirements specified below.

Admission

An applicant for admission to the Ph.D. degree program in chemical engineering must hold a bachelor's or master's degree in chemical engineering or a related field and must have a grade-point average that would indicate success in graduate study.

Applicants must submit their scores on the Graduate Record Examination General Test.

Requirements for the Doctor of Philosophy Degree in Chemical Engineering

In addition to meeting the requirements of the university and of the College of Engineering, students must meet the requirements specified by their guidance committees.

The Doctor of Philosophy degree in Chemical Engineering, as detailed in the graduate handbook for chemical engineering, is comprised of course work, research and selection of an advisor, a qualifying examination, formation of a guidance committee and doctoral degree program, a comprehensive examination, and successful completion of a dissertation and final oral examination in defense of the dissertation.

MATERIALS SCIENCE AND ENGINEERING

Master of Science

In addition to meeting the requirements of the university and of the College of Engineering, students must meet the requirements specified below.
DEPARTMENT of CIVIL and ENVIRONMENTAL ENGINEERING

Venkatesh Kodur, Chairperson

UNDERGRADUATE PROGRAMS

The Department of Civil and Environmental Engineering offers Bachelor of Science degrees in Civil Engineering and Environmental Engineering. Each program is described below.

CIVIL ENGINEERING

The civil engineering major is designed to provide graduates with a broad understanding of the physical factors involved in the planning, design, and operation of public and private facilities. The bachelor’s degree program in civil engineering is oriented to the application of engineering principles to several areas of specialization, including transportation, structures, geotechnical engineering, environmental engineering, water resources, and pavements and materials.

The Bachelor of Science Degree program in Civil Engineering is accredited by the Engineering Accreditation Commission of ABET, www.abet.org.

Requirements for the Bachelor of Science Degree in Civil Engineering

1. The University requirements for bachelor’s degrees as described in the Undergraduate Education section of this catalog; 128 credits, including general elective credits, are required for the Bachelor of Science degree in Civil Engineering.

 a. The University’s Tier II writing requirement for the Civil Engineering major is met by completing Civil Engineering 321 and 341. Those courses are referenced in item 3. below.

 Students who are enrolled in the College of Engineering may complete the alternative track to Integrative Studies in Biological and Physical Sciences that is described in item 1. under the heading Graduation Requirements for All Majors in the College statement. Certain courses referenced in requirement 3. below may be used to satisfy the alternative track.

2. The requirements of the College of Engineering for the Bachelor of Science degree.

 The credits earned in certain courses referenced in requirement 3. below may be counted toward College requirements as appropriate.

3. The following requirements for the major:

 a. All of the following courses:

COURSE	CREDITS
CE 222 Statics	3
CE 273 Civil and Environmental Engineering	3
CE 274 Graphics for Civil and Environmental Engineers	1
CE 305 Introduction to Structural Analysis	3
CE 312 Soil Mechanics	4
CE 321 Introduction to Fluid Mechanics	4
CE 337 Civil Engineering Materials	4
CE 341 Transportation Engineering	3
CE 371 Sustainable Civil and Environmental Engineering Systems	3
CE 372 Risk Analysis in Civil and Environmental Engineering	3
CE 495 Senior Design in Civil and Environmental Engineering	4
CEM 161 Chemistry Laboratory I	1
ENE 280 Principles of Environmental Engineering and Science	3
ME 222 Mechanics of Deformable Solids	3

 b. One of the following courses (3 or 4 credits):

COURSE	CREDITS
GLG 201 The Dynamic Earth	4
GLG 301 Geology of the Great Lakes Region	3
CE 461 Computational Methods in Civil Engineering	3
ME 361 Dynamics	3

 c. One of the following courses:

COURSE	CREDITS
BE 351 Thermodynamics for Biological Engineering	3
ECE 345 Electronic Instrumentation and Systems	3

Environmental Engineering

 The environmental engineering major is designed to provide graduates with the engineering and scientific principles to analyze, design, and manage environmental systems, including water supplies, wastewater treatment facilities, air pollution control systems, surface and groundwater resources, and landfills. The program offers a thorough background in engineering fundamentals, along with a broad understanding of mathematical, physical, chemical, and biological concepts as they relate to environmental engineering.

The Bachelor of Science Degree program in Environmental Engineering is accredited by the Engineering Accreditation Commission of ABET, www.abet.org.

Requirements for the Bachelor of Science Degree in Environmental Engineering

1. The University requirements for bachelor’s degrees as described in the Undergraduate Education section of this catalog; 128 credits, including general elective credits, are required for the Bachelor of Science degree in Environmental Engineering.

 The University’s Tier II writing requirement for the Environmental Engineering major is met by completing Civil Engineering 321. That course is referenced in item 3. below.

 Students who are enrolled in the College of Engineering may complete the alternative track to Integrative Studies in Biological and Physical Sciences that is described in item 1. under the heading Graduation Requirements for All Majors in the College statement. Certain courses referenced in requirement 3. below may be used to satisfy the alternative track.

2. The requirements of the College of Engineering for the Bachelor of Science degree.

 The credits earned in certain courses referenced in requirement 3. below may be counted toward College requirements as appropriate.

3. The following requirements for the major:

 a. All of the following courses (52 credits):

COURSE	CREDITS
BS 161 Cell and Molecular Biology	3
BS 162 Organismal and Population Biology	3
CE 221 Statics	3
CE 273 Civil and Environmental Engineering	3
CE 274 Graphics for Civil and Environmental Engineers	1
CE 321 Introduction to Fluid Mechanics	4
CE 371 Sustainable Civil Engineering Systems	3
CE 372 Risk Analysis in Civil and Environmental Engineering	3
CE 495 Senior Design in Civil and Environmental Engineering	2
CEM 161 Chemistry Laboratory I	1
CHE 201 Material and Energy Balance	3
ENE 280 Principles of Environmental Engineering	3
The department welcomes applications from Michigan State University Civil Engineering undergraduate students in their junior and senior year, who are pursuing an environmental engineering concentration within the Bachelor of Science degree in Civil Engineering. Admission applications must be made during the prior spring semester for an anticipated spring graduation or the prior fall semester for an anticipated fall graduation to allow admission before the final semester as a Civil Engineering undergraduate. Admission to the program requires a minimum undergraduate grade-point average of 3.5 and an approved program of study for the Master of Science degree in Environmental Engineering at the time of admission. Admission to the Linked Bachelor’s-Master’s program allows the application of up to 9 credits toward the master’s program for qualifying 400-level and above course work taken at the undergraduate level at Michigan State University or an external accredited institution. The number of approved credits, not to exceed 9, are applied toward the credit requirement of the master’s degree. Credits applied to the Linked Bachelor’s-Master’s program are not eligible to be applied to any other graduate degree program.

GRADUATE STUDY

The Department of Civil and Environmental Engineering offers the graduate degree programs that are listed below:

Master of Science

- Civil Engineering
- Environmental Engineering

Doctor of Philosophy

- Civil Engineering
- Environmental Engineering

The civil engineering degrees offer tracks in structural, materials, pavement, and geotechnical engineering, and hydrology and water resources. The environmental engineering degrees offer specializations in environmental chemistry and physical-chemical processes, environmental microbiology and biotechnology, and environmental hydrology and water resources.

The Master of Science degrees provide opportunities for students who seek to enter professional practice as specialists or to continue study in a doctoral program. The Doctor of Philosophy degrees are research focused, designed to prepare students for careers in teaching, research or advanced specialized practice.

CIVIL ENGINEERING

Students in the master’s and doctoral degree programs in civil engineering may pursue advanced study in the areas of structures, fluid mechanics and hydraulics, geotechnical engineering, pavement, and transportation.

Master of Science

The student plans a program of study with the help of his or her academic advisor and subject to the approval of the advisor. In addition to meeting the requirements of the university and of the College of Engineering, students must meet the requirements specified below.

Admission

An applicant for admission to the master’s degree program in civil engineering should have a bachelor’s degree in civil engineering or a related field and should have a grade–point average that would indicate success in graduate study. Examples of fields that are related to civil engineering are other engineering professional fields, physics, computer science, urban planning, and chemistry.

Depending on their undergraduate programs and their specialties within civil engineering, students who are admitted to the master’s degree program with bachelor’s degrees in fields related
to civil engineering may be required to complete collateral courses. All applicants are encouraged to submit their scores from the Graduate Record Examination General Test.

Requirements for the Master of Science Degree in Civil Engineering

The student must complete a total of 30 credits for the degree under either Plan A (with thesis) or Plan B (without thesis).

A student under Plan A must complete at least 4, but not more than 8, credits of Civil Engineering 899. Should the student complete more than 8 credits of Civil Engineering 899, no more than 8 credits may be counted toward the requirements for the degree. A student under Plan B may choose to complete a research project or a design project as part of the 30 credits required for the degree. A student who elects either of these options must complete at least 1, but not more than 3, credits of Civil Engineering 892 or at least 3, but not more than 5, credits of Civil Engineering 893.

Doctor of Philosophy

Admission

All applicants are encouraged to submit their scores from the Graduate Record Examination General Test.

Requirements for the Doctor of Philosophy Degree in Civil Engineering

In addition to meeting the requirements of the university and of the College of Engineering, students must meet the requirements specified by their guidance committees.

ENVIRONMENTAL ENGINEERING

Students in the master’s and doctoral degree programs in environmental engineering may pursue advanced study in the areas of biological and chemical treatment of hazardous substances in soils, leachates, industrial wastes, and groundwater; the fate and movement of chemical contaminants in surface water, groundwater, and soils; and environmental chemistry.

Master of Science

The student plans a program of study with the help of his or her academic advisor and subject to the approval of the advisor. In addition to meeting the requirements of the university and of the College of Engineering, students must meet the requirements specified below.

Admission

Applicants for admission are expected to have a level of competency equivalent to that achieved by earning an undergraduate degree in environmental engineering, or in civil engineering with an environmental engineering specialization. The undergraduate program should have included courses in mathematics through differential equations, chemistry, physics (mechanics), fluid mechanics, computer programming, and the design of water and wastewater treatment processes. Depending on their undergraduate programs and their specialties within environmental engineering, students who are admitted to the master’s degree program with bachelor’s degrees in fields related to environmental engineering may be required to complete collateral courses. All applicants are encouraged to provide their scores from the Graduate Record Examination General Test.

Requirements for the Master of Science Degree in Environmental Engineering

The student must complete a total of 30 credits for the degree under either Plan A (with thesis) or Plan B (without thesis).

A student under Plan A must complete at least 4, but not more than 8, credits of Environmental Engineering 899. Should the student complete more than 8 credits of Environmental Engineering 899, no more than 8 credits may be counted toward the requirements for the degree. A student under Plan B may choose to complete a research project or a design project as part of the 30 credits required for the degree. A student who elects either of these options must complete at least 1, but not more than 3, credits of Environmental Engineering 892 or at least 3, but not more than 5, credits of Environmental Engineering 893.

Doctor of Philosophy

Admission

All applicants are encouraged to submit their scores from the Graduate Record Examination General Test.

Requirements for the Doctor of Philosophy Degree in Environmental Engineering

In addition to meeting the requirements of the university and of the College of Engineering, students must meet the requirements specified by their guidance committees.
UNDERGRADUATE PROGRAMS
The department offers a minor in Computational Mathematics, Science and Engineering. The minor is a minimum of 17 credits and builds up on the first two undergraduate CMSE courses, CMSE 201 and 202. The purpose of the minor is to teach students foundational concepts in computational modeling and data science, and to have them apply these to domain-specific challenges. Mastery of these subject areas are attained through a variety of courses offered by CMSE, augmented by discipline-specific courses and project-based work through other departments on campus. For additional information on the minor, see the Department of Computational Mathematics, Science and Engineering section in the College of Natural Science section of this catalog.

GRADUATE STUDY
The Department of Computational Mathematics, Science and Engineering offers the programs listed below:

Master of Science
Computational Mathematics, Science and Engineering

Doctor of Philosophy
Computational Mathematics, Science and Engineering

Graduate Certificate
Computational Modeling
High-Performance Computing

Study for the department's graduate degree programs is administered by the College of Engineering.

Master of Science
The Master of Science degree in Computational Mathematics, Science, and Engineering provides students broad and deep knowledge of the fundamental techniques used in computational modeling and data science, as well as significant exposure to at least one application domain.

Requirements for the Master of Science Degree in Computational Mathematics, Science, and Engineering
A total of 30 credits is required for the degree under either Plan A (with thesis) or Plan B (without thesis). The student’s program of study must be approved by the student’s guidance committee and must meet the requirements specified below.

CREDITS

Requirements for Both Plan A and Plan B
1. Complete three of the following courses (9 credits):
 - CMSE 820 Mathematical Foundations of Data Science 3
 - CMSE 821 Numerical Methods for Differential Equations 3
 - CMSE 822 Parallel Computing 3
 - CMSE 823 Numerical Linear Algebra, I 3

Additional details on applicable course work can be found in the CMSE graduate handbook at www.cmse.msu.edu.
2. Complete additional course work in one or more cognate areas chosen in consultation with the student’s guidance committee as specified in the CMSE graduate handbook at www.cmse.msu.edu.
3. All students must complete Responsible Conduct of Research Training.

Additional Requirements for Plan A:
1. The following course:
 - CMSE 899 Master’s Thesis Research 4 to 8
2. Successful completion and defense of a thesis based on original research on a problem in computational and/or data science. The thesis research will culminate in a written thesis to be submitted to, and accepted by, a guidance committee. An oral examination of the student's work may be required.

Additional Requirements for Plan B:
1. Completion of additional course work determined in consultation with the student’s guidance committee.
2. Completion of a final examination or evaluation.

Doctor of Philosophy
The Doctor of Philosophy degree in Computational Mathematics, Science, and Engineering provides students broad and deep knowledge of the fundamental techniques used in computational modeling and data science, as well as significant exposure to at least one application domain, and to conduct significant original research in algorithms and/or applications relating to computational and data science.

Admission
Admission to graduate study in computational mathematics, science, and engineering is primarily to the doctoral program. To be considered for admission to the doctoral degree, a student must:
1. have a four-year bachelor’s degree in any area.
2. have a strong interest in computational and/or data science.
3. have taken course work in calculus through differential equations, and have a working knowledge of linear algebra, basic statistics, and basic numerical methods.
4. be proficient in at least one programming language.

In addition to meeting the requirements of the university and of the College of Natural Science, students must meet the requirements specified below.

Requirements for Both Plan A and Plan B
1. Complete the following courses (12 credits):
 - CMSE 620 Mathematical Foundations of Data Science 3
 - CMSE 821 Numerical Methods for Differential Equations 3
 - CMSE 822 Parallel Computing 3
 - CMSE 823 Numerical Linear Algebra, I 3

Additional details on applicable course work can be found in the CMSE graduate handbook at www.cmse.msu.edu.
2. Complete additional course work to total a minimum of 30 credits beyond the bachelor’s degree in one or more cognate areas chosen in consultation with the student’s guidance committee as specified in the CMSE graduate handbook at www.cmse.msu.edu.

Requirements for Both Plan A and Plan B
1. Complete three of the following courses (9 credits):
 - CMSE 820 Mathematical Foundations of Data Science 3
 - CMSE 821 Numerical Methods for Differential Equations 3
 - CMSE 822 Parallel Computing 3
 - CMSE 823 Numerical Linear Algebra, I 3

Additional details on applicable course work can be found in the CMSE graduate handbook at www.cmse.msu.edu.
2. Complete additional course work in one or more cognate areas chosen in consultation with the student’s guidance committee as specified in the CMSE graduate handbook at www.cmse.msu.edu.
3. All students must complete Responsible Conduct of Research Training.

Admission
Admission to graduate study in computational mathematics, science, and engineering is primarily to the doctoral program. To be considered for admission to the doctoral degree, a student must:
1. have a four-year bachelor’s degree in any area.
2. have a strong interest in computational and/or data science.
3. have taken course work in calculus through differential equations, and have a working knowledge of linear algebra, basic statistics, and basic numerical methods.
4. be proficient in at least one programming language.

In addition to meeting the requirements of the university and of the College of Natural Science, students must meet the requirements specified below.

Requirements for the Doctor of Philosophy Degree in Computational Mathematics, Science, and Engineering
The student’s program of study must be approved by the student’s guidance committee and must meet the requirements specified below.

CREDITS

Requirements for Both Plan A and Plan B
1. Complete the following courses (12 credits):
 - CMSE 620 Mathematical Foundations of Data Science 3
 - CMSE 821 Numerical Methods for Differential Equations 3
 - CMSE 822 Parallel Computing 3
 - CMSE 823 Numerical Linear Algebra, I 3

Additional details on applicable course work can be found in the CMSE graduate handbook at www.cmse.msu.edu.
2. Complete additional course work to total a minimum of 30 credits beyond the bachelor’s degree in one or more cognate areas chosen in consultation with the student’s guidance committee as specified in the CMSE graduate handbook at www.cmse.msu.edu.
3. Complete at least 24 credits and no more than 36 credits of CMSE 999
5. Pass a written or practical qualifying examination.
6. Successfully defend the doctoral dissertation based on original research in algorithms pertaining to, or applications of computational and data science.
7. All students must complete Responsible Conduct of Research Training.

GRADUATE CERTIFICATE IN COMPUTATIONAL MODELING

The Graduate Certificate in Computational Modeling is intended for students with interest in applying computational and data science approaches to their research problems, or who generally desire broad training in computational modeling and methodology.

Requirements for the Graduate Certificate in Computational Modeling

Students must complete a minimum of 9 credits from the following:

1. Two of the following core courses (6 credits):
 - CMSE 801 Introduction to Computational Modeling
 - CMSE 802 Methods in Computational Modeling
 - CMSE 820 Mathematical Foundations of Data Science
 - CMSE 821 Numerical Methods for Differential Equations
 - CMSE 822 Parallel Computing
 - CMSE 823 Numerical Linear Algebra I
 - CMSE 845 Multi-disciplinary Research Methods for the Study of Evolution
 - CSE 881 Data Mining
 - CSE 883 Computational Quantum Chemistry
 - CSE 888 Computational Chemistry
 - CEM 801 Introduction to Computational Modeling
 - CEM 820 Mathematical Foundations of Data Science
 - CEM 821 Numerical Methods for Differential Equations
 - CEM 822 Parallel Computing
 - CSE 823 Numerical Linear Algebra I
 - CSE 845 Multi-disciplinary Research Methods for the Study of Evolution
 - CSE 881 Data Mining
 - CSE 883 Computational Quantum Chemistry
 - CSE 888 Computational Chemistry

2. Two or more additional courses selected from the following:
 - PHY 919 Modern Electronic Structure Theory
 - MTH 951 Numerical Analysis I
 - MTH 952 Numerical Analysis II
 - MTH 955 Numerical Methods for Ordinary Differential Equations
 - MTH 956 Numerical Methods for Partial Differential Equations I
 - MTH 957 Numerical Methods for Partial Differential Equations II
 - MTH 995 Special Topics in Numerical Analysis and Operations Research
 - ECE 837 Computational Methods in Electromagnetics
 - ME 840 Computational Fluid Dynamics and Heat Transfer
 - ME 872 Finite Element Method
 - MTH 451 Numerical Analysis I
 - MTH 452 Numerical Analysis II
 - MTH 850 Numerical Analysis I
 - MTH 851 Numerical Analysis II
 - MTH 852 Numerical Methods for Ordinary Differential Equations
 - MTH 950 Numerical Methods for Partial Differential Equations I
 - MTH 951 Numerical Methods for Partial Differential Equations II
 - MTH 955 Special Topics in Numerical Analysis and Operations Research
 - PHY 480 Computational Physics
 - PHY 915 Computational Condensed Matter Physics
 - PHY 919 Modern Electronic Structure Theory
 - PHY 950 Data Analysis Methods for High-Energy and Nuclear Physics
 - PHY 998 High Performance Computing and Computational Tools for Nuclear Physics
 - PLB 810 Theories and Practices in Bioinformatics
 - QB 826 Introduction to Quantitative Biology Techniques
 - QB 874 Introduction to Bayesian Analysis

Requirements for the Graduate Certificate in High-Performance Computing

Students must complete a minimum of 9 credits from the following:

1. The following core course (3 credits):
 - CMSE 822 Parallel Computing

2. Two or more additional courses selected from the following:
 - AST 911 Numerical Techniques in Astronomy
 - CEM 883 Computational Quantum Chemistry
 - CSE 883 Probabilistic Models and Algorithms in Computational Biology
 - CSE 845 Multi-disciplinary Research Methods for the Study of Evolution
 - CSE 881 Data Mining
 - ECE 837 Computational Methods in Electromagnetics
 - ME 835 Turbulence Modeling and Simulation
 - ME 840 Computational Fluid Dynamics and Heat Transfer
 - ME 872 Finite Element Method
 - MTH 850 Numerical Analysis I
 - MTH 851 Numerical Analysis II
 - MTH 852 Numerical Methods for Ordinary Differential Equations
 - MTH 950 Numerical Methods for Partial Differential Equations I
 - MTH 951 Numerical Methods for Partial Differential Equations II
 - MTH 995 Special Topics in Numerical Analysis and Operations Research
 - PHY 915 Computational Condensed Matter Physics
 - PHY 919 Modern Electronic Structure Theory
 - PHY 950 Data Analysis Methods for High-Energy and Nuclear Physics
 - PHY 998 High Performance Computing and Computational Tools for Nuclear Physics
 - PLB 810 Theories and Practices in Bioinformatics
 - QB 826 Introduction to Quantitative Biology Techniques
 - QB 874 Introduction to Bayesian Analysis

Additional courses at the 800-level or above may be used to fulfill this requirement if approved by the CMSE graduate advisor. Students must have a minimum 3.0 grade-point average in courses applied to the certificate in order for it to be awarded.

DEPARTMENT of COMPUTER SCIENCE and ENGINEERING

Abdol H. Esfahanian, Chairperson

Computer science encompasses the broad areas of information processing and problem solving using digital computers. Students learn to analyze, design, and build integrated software and hardware digital systems that process, transmit, and reason about information in order to solve problems. Computer science graduates are employed in essentially all areas of industry, government, and education. They serve as system analysts involved with problems in business and research, designers and planners of process and production control software systems, computer component and system designers, programmers, and teachers.

UNDERGRADUATE PROGRAM

The Bachelor of Science program provides both a theoretical foundation in computer science, required for continued success in this rapidly changing field, as well as practical experience with current tools and techniques. To achieve these goals, students take courses that span a spectrum of knowledge ranging from theoretical foundations, which enable rigorous analysis of computational problems and solutions, to applied design and engineering methods. At the upper level, students choose from a wide range of elective courses focusing on computer networks, computer architecture, artificial intelligence, database systems, computer security, software engineering, and computer graphics. The senior year culminates with a team-oriented design course building on much of what one has learned throughout the undergraduate...
ENGINEERING
Department of Computer Science and Engineering

ate experience. Complementing these major areas, the cognate provides an excellent opportunity to develop an individually selected area of interest.

Students majoring in computer science with interests in other areas have the opportunity to consult and work with interested faculty from a wide range of academic disciplines.

Students who are enrolled in the Bachelor of Science degree program with a major in computer science may elect a Minor in Game Design and Development. For additional information, refer to the Minor in Game Design and Development statement in the Department of Media and Information section of this catalog.

The Bachelor of Science degree program in Computer Science is accredited by the Computing Accreditation Commission of ABET, www.abet.org.

Requirements for the Bachelor of Science Degree in Computer Science

1. The University requirements for bachelor's degrees as described in the Undergraduate Education section of this catalog; 120 credits, including general elective credits, are required for the Bachelor of Science degree in Computer Science.

The University's Tier II writing requirement for the Computer Science major is met by completing Computer Science and Engineering 498, referenced in item 3. b. below.

Students who are enrolled in the College of Engineering may complete the alternative track to Integrative Studies in Biological and Physical Sciences that is described in item 1. under the heading Graduation Requirements for All Majors in the College statement.

2. The requirements of the College of Engineering for the Bachelor of Science degree.

The credits earned in certain courses referenced in requirement 3. below may be counted toward College requirements as appropriate.

3. The following requirements for the major:

 a. Bioscience - Courses may not be used to satisfy both (1) and (2) below.

 (1) One of the following courses:

 i. BS 161 Cell and Molecular Biology 3
 ii. ENT 205 Pests, Society and Environment 3
 iii. IBIO 445 Integrating Biology: From DNA to Populations . 3
 CREDITS 4 to 6

 (2) One of the following courses:

 i. CSE 260 Discrete Structures in Computer Science 4
 ii. CSE 335 Object-Oriented Software Design 4
 iii. CSE 350 Object-Oriented Programming 3
 iv. CSE 351 Algorithms and Data Structures 3
 v. CSE 410 Operating Systems 3
 vi. CSE 498 Collaborative Design (W) 3
 CREDITS 28

 b. All of the following courses:

 i. CSE 402 Biometrics and Pattern Recognition 3
 ii. CSE 415 Introduction to Parallel Programming 3
 iii. CSE 420 Computer Architecture 3
 iv. CSE 422 Computer Networks 3
 v. CSE 425 Introduction to Computer Security 3
 vi. CSE 431 Algorithm Engineering 3
 vii. CSE 435 Software Engineering 3
 viii. CSE 440 Introduction to Artificial Intelligence 3
 ix. CSE 450 Translation of Programming Languages 3
 x. CSE 460 Computability and Formal Language Theory 3
 xi. CSE 471 Media Processing and Multimedia Computing ... 3
 xii. CSE 472 Computer Graphics 3
 xiii. CSE 476 Mobile Application Development 3
 xiv. CSE 477 Web Application Architecture 3
 xv. CSE 480 Database Systems 3
 xvi. CSE 482 Big Data Analysis 3
 xvii. CSE 484 Information Retrieval 3
 xviii. CSE 491 Selected Topics in Computer Science 3
 CREDITS 15

 d. Required Cognate:

 Cognates in the following areas are available to students in Computer Science: business, communication arts and sciences, foreign language, mathematics, the natural sciences, philosophy, psychology, social sciences, and telecommunications. Students may complete cognates in other areas with the approval of the Department of Computer Science and Engineering academic advisor. The cognate should enhance the student's ability to apply analytical procedures in a specific subject area.

 The cognate requires a minimum of four courses totaling 15 or more credits outside the College of Engineering selected from (1) or (2) below. The academic advisor of the Department of Computer Science and Engineering must pre approve both the cognate and the cognate courses.

 (1) At least 6 of the 15 credits must be in courses at the 300-400 level. The cognate in The Eli Broad College of Business requires a specific set of courses: CAC 230, EC 201, FI 320, GBL 323, and MKT 327.

 (2) A sequence of at least four courses in a foreign language.

MINOR IN COMPUTER SCIENCE

The Minor in Computer Science and Engineering is administered by the Department of Computer Science and Engineering. This minor will provide students with a basic foundation in computer science that is applicable to many disciplines. This will also provide opportunities for students in industry or government, as well as prepare students for graduate-level study in computer science.

The minor is available as an elective to students who are enrolled in bachelor's degree programs at Michigan State University other than the Bachelor of Science Degree in Computer Science or the Bachelor of Science Degree in Computer Engineering. With the approval of the department and college that administers the student’s degree program, the courses that are used to satisfy the minor may also be used to satisfy the requirements for the bachelor’s degree.

Students who plan to complete the requirements for the minor must apply to the Department of Computer Science and Engineering. The minimum criteria for acceptance is the completion of Computer Science and Engineering 231 and 260 with a combined grade-point average of 3.0. Enrollment may be limited. Application forms are available at www.cse.msu.edu.

Requirements for the Minor in Computer Science

Complete a minimum of 18 credits in the Department of Computer Science and Engineering from the following:

 a. 10 credits

 CSE 231 Introduction to Programming I 3
 CSE 232 Introduction to Programming II 3
 CSE 300 Discrete Structures in Computer Science 4
 CSE 335 Object-Oriented Software Design 4
 CSE 350 Object-Oriented Programming 3
 CSE 371 Computer Graphics 3
 CSE 410 Operating Systems 3
 CSE 422 Computer Networks 3
 CSE 425 Introduction to Computer Security 3
 CSE 435 Software Engineering 3
 CSE 440 Introduction to Artificial Intelligence 3
 CSE 450 Translation of Programming Languages 3
 CSE 460 Computability and Formal Language Theory 3
 CSE 471 Media Processing and Multimedia Computing ... 3
 CSE 473 Fundamentals of 3D Game Development 3
 CSE 476 Mobile Application Development 3
 CSE 477 Web Application Architecture 3
 CSE 480 Database Systems 3
 CSE 484 Information Retrieval 3
 CREDITS 15

TEACHER CERTIFICATION OPTION

A computer science disciplinary minor is available for teacher certification.

Students who elect the computer science disciplinary minor must contact the Department of Computer Science and Engineering.

For additional information, refer to the statement on TEACHER CERTIFICATION in the Department of Teacher Education section of this catalog.
LINKED BACHELOR’S-MASTER’S DEGREE IN COMPUTER SCIENCE

Bachelor of Science Degree in Computer Engineering
Master of Science Degree in Computer Science

The department welcomes applications from Michigan State University Computer Engineering undergraduate students in their junior and senior year. Admission applications must be made during the prior spring semester for an anticipated spring graduation or the prior fall semester for an anticipated fall graduation to allow admission before the final semester as a Computer Engineering undergraduate. Admission to the program requires a minimum undergraduate grade-point average of 3.5 and an approved program of study for the Master of Science degree in Computer Science at the time of admission. Admission to the Linked Bachelor’s-Master’s program allows the application of up to 9 credits toward the master’s program for qualifying 400-level and above course work taken at the undergraduate level at Michigan State University or an external accredited institution. The number of approved credits, not to exceed 9, are applied toward the credit requirement of the master’s degree. Credits applied to the Linked Bachelor’s-Master’s program are not eligible to be applied to any other graduate degree program.

LINKED BACHELOR’S-MASTER’S DEGREE IN COMPUTER SCIENCE

Bachelor of Science Degree in Computer Science
Master of Science Degree in Computer Science

The department welcomes applicants from Michigan State University Computer Science undergraduate students in their junior and senior year. Admission applications must be made during the prior spring semester for an anticipated spring graduation or the prior fall semester for an anticipated fall graduation to allow admission before the final semester as a Computer Science undergraduate. Admission to the program requires a minimum undergraduate grade-point average of 3.5 and an approved program of study for the Master of Science degree in Computer Science at the time of admission. Admission to the Linked Bachelor’s-Master’s program allows the application of up to 9 credits toward the master’s program for qualifying 400-level and above course work taken at the undergraduate level at Michigan State University or an external accredited institution. The number of approved credits, not to exceed 9, are applied toward the credit requirement of the master’s degree. Credits applied to the Linked Bachelor’s-Master’s program are not eligible to be applied to any other graduate degree program.

GRADUATE STUDY

The Department of Computer Science and Engineering offers programs leading to the Master of Science and Doctor of Philosophy degrees. Advanced study is available in a variety of computer science research areas such as algorithms, computer security, databases, data mining, machine learning, natural language processing, networking, pattern recognition and image processing, and software engineering, as well as many interdisciplinary research areas such as bioinformatics, cognitive science, and digital evolution.

Students who are enrolled in master’s or doctoral degree programs in the Department of Computer Science and Engineering may elect an Interdepartmental Specialization in Cognitive Science. For additional information, refer to the statement on Interdepartmental Graduate Specializations in Cognitive Science in the College of Social Science section of this catalog. For additional information, contact the Department of Computer Science and Engineering.

Master of Science

In addition to meeting the requirements of the university and of the College of Engineering, students must meet the requirements specified below.

Admission

Applicants for admission should possess a bachelor’s degree in computer science or a related field such as mathematics, physics, or electrical engineering. All applicants must submit their scores from the Graduate Record Examination (GRE) General Test. Additional information is available on the Department’s Web site at http://cse.msu.edu.

Requirements for the Master of Science Degree in Computer Science

The student must complete a total of 30 credits for the degree under either Plan A (with thesis) or Plan B (without thesis) and meet the requirements specified below:

Requirements for Both Plan A and Plan B:
The student must complete:
1. The breadth requirement as described in the Graduate Handbook which is available on the Department’s Web site at http://www.cse.msu.edu.
2. At least 18 credits in courses eligible to satisfy the breadth requirement as approved by the student’s academic advisor.

Additional Requirements for Plan A:
The student must complete:
1. A minimum of 21 credits in 800-900 level courses excluding Computer Science and Engineering 801, 890, and 899.
2. At least 6, but not more than 8, credits of CSE 899 Master’s Thesis Research.

Additional Requirements for Plan B:
1. Complete a minimum of 24 credits in 800-900 level courses excluding Computer Science 801, 890, and 899.

Doctor of Philosophy

In addition to meeting the requirements of the university and of the College of Engineering, students must meet the requirements specified below.

Admission

Applicants should be in the top 25 percent of their master’s degree classes and should have a grade-point average of at least 3.50 on a scale of 4.0.

Applicants must submit their scores on the Graduate Record Examination General Test.

Applicants who have a Bachelor of Science degree and who demonstrate exceptional potential for graduate study may be accepted for admission to the doctoral program.

Additional information is available on the Department’s Web site at http://cse.msu.edu.
Requirements for the Doctor of Philosophy Degree in Computer Science

In addition to meeting the requirements of the university and of the College of Engineering, students must meet the requirements specified by the department in the Graduate Handbook available at http://cse.msu.edu as well requirements specified by their guidance committees. All courses that are used to satisfy the requirements for the degree must have been completed under the numerical grading system.

DEPARTMENT of ELECTRICAL and COMPUTER ENGINEERING

John Papapolymerou, Chairperson

The Department of Electrical and Computer Engineering offers two undergraduate programs and a concentration leading to a Bachelor of Science degree. The computer engineering program provides students the opportunity to customize their program through core electives in computer architecture, computer networks, and VLSI design and focus electives in hardware or software tracks. The program in electrical engineering allows students to choose their major electives from seven areas: electromagnetics, power, integrated circuits/VLSI, solid-state electronics/electro-optics, communications/signal processing, control/robotics, and biomedical engineering. In addition, a student in either program can choose a biomedical engineering concentration that is noted on the student's transcript.

UNDERGRADUATE PROGRAMS

COMPUTER ENGINEERING

Computer engineering is concerned with the organization and design of computers and computer systems. The study of computer hardware and software, and their integration and application, is emphasized. The undergraduate program in computer engineering integrates studies in mathematics, basic sciences, engineering sciences, and engineering design. The program is structured to establish analytical and design skills in areas such as computer architecture, digital logic design, analog and mixed-signal circuits, computer communication networks, digital computer control, integrated circuit engineering, software engineering, operating systems, data structures and algorithms, computer-aided engineering, and electronic design automation. Complementing these fundamentals, the program also provides opportunities for specialization in individually selected areas of interest.

The Bachelor of Science Degree program in Computer Engineering is accredited by the Engineering Accreditation Commission of ABET, www.abet.org.

Requirements for the Bachelor of Science Degree in Computer Engineering

1. The University requirements for bachelor's degrees as described in the Undergraduate Education section of this catalog; 128 credits, including general elective credits, are required for the Bachelor of Science degree in Computer Engineering.

 The University's Tier II writing requirement for the Computer Engineering major is met by completing Electrical and Computer Engineering 460. That course is referenced in item 3. c. below.

 Students who are enrolled in the College of Engineering may complete the alternative tracks to Integrative Studies in Biological and Physical Sciences that is described in item 1. under the heading Graduation Requirements for All Majors in the College statement. Certain courses referenced in requirement 3. below may be used to satisfy the alternative track.

2. The requirements of the College of Engineering for the Bachelor of Science degree.

 The credits earned in certain courses referenced in requirement 3. below may be counted toward College requirements as appropriate.

3. The following requirements for the major:

 a. One of the following courses: .. 1
 CSE 161 Chemistry Laboratory I 1
 PHY 191 Physics Laboratory for Scientists I 1
 b. All of the following courses: .. 56
 CSE 231 Introduction to Programming I 4
 CSE 232 Introduction to Programming II 4
 CSE 260 Discrete Structures in Computer Science 4
 CSE 331 Algorithms and Data Structures 3
 CSE 410 Operating Systems .. 3
 ECE 201 Circuits and Systems I 3
 ECE 202 Circuits and Systems II 3
 ECE 203 Electric Circuits and Systems Laboratory 1
 ECE 230 Digital Logic Fundamentals 3
 ECE 280 Electrical Engineering Analysis 3
 ECE 302 Electronic Circuits 1
 ECE 303 Electronics Laboratory 1
 ECE 331 Microprocessors and Digital Systems 4
 ECE 390 Ethics, Professionalism and Contemporary Issues 1
 c. One of the following courses (4 credits): 4
 ECE 480 Senior Design 4
 ECE 489 Independent Senior Design 4
 d. Electives
 Complete 24 credits of electives as specified below. At least 18 credits must be from core and focus track electives combined, with at least one course with a laboratory. Additional credits to meet the 24 credit requirement may be taken from other courses listed below, any 400-level Computer Science and Engineering (CSE) or Electrical and Computer Engineering (ECE) courses, or by completing an approved 3 or 4 credit experiential, out-of-classroom education experience obtained through engineering cooperative education or independent study.

 Core

 (1) At least 6 credits from the following:
 CSE 420 Computer Architecture 3
 CSE 422 Computer Networks 3
 or
 ECE 442 Introduction to Communication Networks 3
 ECE 410 VLSI Design .. 4
 Both CSE 422 and ECE 442 may not be used to fulfill this requirement.

 (2) At least 3 credits from the following:
 ECE 305 Electromagnetic Fields and Waves I 4
 ECE 313 Control Systems 3
 ECE 366 Introduction to Signal Processing 3

 Focus Track

 At least 9 credits from the following:

 Hardware
 ECE 402 Applications of Analog Integrated Circuits 4
 ECE 411 Electronic Design Automation 4
 ECE 412 Introduction to Mixed-Signal Circuit Design 4
 ECE 445 Biomedical Instrumentation 3

 Software
 CSE 335 Object-oriented Software Design 3
 CSE 450 Translation of Programming Languages 3
 CSE 471 Media Processing and Multimedia Computing 3
 ECE 366 Introduction to Signal Processing 3

 Recommended Electives
 ECE 305 Electromagnetic Fields and Waves I 4
 ECE 313 Control Systems 3
 ECE 404 Radio Frequency Electronic Circuits 4
 ECE 415 Computer Aided Manufacturing 3
 ECE 416 Digital Control 3
 ECE 456 Introduction to Communication and Network Security ... 3
 ECE 457 Communication Systems 3
 ECE 458 Communication Systems Laboratory 1
 ECE 466 Digital Signal Processing and Filter Design 3
 ECE 474 Principles of Electronics Devices 3
Biomedical Engineering Concentration

The department offers a concentration for students who plan to pursue graduate work in biomedical areas or seek employment in selected medical-related areas. The concentration is available to, but not required of, any student enrolled in the Bachelor of Science degree program in Computer Engineering. Courses completed to satisfy requirement 3. above may also be used to satisfy the requirements of the concentration. The concentration will be noted on the student’s transcript.

Biomedical Engineering

To earn a Bachelor of Science degree in Computer Engineering with a biomedical engineering concentration, students must complete requirements 1., 2., and 3. above and the following:

1. Complete 6 credits from the following courses: .. 3
 ANTR 350 Human Gross Anatomy for Pre-Health Professionals 3
 BS 161 Cell and Molecular Biology .. 3
 PSL 250 Introductory Physiology ... 4
 PSL 310 Physiology for Pre-Health Professionals 4
2. Complete 6 credits from the following courses: .. 3
 ECE 445 Biomedical Instrumentation .. 3
 ECE 446 Biomedical Signal Processing .. 3
 ECE 447 Introduction to Biomedical Imaging 3
 ECE 448 Modeling and Analysis of Bioelectrical Systems 3
 ECE 449 Fundamentals of Acoustics .. 3
3. Complete 3 credits from the following courses: ... 3
 BE 444 Biosensors for Medical Diagnostics 3
 ME 494 Biofluid Mechanics and Heat Transfer 3
 ME 495 Tissue Mechanics .. 3
 MSE 425 Biomaterials and Bioocompatibility 3
 A 400-level listed above or other approved Electrical and Computer Engineering (ECE) courses with biomedical engineering content as approved by the student’s advisor. The course used to fulfill this requirement may not be used to fulfill concentration requirement 1. or 2.

ELECTRICAL ENGINEERING

The program provides both required and elective studies in communications, computers, control systems, electromagnetics, electronics, materials processing, power, signals, solid state, and biomedical engineering. It places emphasis on the fundamentals of science and mathematics and their application to the solution of contemporary problems that are within the purview of professional electrical engineers. The program is designed to establish a sound scientific basis for continuous growth in professional competence.

The Bachelor of Science Degree program in Electrical Engineering is accredited by the Engineering Accreditation Commission of ABET, www.abet.org.

Requirements for the Bachelor of Science Degree in Electrical Engineering

1. The University requirements for bachelor’s degrees as described in the Undergraduate Education section of this catalog. 180 credits, including general elective credits, are required for the Bachelor of Science degree in Electrical Engineering.

 The University’s Tier II writing requirement for the Electrical Engineering major is met by completing Electrical and Computer Engineering 480. That course is referenced in item 3. c. below.

2. The requirements of the College of Engineering for the Bachelor of Science degree.

 The credits earned in certain courses referenced in requirement 3. below may be counted toward College requirements as appropriate.

3. The following requirements for the major: .. 23
 a. One of the following courses: .. 1
 PHY 191 Physics Laboratory for Scientists I 1
 b. All of the following courses: .. 42
 CSE 200 Programming in C .. 3
 ECE 201 Circuits and Systems I .. 3
 ECE 202 Circuits and Systems II .. 3
 ECE 203 Electric Circuits and Systems Laboratory 1

Biomedical Engineering Concentration

The department offers a concentration for students who plan to pursue graduate work in biomedical areas or seek employment in selected medical-related areas. The concentration is available to, but not required of, any student enrolled in the Bachelor of Science degree program in Electrical Engineering. Courses completed to satisfy requirement 3. above may also be used to satisfy the requirements of the concentration. The concentration will be noted on the student’s transcript.

Biomedical Engineering

To earn a Bachelor of Science degree in Electrical Engineering with a biomedical engineering concentration, students must complete requirements 1., 2., and 3. above and the following:

1. Complete 6 credits from the following courses: ... 3
 ANTR 350 Human Gross Anatomy for Pre-Health Professionals 3
 BS 161 Cell and Molecular Biology .. 3
 PSL 250 Introductory Physiology .. 4
 PSL 310 Physiology for Pre-Health Professionals 4
2. Complete 6 credits from the following courses: ... 3
 ECE 445 Biomedical Instrumentation .. 3
 ECE 446 Biomedical Signal Processing .. 3
 ECE 447 Introduction to Biomedical Imaging 3
 ECE 448 Modeling and Analysis of Bioelectrical Systems 3
 ECE 449 Fundamentals of Acoustics .. 3
3. Complete 3 credits from the following courses: ... 3
The department welcomes applications from Michigan State University Electrical Engineering undergraduate students in their junior and senior year. Admission applications must be made during the prior spring semester for an anticipated spring graduation or the prior fall semester for an anticipated fall graduation to allow admission before the final semester as a Computer Engineering undergraduate. Admission to the program requires a minimum undergraduate grade-point average of 3.5 and an approved program of study for the Master of Science degree in Computer Science at the time of admission. Admission to the Linked Bachelor’s-Master’s program allows the application of up to 9 credits toward the master’s program for qualifying 400-level and above course work taken at the undergraduate level at Michigan State University or an external accredited institution. The number of approved credits, not to exceed 9, are applied toward the credit requirement of the master’s degree. Credits applied to the Linked Bachelor’s-Master’s program are not eligible to be applied to any other graduate degree program.

LINKED BACHELOR’S-MASTER’S DEGREE IN COMPUTER SCIENCE

Bachelor of Science Degree in Computer Engineering
Master of Science Degree in Computer Science

The department welcomes applications from Michigan State University Computer Engineering undergraduate students in their junior and senior year. Admission applications must be made during the prior spring semester for an anticipated spring graduation or the prior fall semester for an anticipated fall graduation to allow admission before the final semester as a Computer Engineering undergraduate. Admission to the program requires a minimum undergraduate grade-point average of 3.5 and an approved program of study for the Master of Science degree in Computer Science at the time of admission. Admission to the Linked Bachelor’s-Master’s program allows the application of up to 9 credits toward the master’s program for qualifying 400-level and above course work taken at the undergraduate level at Michigan State University or an external accredited institution. The number of approved credits, not to exceed 9, are applied toward the credit requirement of the master’s degree. Credits applied to the Linked Bachelor’s-Master’s program are not eligible to be applied to any other graduate degree program.

GRADUATE STUDY

The Department of Electrical and Computer Engineering offers programs leading to the Master of Science and Doctor of Philosophy degrees. Graduate study is available in research areas such as: computer engineering including computer architecture, computer networks, and VLSI/microelectronics; electrosciences including electromagnetics, electronic materials and devices, and non-destructive evaluation; systems including control and robotics, and power as well as systems including signal processing, communications, and biomedical engineering. An interdisciplinary approach marks many of the research projects and helps prepare students for leadership roles in industrial or academic research.

Master of Science

In addition to meeting the requirements of the university and of the College of Engineering, students must meet the requirements specified below.

Admission

Applicants for admission should possess a Bachelor of Science degree in electrical engineering or a related field such as physics, mathematics, or computer science, and should have a grade-point average that would indicate success in graduate study.

Students who are admitted without a Bachelor of Science degree in electrical engineering may be required to complete collateral courses.

International applicants are required to submit Graduate Record Examination General Test scores.

Requirements for the Master of Science Degree in Electrical Engineering

The student must complete a total of 30 credits under either Plan A (with thesis) or Plan B (without thesis) and meet the requirements specified below:

CREDITS

1. **Core Courses.** Complete a minimum of four Electrical and Computer Engineering courses at the 800 or 900-level totaling at least 12 credits. Two of the courses must be selected from the following:
 - ECE 813 Advanced VLSI Design 3
 - ECE 820 Advanced Computer Architecture 3
 - ECE 821 Advanced Power Electronics and Applications 3
 - ECE 826 Linear Control Systems 3
 - ECE 835 Advanced Electromagnetic Fields and Waves I 3
 - ECE 863 Analysis of Stochastic Systems 3
 - ECE 874 Physical Electronics 3
 Electrical and Computer Engineering 801 cannot be used to fulfill this requirement.

2. **Supporting Courses:** At least 6 credits in approved courses in areas such as mathematics, statistics, or physics.

3. **Seminar Requirement:** First-year graduate students are required to attend seven seminars from the graduate seminar series.
Doctor of Philosophy

Admission
International applicants are required to submit Graduate Record Examination General Test scores.

Requirements for the Doctor of Philosophy Degree in Electrical Engineering
In addition to meeting the requirements of the university and of the College of Engineering, students must meet the requirements specified by their guidance committees.

1. The doctoral program must include a minimum of 36 credits, in addition to 24 credits of Electrical and Computer Engineering.
2. No 800-900 level independent study credits taken beyond the bachelor's degree may be counted towards the doctoral degree.
3. A minimum of 3 credits must be taken outside of the College of Engineering in disciplinary areas such as mathematics, statistics, or physics.
4. All courses that are used to satisfy the requirements for the degree must have been completed under the numerical grading system.
5. Students may request up to 3 credits of master's thesis research be applied towards this requirement.
6. First year graduate students are required to attend seven seminars from the graduate seminar series.

MECHANICAL ENGINEERING

Mechanical engineering is a diverse profession that relies on fundamental science principles to conceive, design, and manufacture everything from miniaturized individual parts (e.g., biosensors, printer nozzles, micro-reactors, electronic coolers) to large complex systems and devices (e.g., rocket propulsion, jet engines, robotic tools, wind turbines, automobiles, water purification, energy storage). Mechanical engineers concentrate/focus their program of study within a particular area of interest, as well as opportunities to study abroad.

DEPARTMENT of MECHANICAL ENGINEERING

James Klausner, Chairperson

UNDERGRADUATE PROGRAMS

Mechanical engineering is a diverse profession that relies on fundamental science principles to conceive, design, and manufacture everything from miniaturized individual parts (e.g., biosensors, printer nozzles, micro-reactors, electronic coolers) to large complex systems and devices such as rocket propulsion, jet engines, robotic tools, wind turbines, and automobiles. Mechanical engineers are concerned with conceiving, designing, manufacturing, testing and marketing devices and systems that alter, transfer, transform and utilize energy forms that cause motion. In order to be accomplished in the mechanical engineering profession, a broad range of skills and knowledge are required.

The Department of Mechanical Engineering provides a curriculum that intertwines a foundation in mathematics and engineering science with creativity and innovation in design. Students learn the skills to develop ideas from concept to product. The program integrates individual mastery of these subjects with teamwork-based solutions to open-ended design problems and practical engineering experiences. Along with the required courses, optional concentrations are available for students to focus their program of study within a particular area of interest.

The design program is a core pillar of the undergraduate curriculum that combines core instruction in design with hands-on experiences in design-build-test projects. A sequence of four design intensive courses culminates in a capstone course, underpinned by industrially-sponsored projects. Industrial sponsorship for the capstone design experience is strong. Over the last ten years, 130 companies, many from within the state, have sponsored over 325 capstone design projects. In addition to industrially-motivated projects, students have the option to participate in humanities projects. Students present their work on Design Day, the last day of classes in fall and spring.

The Department has a long-established study abroad program in Germany (RWTH in Aachen) and study abroad programs in France (École Catholique d'Arts et Métiers), the United Kingdom (University of Edinburgh), Korea (Korea University) and Denmark (Technical University of Denmark). The program also attracts a diverse group of international students to study with us. Included in the variety of activities open to students is the cooperative education program, in which a student may participate after his/her freshman year.

The Bachelor of Science Degree program in Mechanical Engineering is accredited by the Engineering Accreditation Commission of ABET, www.abet.org.

Requirements for the Bachelor of Science Degree in Mechanical Engineering

1. The University requirements for bachelor’s degrees as described in the Undergraduate Education section of this catalog; 128 credits, including general elective credits, are required for the Bachelor of Science degree in Mechanical Engineering. The University’s Tier II writing requirement for the Mechanical Engineering major is met by completing Mechanical Engineering 332, 412, and 481. Those courses are referenced in item 3. b. below.

2. The requirements of the College of Engineering for the Bachelor of Science degree. Students who are enrolled in the College of Engineering may complete the alternative track to Integrative Studies in Biological and Physical Sciences that is described in item 1. under the heading Graduation Requirements for All Majors in the College statement. Certain courses referenced in requirement 3. below may be used to satisfy the alternative track.

3. The following requirements for the major:

 a. All of the following courses outside the Department of Mechanical Engineering:
 - CE 221 Statics3
 - CEM 161 Chemistry Laboratory I1
 - ECE 345 Electronic Instrumentation and Systems3
 - MSE 250 Materials Science and Engineering3
 - STT 351 Probability and Statistics for Engineering ..3
 b. All of the following courses in the Department of Mechanical Engineering:
 - Mechanical Engineering: 40
Concentration in Aerospace Engineering

A concentration in Aerospace Engineering is available to, but not required of, any student enrolled in the Bachelor of Science degree in Mechanical Engineering. Completing the Bachelor of Science degree in Mechanical Engineering with a concentration in Aerospace Engineering may require more than 128 credits. The concentration will be noted on the student's transcript.

Aerospace Engineering

A mechanical engineering degree with the aerospace engineering concentration recognizes the expertise of students in subjects related to aerospace applications and to the aerospace industry, which provides many career opportunities for mechanical engineering graduates. Students who meet the requirements of this concentration will have expertise in aerodynamics, propulsion and structures, supplemented by other strengths in the core Mechanical Engineering degree program. To complete a Bachelor of Science degree in mechanical engineering with an aerospace engineering concentration, students must complete requirements 1., 2., 3.a., 3.b., and 3.d. above and the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 221</td>
<td>Mechanics of Deformable Solids</td>
<td>3</td>
</tr>
<tr>
<td>ME 222</td>
<td>Mechanics of Deformable Solids</td>
<td>3</td>
</tr>
<tr>
<td>ME 221</td>
<td>Mechanics of Deformable Solids</td>
<td>3</td>
</tr>
<tr>
<td>ME 332</td>
<td>Fluid Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>ME 361</td>
<td>Fluid Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>ME 370</td>
<td>Mechanical Design and Manufacturing I</td>
<td>3</td>
</tr>
<tr>
<td>ME 391</td>
<td>Mechanical Engineering Analysis</td>
<td>3</td>
</tr>
<tr>
<td>ME 412</td>
<td>Heat Transfer Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>ME 451</td>
<td>Control Systems</td>
<td>4</td>
</tr>
<tr>
<td>ME 461</td>
<td>Mechanical Vibrations</td>
<td>3</td>
</tr>
<tr>
<td>ME 470</td>
<td>Mechanical Design and Manufacturing II</td>
<td>3</td>
</tr>
<tr>
<td>ME 481</td>
<td>Mechanical Engineering Design Projects</td>
<td>3</td>
</tr>
</tbody>
</table>

Concentration in Automotive Powertrain

A concentration in Automotive Powertrain is available to, but not required of, any student enrolled in the Bachelor of Science degree in Mechanical Engineering. Completing the Bachelor of Science degree in Mechanical Engineering with a concentration in automotive powertrain may require more than 128 credits. The concentration will be noted on the student's transcript.

Automotive Powertrain

To earn a Bachelor of Science degree in Mechanical Engineering with an automotive powertrain concentration, students must complete requirements 1., 2., 3.a., 3.b., and 3.d. above and the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 422</td>
<td>Introduction to Combustion</td>
<td>3</td>
</tr>
<tr>
<td>ME 444</td>
<td>Automotive Engines</td>
<td>3</td>
</tr>
<tr>
<td>ME 445</td>
<td>Automotive Powertrain Design</td>
<td>3</td>
</tr>
<tr>
<td>ME 477</td>
<td>Computer Assisted Design of Thermal Systems</td>
<td>3</td>
</tr>
</tbody>
</table>

Concentration in Biomedical Engineering

A concentration in Biomedical Engineering is available to, but not required of, any student enrolled in the Bachelor of Science degree in Mechanical Engineering. Completing the Bachelor of Science degree in Mechanical Engineering with a concentration in biomedical engineering may require more than 128 credits. The concentration will be noted on the student's transcript.

Biomedical Engineering

To earn a Bachelor of Science degree in Mechanical Engineering with a biomedical engineering concentration, students must complete requirements 1., 2., 3.a., 3.b., and 3.d. above and the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 222</td>
<td>Mechanics of Deformable Solids</td>
<td>3</td>
</tr>
<tr>
<td>ME 222</td>
<td>Mechanics of Deformable Solids</td>
<td>3</td>
</tr>
<tr>
<td>ME 332</td>
<td>Fluid Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>ME 412</td>
<td>Heat Transfer Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>ME 451</td>
<td>Control Systems</td>
<td>4</td>
</tr>
<tr>
<td>ME 461</td>
<td>Mechanical Vibrations</td>
<td>3</td>
</tr>
<tr>
<td>ME 470</td>
<td>Mechanical Design and Manufacturing II</td>
<td>3</td>
</tr>
<tr>
<td>ME 481</td>
<td>Mechanical Engineering Design Projects</td>
<td>3</td>
</tr>
</tbody>
</table>

Concentration in Computational Design

A concentration in Computational Design is available to, but not required of, any student enrolled in the Bachelor of Science degree in Mechanical Engineering. Completing the Bachelor of Science degree in Mechanical Engineering with a concentration in computational design may require more than 128 credits. The concentration will be noted on the student's transcript.

Computational Design

To earn a Bachelor of Science degree in Mechanical Engineering with a computational design concentration, students must complete requirements 1., 2., 3.a., 3.b., and 3.d. above and the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 416</td>
<td>Computer Assisted Design of Thermal Systems</td>
<td>3</td>
</tr>
</tbody>
</table>
Concentration in Cryogenic Engineering

A concentration in Cryogenic Engineering is available to, but not required of, any student enrolled in the Bachelor of Science degree in Mechanical Engineering. Completing the Bachelor of Science degree in Mechanical Engineering with a concentration in Cryogenic Engineering may require more than 128 credits. The concentration will be noted on the student's transcript.

Cryogenic Engineering

A mechanical engineering degree with the cryogenic engineering concentration recognizes the expertise of students in thermal and mechanical analysis and design techniques as applied to cryogenic engineering applications. To complete a Bachelor of Science degree in mechanical engineering with a cryogenic engineering concentration, students must complete requirements 1., 2., 3.a., 3.b., and 3.d. above and the following courses (12 credits):

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 413 Cryogenic-Thermal Systems</td>
<td>3</td>
</tr>
<tr>
<td>ME 414 Mechanical Design of Cryogenic Systems</td>
<td>3</td>
</tr>
<tr>
<td>ME 440 Aerospaced Design of Thermal Systems</td>
<td>3</td>
</tr>
<tr>
<td>ME 442 Turbomachinery</td>
<td>3</td>
</tr>
</tbody>
</table>

Concentration in Energy

A concentration in Energy is available to, but not required of, any student enrolled in the Bachelor of Science degree in Mechanical Engineering. Completing the Bachelor of Science degree in Mechanical Engineering with a concentration in Energy may require more than 128 credits. The concentration will be noted on the student's transcript.

Energy

To earn a Bachelor of Science degree in Mechanical Engineering with an energy concentration, students must complete requirements 1., 2., 3.a., 3.b., and 3.d. above and the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 416 Computer Assisted Design of Thermal Systems</td>
<td>3</td>
</tr>
<tr>
<td>ME 417 Design of Alternative Energy Systems</td>
<td>3</td>
</tr>
<tr>
<td>ME 422 Introduction to Combustion</td>
<td>3</td>
</tr>
<tr>
<td>ME 440 Aerospace Propulsion</td>
<td>3</td>
</tr>
<tr>
<td>ME 442 Turbomachinery</td>
<td>3</td>
</tr>
</tbody>
</table>

Concentration in Manufacturing Mechanics

A concentration in Manufacturing Mechanics is available to, but not required of, any student enrolled in the Bachelor of Science degree in Mechanical Engineering. Completing the Bachelor of Science degree in Mechanical Engineering with a concentration in manufacturing mechanics may require more than 128 credits. The concentration will be noted on the student's transcript.

Manufacturing Engineering

To earn a Bachelor of Science degree in Mechanical Engineering with a manufacturing concentration, students must complete requirements 1., 2., 3.a., 3.b., and 3.d. above and the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 372 Machine Tool Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>ME 477 Manufacturing Processes</td>
<td>3</td>
</tr>
<tr>
<td>ME 478 Product Development</td>
<td>3</td>
</tr>
<tr>
<td>CHE 472 Composite Materials Processing</td>
<td>3</td>
</tr>
<tr>
<td>ECE 415 Computer Aided Manufacturing</td>
<td>3</td>
</tr>
<tr>
<td>MGE 426 Introduction to Composite Materials</td>
<td>3</td>
</tr>
</tbody>
</table>

Concentration in Global Engineering

A concentration in Global Engineering is available to, but not required of, any student enrolled in the Bachelor of Science degree in Mechanical Engineering. Completing the Bachelor of Science degree in Mechanical Engineering with a concentration in global engineering may require more than 128 credits. The concentration will be noted on the student's transcript.

Global Engineering

To earn a Bachelor of Science degree in Mechanical Engineering with a global engineering concentration, students must complete requirements 1., 2., 3.a., and 3.b. above and 12 credits of approved mechanical engineering courses from a MSU co-sponsored study abroad institution. At least 3 credits must include a team design project.

LINKED BACHELOR’S-MASTER’S DEGREE IN ENGINEERING MECHANICS

Bachelor of Science Degree in Mechanical Engineering with a concentration in Engineering Mechanics

Master of Science Degree in Engineering Mechanics

The department welcomes applications from Michigan State University Mechanical Engineering undergraduate students in their junior and senior year, who are pursuing an engineering mechanics concentration within the Bachelor of Science degree in Mechanical Engineering. Admission applications must be made during the prior spring semester for an anticipated spring graduation or the prior fall semester for an anticipated fall graduation to allow admission before the final semester as a Mechanical Engineering undergraduate. Admission to the program requires a minimum undergraduate grade-point average of 3.5 and an approved program of study for the Master of Science degree in Engineering Mechanics at the time of admission. Admission to the Linked Bachelor’s-Master’s program allows the application of up to 9 credits toward the master’s program for qualifying 400-level and above coursework taken at the undergraduate level at Michigan State University or an external accredited institution. The number of approved credits, not to exceed 9, are applied toward the credit requirement of the master’s degree. Credits applied to the Linked Bachelor’s-Master’s program are not eligible to be applied to any other graduate degree program.
The department welcomes applications from students who possess a bachelor's degree in a related engineering or science discipline. Students who are admitted to the master's program with a degree in a discipline other than engineering mechanics and who have not completed Mechanical Engineering 221, 222, 361, and 423 or equivalent courses may be admitted with provisional status. Such students will be required to demonstrate proficiency in the material in the courses referenced above, either by completing each of those courses with a grade of at least 3.0 or by passing an examination on the material in those courses sanctioned by the department Graduate Studies Committee. Of the courses referenced above, only Mechanical Engineering 423 may be counted toward the requirements for the master's degree.

Requirements for the Master of Science Degree in Mechanical Engineering

In addition to meeting the requirements of the university and of the College of Engineering, students must meet the requirements specified below.

Admission

An applicant for admission must identify at least one prospective faculty advisor that he or she would like to direct his or her program of study. Admission to the Ph.D. program is contingent on a faculty advisor accepting the student as an advisee.

Requirements for Both Plan A and Plan B:

1. The following core courses in engineering mechanics: Mechanical Engineering 825 or 861, 820, and 821.
2. At least one of the following core courses in mechanical engineering: Materials Science and Engineering 851, 855, 862, or 865.
3. At least one credit of Materials Science and Engineering 885.
4. At least one course in mathematics or statistics at the 400-level or above approved by the student's academic advisor.

Doctor of Philosophy

In addition to meeting the requirements of the university and of the College of Engineering, students must meet the requirements specified below.

Admission

An applicant for admission must identify at least one prospective faculty advisor that he or she would like to direct his or her program of study. Admission to the Ph.D. program is contingent on a faculty advisor accepting the student as an advisee.

Requirements for the Doctor of Philosophy Degree in Mechanical Engineering

The student must complete:

1. At least one of the following core courses in materials science and engineering: Materials Science and Engineering 851, 855, 862, or 865.
2. At least one course in mathematics or statistics at the 400-level or above.

These requirements are waived for those students who completed equivalent courses prior to enrolling in the doctoral program.

Master of Science

In addition to meeting the requirements of the university and of the College of Engineering, students must meet the requirements specified below.

Admission

An applicant should possess a bachelor's degree in mechanical engineering or a related field.

The applicant must submit scores from the Graduate Record Examination General Test.
Requirements for the Master of Science Degree in Mechanical Engineering

The student must complete a total of 30 credits for the degree under either Plan A (with thesis) or Plan B (without thesis) and meet the requirements specified below:

Requirements for Both Plan A and Plan B:
The student must:
1. Complete at least one course in three of the following four areas:
 b. Fluid Mechanics: Mechanical Engineering 830
2. Complete at least 6 additional credits in Mechanical Engineering courses at the 800-900 level, not including Mechanical Engineering 898 or 899.

Additional Requirements for Plan A:
The student must:
1. Complete at least 20 credits in courses at the 800–900 level including at least 6, but not more than 8, credits in Mechanical Engineering 899.
2. Submit a brief thesis proposal for approval by the student's academic advisor early in the student's program of study.

Additional Requirements for Plan B:
The student must complete at least 22 credits in courses at the 800–900 level.

Doctor of Philosophy
In addition to meeting the requirements of the university and of the College of Engineering, students must meet the requirements specified below.

Admission
The applicant must submit scores from the Graduate Record Examination General Test.

Requirements for the Doctor of Philosophy Degree in Mechanical Engineering
In addition to meeting the requirements of the university and the College of Engineering, students must meet the requirements specified by their guidance committees.