The College of Engineering prepares its students to solve technical, as well as social, economic, and global problems while instilling the essence of engineering – the iterative process of designing, predicting performance, building, and testing. Our engineering programs provide future engineers with firm knowledge and understanding of the fundamental engineering sciences, of engineering methods for the application of this knowledge and the project management and communications skills to bring designs to fruition. Programs require a strong base in mathematics, computing, and the sciences as the tools of the engineer. An engineering education provides a teams-based, systems approach to societal problems and therefore prepares students for a wide range of career options, including those outside engineering.

UNDERGRADUATE PROGRAMS

Programs With a Major in the Engineering Professional Fields

The Bachelor of Science degree may be earned in programs designed to prepare students for work in biosystems engineering, chemical engineering, civil engineering, computer engineering, electrical engineering, environmental engineering, materials science and engineering, and mechanical engineering.

Programs With a Major in the Engineering Sciences

The Bachelor of Science degree may also be earned in engineering sciences with a major in computer science or applied engineering sciences. A required cognate combines the Computer Science major with studies such as business management, the social and behavioral or physical sciences, or a foreign language. The Applied Engineering Sciences major is an interdisciplinary program that combines a broad foundation in core engineering disciplines with a required concentration area in business law, computer science, packaging, supply chain management, technical sales, or media and information.

Engineering Study Abroad

The field of engineering increasingly requires a global perspective. Opportunities exist for students to study in a variety of countries. Students often take major and university requirements during their studies abroad, so the international experience need not delay a student’s progress toward graduation. Students interested in studying abroad should contact the Engineering Study Abroad office as early as possible.

Minors

Students who are enrolled in bachelor's degree programs in the college may elect the Minor in Environmental and Sustainability Studies. For additional information, refer to the statement on Minor in Environmental and Sustainability Studies in the College of Natural Science section of this catalog.

Students who are enrolled in bachelor's degree programs in The Eli Broad College of Business, the College of Communication Arts and Sciences, and the College of Engineering may elect a Minor in Information Technology. For additional information, refer to the statement on Minor in Information Technology in The Eli Broad College of Business section of this catalog or contact The Eli Broad College of Business.

Students who are enrolled in the Bachelor of Science degree in Computer Science in the College of Engineering may elect a Minor in Game Design and Development. For additional informa-
Experiential Education - The Center for Spartan Engineering

The College of Engineering offers a variety of opportunities for students to gain real-world experience in the field of engineering. These programs prepare students for work in industry or to enter graduate programs in engineering, medicine, law, or business. They include cooperative education, engineering internships and undergraduate research.

Cooperative Engineering Education is a program of alternating full-time employment in industry and full-time study on campus. Employment provides practical on-the-job experience by exposing students to types of work done by engineers. Locations of jobs are nationwide and students must be willing to relocate temporarily.

Students are selected to participate in the program on the basis of demonstrated academic ability and a firm commitment to pursuing careers in the technical sector. Certification in the Cooperative Engineering Education program requires a minimum of three semesters of full-time employment in a pre-professional position that has been approved by the College of Engineering.

Engineering Internships are one-time-only, career-based experiences usually completed during the summer semester and may or may not be available for academic credit. Internships provide practical on-the-job experience in the field of engineering.

Undergraduate research opportunities are available at Michigan State University and throughout the United States. Students who are considering graduate school are encouraged to participate in an undergraduate research program for exposure to research opportunities and protocol at the graduate level.

Students interested in any of these programs should contact The Center for Spartan Engineering in Room 1340 Engineering Building.

Honors Study

The College of Engineering encourages honors students to develop distinctive undergraduate programs in either the engineering sciences or in the fields offered by the several professional programs. A member of the faculty is selected to serve as advisor to Honors College students in each major field, and will help the student plan a rigorous and balanced program which will also reflect the student's special interests and competencies.

Accreditation

The following degree programs have been accredited by ABET, Inc.: Biosystems Engineering, Chemical Engineering, Civil Engineering, Computer Engineering, Computer Science, Electrical Engineering, Environmental Engineering, Materials Science and Engineering, and Mechanical Engineering.

Registration as a Professional Engineer

In Michigan, the State Board of Registration for Professional Engineers provides an opportunity for students during their senior year to take the first half of a sixteen-hour, two-part examination as the first step toward registration, provided the degree is to be awarded within six months and the degree program is one that has been accredited by ABET or determined as equivalent by the State Board. After a minimum of four years of experience, the applicant may take the second half of the examination.

Freshmen

Students admitted to the university are enrolled in the Neighborhood Student Success Collaborative, but may declare a pre-engineering major preference in the College of Engineering. Such students are guided by a professional advisor from the college. All students are encouraged to review their progress with an advisor each semester. Students become eligible for admission to the college upon completion of the requirements listed below in the Admission to the College section of this catalog.

Students interested in engineering but not yet sure of a major may be an Engineering No-Preference major until attaining 56 credits, but students are encouraged to make their major selection as early as possible.

Students who elect a pre-engineering major preference should be strongly prepared in mathematics and sciences. Additional work in these areas is highly desirable and may make advanced placement in courses possible. Students entering with less than the minimum mathematics prerequisites may take some of the necessary courses after entering the University. However, such students will need additional time to complete the work for the degree.

The Engineering CoRe Experience

The CoRe Experience integrates first year engineering academics and co-curricular/residential activities to support the academic, professional, and personal growth of engineering students during their first year at Michigan State University. CoRe seeks to demonstrate to students the importance of engineering and the positive impact that engineers make on society and the world around them. Along with community and corporate partners, we bring real-world expertise and challenges into the classroom and residential environment, reinforcing the relevance of engineering to solving global challenges.

CoRe’s academic program is based on the principle that engagement in meaningful engineering experiences early in students’ undergraduate careers supports their success and persistence to graduation. Through our courses, EGR 100: Introduction to Engineering Design and EGR 102: Introduction to Engineering Modeling, we strive to engage students across the disciplines in team-based projects that pique their interest and give them a window into what professional engineering really is. CoRe co-curricular activities connect students to each other, to the College of Engineering, and to corporate partners, helping students persist and succeed as engineering students and campus citizens.

Supportive Services

The college provides a full range of supportive services including professional academic advising, tutoring, services for underrepresented and female students, career guidance and employment assistance, faculty connections, and peer mentors.

Admission to the College

Admission to the College of Engineering and a specific major provides access to enroll in certain courses required for the major. Enrollments in the College of Engineering are limited.

Admission is based on the cumulative grade-point average of all courses taken and a grade-point average calculated on mathematics, physical and biological sciences, and engineering courses.

For additional information, students should contact the Office of the Associate Dean for Undergraduate Studies, College of Engineering.

Minimum criteria for admission to the college are:

1. Completion of at least 12 credits of Michigan State University courses, including at least 6 credits in mathematics, physical
2. The requirements of the College of Engineering for the Bachelor of Science degree.
3. The following requirements for the major:
 b. Chemistry 141 or 151. Computer Science majors are not required to complete Chemistry 141 or 151.
 c. Physics 183 or 183B and 184.

Admission to a Second Bachelor's Degree Program

Students seeking admission to a second bachelor's degree program must meet the same requirements as for admission to the college.

Graduation Requirements for All Majors

1. The University requirements for bachelor's degrees as described in the Undergraduate Education section of the catalog; 120 credits, including general elective credits, are required for the Bachelor of Science degree in Computer Science and the Bachelor of Science degree in Applied Engineering Sciences; and 128 credits, including general elective credits, are required for the Bachelor of Science degree in other Engineering majors.

 Students who are enrolled in majors leading to the Bachelor of Science degree in the College of Engineering may complete an alternative track to Integrative Studies in Biological and Physical Sciences that consists of the following courses:
 a. One of the following courses: Biological Science 161; Plant Biology 105; Entomology 205; Microbiology and Molecular Genetics 201, 301; Physiology 250; Zoology 141.
 b. Two of the following courses: Chemistry 141, Chemistry 151, Physics 183 or 183B, Physics 184.
 c. One of the following laboratory courses: Plant Biology 106; Chemistry 161; Physics 191.

CREDITS

 Credits earned in the alternative track may also be counted toward college and major requirements for the Bachelor of Science degree.

2. The requirements of the College of Engineering for the Bachelor of Science degree that are listed below:
 b. Chemistry 141 or 151. Computer Science majors are not required to complete Chemistry 141 or 151.
 c. Physics 183 or 183B and 184.

 d. Engineering 102. Computer Science, Computer Engineering, and Electrical Engineering majors are not required to complete Engineering 102.
 e. Engineering 100.

 Students who are enrolled in bachelor's degree programs in the College of Engineering may elect a Specialization in Environmental Studies. For additional information, refer to the Specialization in Environmental Studies statement in the College of Natural Science section of this catalog.

 Students who are enrolled in the Bachelor of Science Degree in Computer Science in the College of Engineering may elect a Specialization in Game Design and Development. For additional information, refer to the Specialization in Game Design and Development statement in the Department of Telecommunication Information Studies and Media section of this catalog.

 Students who are enrolled in bachelor's degree programs in the College of Engineering may elect a Specialization in Information Technology. For additional information, refer to the Specialization in Information Technology statement in The Eli Broad College of Business section of this catalog.

APPLIED ENGINEERING SCIENCES

The Applied Engineering Sciences major provides undergraduate opportunities leading to the Bachelor of Science degree. The core goal of applied engineering sciences is to prepare technically competent, broad-based engineering graduates who have acquired a systems perspective for problem-solving and business expertise. The program provides a broad foundation in science and mathematics, engineering, and business management and is designed to develop graduates who can apply the rigor of their technical education to diverse problems and settings. The program is structured to establish skills in areas such as effective management, contemporary technical issues, deployment of new technologies, resolving ethical dilemmas, effective communication across technical disciplines both in oral and written communication, and lifelong learning.

Requirements for the Bachelor of Science Degree in Applied Engineering Sciences

1. The University requirements for bachelor's degrees as described in the Undergraduate Education section of this catalog; 120 credits, including general elective credits, are required for the Bachelor of Science degree in Applied Engineering Sciences.

 The University's Tier II writing requirement for the Applied Engineering Sciences major is met by completing Applied Engineering Sciences 410. That course is referenced in item 3. a. below.

 Students who are enrolled in the College of Engineering may complete the alternative track to Integrative Studies in Biological and Physical Sciences that is described in item 1. under the heading Graduation Requirements for All Majors in the College statement. Certain courses referenced in requirement 3. below may be used to satisfy the alternative track.

2. The requirements of the College of Engineering for the Bachelor of Science degree.

 The credits earned in certain courses referenced in requirement 3. below may be counted toward College requirements as appropriate.

3. The following requirements for the major:

 a. All of the following courses: .. 46

 ACC 230 Survey of Accounting Concepts 3
 CE 221 Statics .. 3
 CEM 161 Chemistry Laboratory I 1
 COM 225 Introduction to Interpersonal Communication 3
 EC 201 Introduction to Microeconomics 3
 EC 202 Introduction to Macroeconomics 3
 ECE 201 Circuits and Systems I 3
 AESC 210 Global Systems: Economics, Engineering, Environment .. 3
 AESC 310 Sustainable Systems Analysis 3
 AESC 410 Capstone Project in Applied Engineering Sciences3
 ME 201 Thermodynamics .. 3
 ME 280 Graphic Communications 2
 MGT 325 Management Skills and Processes 3
 MKT 317 Quantitative Business Research Methods 3
 MSE 250 Materials Science and Engineering 3
 PHY 191 Physics Laboratory for Scientists, I 1
 STT 315 Introduction to Probability and Statistics for Business .. 3

 CREDITS
UNDERGRADUATE PROGRAMS

ENGINEERING

MINOR IN ENERGY

The Minor in Energy, administered by the College of Engineering, provides students with a foundation in energy science that focuses on topics of fundamental physical principles guiding energy generation, utilization, conservation, engineering applications and the impact of energy within a societal and geological context. Students gain a perspective in energy science that is applicable to many disciplines and highly interdisciplinary. It offers opportunities for students to prepare to work in industry, research, or government, as well as preparation for graduate studies in energy science.

The minor is available as an elective to students who are enrolled in bachelor's degree programs in the College of Engineering. With the approval of the department and college that administer the student's degree program, the courses that are used to satisfy the minor may also be used to satisfy the requirements for the bachelor's degree. At least 9 credits counted towards the requirements for this minor must be unique. Unique credits must not be used to fulfill another university, college, or major requirement in the student's program.

Students who plan to complete the requirements of the minor should consult the undergraduate adviser in the College of Engineering. Students accepted into the minor must be admitted to the College of Engineering and have completed items 1 and 2 of the requirements stated below. Enrollment for some courses may not be available and may be limited. Application forms are available at www.egr.msu.edu/academics/multi-disciplinary.

Requirements for the Minor in Energy

Complete a minimum of 21 credits from the following.

CREDITS

1. One of the following courses (3 credits):
 - BE 230 Engineering Analysis of Biological Systems
 - CHE 201 Material and Energy Balances
 - CSE 260 Discrete Structures in Computer Science

2. One of the following courses (3 credits):
 - BE 351 Thermodynamics for Biological Engineering
 - CSE 471 Media Processing and Multimedia Computing
 - ECE 423 Power System Analysis

3. One of the following courses (3 credits):
 - ECE 472 Computer Graphics
 - MEP 417 Design of Alternative Energy Systems
 - MSE 410 Materials Foundations for Energy Applications

4. One of the following courses (3 credits):
 - CHE 468 Biomass Conversion Engineering
 - CSS 467 BioEnergy Feedstock Production
 - CSUS 491 Special Topics in Community Sustainability

5. One of the following courses (3 credits):
 - CSUS 200 Introduction to Sustainability
 - ECE 476 Electro-Optics
 - ECE 481 Advanced Power Electronics and Applications

6. Two of the following courses (6 to 8 credits):
 - AFRE 429 Economics of Environmental Resources
 - BE 469 Sustainable Bioenergy Systems
 - CHE 468 Biomass Conversion Engineering
 - CSS 467 BioEnergy Feedstock Production
 - CSUS 491 Special Topics in Community Sustainability
 - CSUS 491 Special Topics in Community Sustainability
 - ECE 476 Electro-Optics
 - ECE 481 Advanced Power Electronics and Applications
 - EEP 320 Environmental Economics
 - ENE 489 Air Pollution: Science and Engineering
 - FOR 414 Renewable Wood Products
 - GLG 201 The Dynamic Earth
 - GLG 301 Geology of Continents and Oceans
 - GLG 471 Applied Geophysics
 - ISP 221 Earth Environment and Energy
 - ME 417 Design of Alternative Energy Systems
 - ME 422 Introduction to Community Sustainability
 - ME 422 Introduction to Community Sustainability
 - ME 444 Automotive Engines
 - MSE 410 Materials Foundations for Energy Applications
 - MSE 460 Electronic Structure and Bonding in Materials

A course used to fulfill requirement 4 above may not be used to fulfill requirement 6. Not all courses will be available to all majors and students must meet all course prerequisites and restrictions.

TEACHER CERTIFICATION OPTION

A computer science disciplinary minor in the College of Engineering is available for teacher certification.

Students who elect the computer science disciplinary minor must contact the Department of Computer Science and Engineering.
GRADUATE STUDY

The College of Engineering offers programs leading to the Master of Science and Doctor of Philosophy degrees in the following fields:

- biomedical engineering
- chemical engineering
- civil engineering
- computational mathematics, science and engineering
- computer science
- electrical engineering
- engineering mechanics
- environmental engineering
- materials science and engineering
- mechanical engineering

Programs leading to the Master of Science and Doctor of Philosophy degrees in biosystems engineering are offered through the College of Agriculture and Natural Resources.

All programs are designed to provide a fundamental approach to basic engineering principles with emphasis on scientific methods, and to lead to careers in engineering research and development or teaching. Advanced work in the major field of specialization is combined with supporting courses in one or more other fields to develop individuals capable of creative work in engineering science and areas of application.

Students who are enrolled in Master of Science degree programs in the Department of Biosystems and Agricultural Engineering may elect a Specialization in Food Safety. For additional information, refer to the statement on the specialization in the College of Veterinary Medicine section of this catalog.

Master of Science

In addition to meeting the requirements of the University as described in the Graduate Education section of this catalog, students must meet the requirements specified below.

Admission

Regular Status. Admission to a master's degree program with regular status may be granted by the department, subject to the availability of resources and to the approval of the dean, upon consideration of the likelihood that the applicant will be able to pursue a master's program successfully without taking collateral courses. As evidence of eligibility for admission, the student may offer any of the following:

a. The possession of a bachelor's degree in an accredited program in engineering with a grade–point average not lower than 3.00 for the final two years of the undergraduate program, or with standing in the upper quarter of the graduating class in the student's major.

b. The possession of a bachelor's degree in engineering or a related field where the applicant has shown very high academic achievement, as certified by the department.

c. Evidence of ability and resolution to complete a master's program, as attested by the department upon review of the applicant's academic record, test scores, experience, reference statements, professional qualifications, proposed studies, and other relevant information.

Provisional Status. Admission to a master's degree program with provisional status may be granted by the department, subject to the approval of the dean:

a. To an applicant qualified for regular admission except that collateral courses are deemed necessary, or

b. To an applicant whose record is incomplete.

If collateral courses are required, the minimum acceptable grades and the semesters by which those courses must be completed will be specified on the admission form. The provisional status will be changed to regular status when the conditions specified on the admission form have been met, as certified by the department and approved by the dean.

Program Filing

The student's program of study must be approved before the student completes 6 credits of graduate work in order for the student to continue to enroll in the master's degree program.

For any independent study or selected topics course that is included in the student's approved program of study, the subject material and the instructor must be specified.

Modification of Program

With reference to the student's approved program of study, none of the following types of changes will be approved:

1. Adding or deleting a course for which a grade has already been assigned under any of the three grading systems (numerical, Pass–No Grade, or Credit–No Credit).

2. Adding or deleting a course for which grading was postponed by the use of the DF–Deferred marker.

3. Adding or deleting a course which the student dropped after the middle of the semester and for which “W” or “N” or “0.0” was designated.

4. Adding or deleting a course during the final semester of enrollment in the master's degree program.

Requirements for the Master of Science Degree

The student must:

1. Complete a minimum of 30 credits in 400–, 800–, and 900–level courses under either Plan A (with thesis) or Plan B (without thesis). Courses below the 400 level may not be counted toward the requirements for the degree.

a. Requirements for Plan A: The student must:

 (1) Complete a minimum of 20 credits in courses at the 800–900 level.

 (2) Complete at least 4, but not more than 8, credits in Master's Thesis Research (course number 899 in the department of the student's major).

 (3) Provide to the major professor and to the department a hard–bound copy of the thesis made from the original unbound manuscript submitted to the Office of The Graduate School. Arrangements for delivery of the copies shall be made when the original manuscript is submitted to the Office of The Graduate School.

b. Requirements for Plan B: The student must:

 (1) Complete a minimum of 18 credits in courses at the 800–900 level.

 2. Pass the final certifying examination administered by the student's department. It is the student's responsibility to obtain detailed information about this examination from the department.
Academic Standards

1. Grades. The student must earn a grade of 2.0 or higher in each course in the approved program of study. The student must repeat any course for which the grade earned was below 2.0.

2. Cumulative Grade–Point Average. The student must maintain a cumulative grade–point average of at least 3.00 in the courses in the approved program of study.

3. Probational Status. A student is placed on probational status if the student's cumulative grade–point average for the courses in the approved program of study is below 3.00. A student in probational status is not allowed to carry more than 7 credits per semester or to enroll in any course the primary focus of which is independent study.

4. Retention In and Dismissal From the Program.
 a. Cumulative Grade–Point Average. Should a student's cumulative grade–point average fall below 3.00 after having completed 16 or more credits in courses in the approved program of study, the student may be enrolled in probational status in the master's degree program for one additional semester. If at the end of the additional semester the student's cumulative grade–point average is 3.00 or higher, the student may continue to enroll in the master's degree program. If at the end of the additional semester the student's cumulative grade–point average is still below 3.00, the student will be dismissed from the program.
 b. Academic Progress and Professional Potential. Each student's academic progress and professional potential are evaluated by March 15 of each year. A student who in the judgment of the faculty is making satisfactory academic progress and has professional potential may continue to enroll in the master's degree program. A student who in the judgment of the faculty is not making satisfactory academic progress or lacks professional potential will be dismissed from the program.

Transfer Credits

As a member of the Michigan Coalition for Engineering Education (MCEE), Michigan State University will accept up to one less than half of the course credits required for the Master of Science degree program in the College of Engineering in transfer from other MCEE member institutions provided that (1) the student earned a grade of at least 3.0, or the equivalent, in the related courses; (2) the credits were not earned in research or thesis courses; and (3) the total number of credits accepted in transfer from MCEE member institutions and from other institutions does not exceed one less than half of the credits required.

Doctor of Philosophy

In addition to meeting the requirements of the university as described in the Graduate Education section of this catalog, students must meet the requirements specified below.

Admission

Regular Status. Admission to a doctoral degree program with regular status may be granted by the department, subject to the availability of resources and to the approval of the dean, upon consideration of the likelihood that the applicant will be able to pursue a doctoral program successfully without taking collateral courses. As evidence of eligibility for admission, the student may offer any of the following:
 a. The possession of a master's degree in engineering or a related field.
 b. The completion of the equivalent of a master's degree program in the major field.
 c. Evidence of ability and resolution to complete a doctoral program, as attested by the department upon review of the applicant's academic record, test scores, experience, reference statements, professional qualifications, proposed studies, and other relevant information.

Provisional Status. Admission to a doctoral degree program with provisional status may be granted by the department, subject to the approval of the dean:
 a. To an applicant qualified for regular admission except that collateral courses are deemed necessary, or
 b. To an applicant whose record is incomplete.

If collateral courses are required, the minimum acceptable grades and the semesters by which those courses must be completed will be specified on the admission form. The provisional status will be changed to regular status when the conditions specified on the admission form have been met, as determined by the department and approved by the dean.

Guidance Committee

The student's guidance committee is appointed by the department chairperson in consultation with the student and the appropriate faculty members, and with the approval of the dean. At least two members of the guidance committee shall be from the major department and at least one member shall be from a department outside of the major department. The chairperson of the guidance committee will be appointed by the department chairperson after consultation with the student and the person recommended to chair the committee.

Guidance Committee Report

The student's program of study shall be submitted for approval to the department and to the Dean by no later than the end of the student's second semester of enrollment in the doctoral program. For any independent study or selected topics course that is included in the student's program of study, the subject material and the instructor must be specified.

The student's program of study must be approved in order for the student to continue to enroll in the doctoral degree program beyond the second semester.

Modification of Program

With reference to the student's approved guidance committee report, none of the following types of changes will be approved:

1. Adding or deleting a course for which a grade has already been assigned under any of the three grading systems (numerical, Pass–No Grade, or Credit–No Credit).
2. Adding or deleting a course for which grading was postponed by the use of the DF–Deferred marker.
3. Adding or deleting a course which the student dropped after the middle of the semester and for which “W” or “N” or “0.0” was designated.
4. Adding or deleting a course during the final semester of enrollment in the doctoral degree program.
Requirements for the Doctor of Philosophy Degree

The student must:
1. Pass the qualifying examination administered by the student's department. It is the student's responsibility to obtain detailed information about this examination from the department.
2. Pass the doctoral comprehensive examination at least six months prior to the final oral examination in defense of the dissertation. The examination may be retaken no more than twice. It is the student's responsibility to obtain detailed information about this examination from the department.
3. Provide to the major professor and to the department a hard-bound copy of the dissertation made from the original unbound manuscript submitted to the Office of the Graduate School. Arrangements for delivery of the copies shall be made when the original manuscript is submitted to the Office of The Graduate School.

Academic Standards

1. Grades. The student must earn a grade of 2.0 or higher in each course in the approved guidance committee report, including collateral courses and courses accepted in transfer. The student must repeat any course for which the grade earned was below 2.0.
2. Cumulative Grade–Point Average. The student must maintain a cumulative grade–point average of at least 3.00 in courses in the approved guidance committee report, with the exception of collateral courses and courses accepted in transfer.
3. Deferred Grades. A student may accumulate no more than 3 deferred grades (identified by the DF–Deferred marker) in courses other than those courses the primary focus of which is independent study.
4. Probational Status. A student is placed on probational status if either or both of the following conditions apply:
 a. The student's cumulative grade–point average for the courses in the approved guidance committee report is below 3.00.
 b. The student has accumulated more than three deferred grades (identified by the DF–Deferred marker) in courses other than those courses the primary focus of which is independent study.

A student in probational status is not allowed to carry more than 7 credits per semester or to enroll in any course by the primary focus of which is independent study.

5. Retention In and Dismissal From the Program.
 a. Cumulative Grade–point Average. Should a student's cumulative grade–point average fall below 3.00 after having completed half of the courses in the approved guidance committee report, the student may be enrolled in probational status in the doctoral degree program for one additional semester. If at the end of the additional semester the student's cumulative grade–point average is 3.00 or higher, the student may continue to enroll in the doctoral degree program. If at the end of the additional semester the student still has more than 3 deferred grades, the student will be dismissed from the program.
 b. Deferred Grades. Should a student accumulate more than 3 deferred grades (identified by the DF–Deferred marker) in courses other than those courses the primary focus of which is independent study, the student may be enrolled on probational status in the doctoral degree program for one additional semester. If at the end of the additional semester the student has no more than 3 deferred grades, the student may continue to enroll in the doctoral degree program. If at the end of the additional semester the student still has more than 3 deferred grades, the student will be dismissed from the program.

 c. Academic Progress and Professional Potential. Each student's academic progress and professional potential are evaluated by March 15 of each year. A student who in the judgment of the faculty is making satisfactory academic progress and has professional potential may continue to enroll in the doctoral degree program. A student who in the judgment of the faculty is not making satisfactory academic progress or lacks professional potential will be dismissed from the program.

GRADUATE SPECIALIZATION IN ENVIRONMENTAL TOXICOLOGY

The College of Engineering, the College of Agriculture and Natural Resources, the College of Natural Science, and the College of Veterinary Medicine administer the Graduate Specialization in Environmental Toxicology. The College of Agriculture and Natural Resources is the primary administrative unit. For additional information, refer to the Graduate Specialization in Environmental Toxicology statement in the College of Agriculture and Natural Resources section of this catalog.

DEPARTMENT of BIOMEDICAL ENGINEERING

The Department of Biomedical Engineering’s mission is to apply engineering principles and design concepts to advance healthcare practices, including medical diagnosis, treatment, and monitoring. A particular focus of the research in biomedical engineering is the cross-cutting topic of translational research, defined as engineering research that makes findings from basic science useful for practical applications that improve human health. The department is a focal point for technological innovations in healthcare technology applied to medical needs as identified by physicians, nurses, and health scientists in hospital, clinic, and home settings.

GRADUATE STUDY

BIOMEDICAL ENGINEERING

The Master of Science Degree in Biomedical Engineering prepares graduates to review technical literature related to a biomedical engineering research problem and communicate those results through oral presentations and written publications.

Master of Science

In addition to meeting the requirements of the university, and of the College of Engineering, students must meet the requirements specified below.

Admission

For admission to the master’s degree in biomedical engineering on regular status, the student must:
1. have a bachelor’s degree in biomedical engineering or related field;
2. have a grade-point average that would indicate success in graduate study.

Applicants who are admitted without a bachelor’s degree in biomedical engineering may be required to complete collateral course work to make up deficiencies. Collateral course work will not count towards the fulfillment of degree requirements.

International applicants are required to submit their scores on the Graduate Record Examination (GRE).

Requirements for the Master of Science Degree in Biomedical Engineering

The master’s degree program in biomedical engineering is available under either Plan A (with thesis) or Plan B (without thesis). A total of 30 credits is required for the degree. The student’s program of study is selected in consultation with a faculty advisor and the graduate program director. No more than 6 credits of 400-level courses may be counted towards the degree requirements.

Additional Requirements for Plan A

1. Completion of the following course:
 - BME 892 Biomedical Engineering Seminar 1
2. Complete of at least 4, but not more than 8, credits of BME 899 Master’s Thesis Research.
3. Pass a final oral examination in defense of the thesis.

Additional Requirements for Plan B

1. Pass a final examination or evaluation.

Doctor of Philosophy

The Doctor of Philosophy degree in Biomedical Engineering prepares graduates to review technical literature related to a biomedical engineering research problem and communicate those results through oral presentations and written publications.

In addition to meeting the requirements of the university, and of the College of Engineering, students must meet the requirements specified below.

Admission

For admission to the doctoral degree in biomedical engineering on regular status, the student must:

1. have a bachelor’s degree in biomedical engineering or related field;
2. have a grade-point average that would indicate success in graduate study.

Applicants who are admitted without a bachelor’s degree in biomedical engineering may be required to complete collateral course work to make up deficiencies. Collateral course work will not count towards the fulfillment of degree requirements.

International applicants are required to submit their scores on the Graduate Record Examination (GRE).

Requirements for the Doctor of Philosophy Degree in Biomedical Engineering

The doctoral degree program in biomedical engineering program of study is selected in consultation with a faculty advisor and the graduate program director. A minimum of 22 credits of course work beyond the bachelor’s degree is required in addition to doctoral dissertation research. No more than 6 credits of 400-level courses may be counted towards the degree requirements.

CREDITS

- Student’s must complete the following core course:
 - BME 803 Research Methods 3

Additional Requirements for Plan A

1. Completion of the following course:
 - BME 892 Biomedical Engineering Seminar 1
2. Complete of at least 4, but not more than 8, credits of BME 899 Master’s Thesis Research.
3. Pass a final oral examination in defense of the thesis.

Requirements for the Bachelor of Science Degree in Biosystems Engineering

The department offers a Bachelor of Science degree program with a major in biosystems engineering through the College of Engineering. That program is described below.

The department also offers a Minor in technology systems management through the College of Agriculture and Natural Resources. For information about that program, refer to the statement on the Department of Biosystems and Agricultural Engineering in the College of Agriculture and Natural Resources section of this catalog.

Students who are enrolled in the Bachelor of Science degree program with a major in biosystems engineering may elect a Minor in Plant, Animal and Microbial Biotechnology. For additional information, refer to the Minor in Plant, Animal and Microbial Biotechnology statement in the College of Agriculture and Natural Resources section of this catalog.

Biosystems Engineering

Bachelor of Science

Biosystems engineers design solutions to technical problems that involve a critical biological component. They apply quantitative skills to create products, processes, and systems that improve human existence. Working at the interface of engineering and biology, biosystems engineers are engaged in the most important challenges of our time.

There are a wide variety of job functions and application areas for our graduates, including ecosystems protection, food safety, bioenergy, biosecurity, and human health. Biosystems engineers may, for example, design sterilization and pasteurization processes to eliminate microbial pathogens and maximize the nutritional value of our food. Other graduates may design constructed wetlands, which utilize biological systems to capture pollutants and protect our precious fresh water resources. Biosystems engineers are sought after by a wide variety of employers including food manufacturers, environmental consulting firms, health industries, and government agencies who need creative individuals to integrate principles of engineering and biology successfully.

The Bachelor of Science Degree program in Biosystems Engineering is accredited by the Engineering Accreditation Commission of ABET, www.abet.org.

CREDITS

- 1. The University requirements for bachelor’s degrees as described in the Undergraduate Education section of this catalog. 128 credits, including general elective credits, are required for the Bachelor of Science degree in Biosystems Engineering.
The University’s Tier II writing requirement for the Biosystems Engineering major is met by completing Biosystems Engineering 487. That course is referenced in item 3. above.

Students who are enrolled in the College of Engineering may complete the alternative track to Integrative Studies in Biological and Physical Sciences that is described in item 1. under the heading Graduation Requirements for All Majors in the College statement. Certain courses referenced in requirement 3. below may be used to satisfy the alternative track.

2. The requirements of the College of Engineering for the Bachelor of Science degree.

The credits earning certain courses referenced in requirement 3. below may be counted toward College requirements as appropriate.

3. The following requirements for the major:

a. All of the following courses:

<table>
<thead>
<tr>
<th>COURSE</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE 101</td>
<td>Introduction to Biosystems Engineering</td>
</tr>
<tr>
<td>BE 230</td>
<td>Engineering Analysis of Biological Systems</td>
</tr>
<tr>
<td>BE 332</td>
<td>Engineering Properties of Biological Materials</td>
</tr>
<tr>
<td>BE 334</td>
<td>Biosystems Engineering Laboratory Practice</td>
</tr>
<tr>
<td>BE 350</td>
<td>Heat and Mass Transfer in Biosystems</td>
</tr>
<tr>
<td>BE 351</td>
<td>Thermodynamics for Biological Engineering</td>
</tr>
<tr>
<td>BE 360</td>
<td>Microbial Systems Engineering</td>
</tr>
<tr>
<td>BE 385</td>
<td>Engineering Design and Optimization for Biological Systems</td>
</tr>
<tr>
<td>BE 485</td>
<td>Biosystems Design Techniques</td>
</tr>
<tr>
<td>BE 487</td>
<td>Biosystems Design Project (W)</td>
</tr>
<tr>
<td>BS 161</td>
<td>Cell and Molecular Biology</td>
</tr>
<tr>
<td>BS 162</td>
<td>Organismal and Population Biology</td>
</tr>
<tr>
<td>CE 221</td>
<td>Statics</td>
</tr>
<tr>
<td>CE 274</td>
<td>Graphics for Civil and Environmental Engineers</td>
</tr>
<tr>
<td>CE 321</td>
<td>Introduction to Fluid Mechanics</td>
</tr>
<tr>
<td>CEM 143</td>
<td>Fundamentals of Organic Chemistry</td>
</tr>
<tr>
<td>CEM 161</td>
<td>Chemistry Laboratory</td>
</tr>
</tbody>
</table>

b. One of the following courses (2 credits):

<table>
<thead>
<tr>
<th>COURSE</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BS 171</td>
<td>Cell and Molecular Biology Laboratory</td>
</tr>
<tr>
<td>BS 217</td>
<td>Cell and Molecular Biology Laboratory</td>
</tr>
<tr>
<td>IBIO 314</td>
<td>Fundamental Genetics</td>
</tr>
<tr>
<td>IBIO 355</td>
<td>Ecology</td>
</tr>
<tr>
<td>MMG 301</td>
<td>Introductory Microbiology</td>
</tr>
<tr>
<td>PSL 301</td>
<td>Introductory Plant Physiology</td>
</tr>
<tr>
<td>PSL 250</td>
<td>Introductory Physiology</td>
</tr>
</tbody>
</table>

C. One of the following courses:

<table>
<thead>
<tr>
<th>COURSE</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLD 450</td>
<td>Eukaryotic Pathogens</td>
</tr>
<tr>
<td>CSS 442</td>
<td>Agricultural Ecology</td>
</tr>
<tr>
<td>CSS 451</td>
<td>Biotechnology Applications for Plant Breeding and Genetics</td>
</tr>
<tr>
<td>FOR 406</td>
<td>Applied Forest Ecology: Silviculture</td>
</tr>
<tr>
<td>FSC 440</td>
<td>Food Microbiology</td>
</tr>
<tr>
<td>MMG 425</td>
<td>Microbial Ecology</td>
</tr>
<tr>
<td>MMG 445</td>
<td>Microbial Biotechnology (W)</td>
</tr>
<tr>
<td>PSL 402</td>
<td>Biology of Fungi</td>
</tr>
<tr>
<td>PSL 424</td>
<td>Algal Biology</td>
</tr>
<tr>
<td>PSL 425</td>
<td>Physiological Biophysics</td>
</tr>
</tbody>
</table>

D. One of the following courses:

<table>
<thead>
<tr>
<th>COURSE</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE 444</td>
<td>Biosensors for Medical Diagnostics</td>
</tr>
<tr>
<td>BE 445</td>
<td>Human Health Risk Analysis and Environmental Controls</td>
</tr>
<tr>
<td>BE 456</td>
<td>Electric Power and Control</td>
</tr>
<tr>
<td>BE 469</td>
<td>Sustainable Bioenergy Systems</td>
</tr>
<tr>
<td>BE 477</td>
<td>Food Engineering: Fluids</td>
</tr>
<tr>
<td>BE 478</td>
<td>Food Engineering: Solids</td>
</tr>
<tr>
<td>BE 481</td>
<td>Water Resources Systems Analysis and Modeling</td>
</tr>
<tr>
<td>BLD 482</td>
<td>Diffuse-Source Pollution Engineering</td>
</tr>
<tr>
<td>CHE 468</td>
<td>Biomass Conversion Engineering</td>
</tr>
</tbody>
</table>

E. Four of the following courses:

<table>
<thead>
<tr>
<th>COURSE</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE 444</td>
<td>Biosensors for Medical Diagnostics</td>
</tr>
<tr>
<td>BE 445</td>
<td>Human Health Risk Analysis and Environmental Controls</td>
</tr>
<tr>
<td>BE 456</td>
<td>Electric Power and Control</td>
</tr>
<tr>
<td>BE 469</td>
<td>Sustainable Bioenergy Systems</td>
</tr>
<tr>
<td>BE 477</td>
<td>Food Engineering: Fluids</td>
</tr>
<tr>
<td>BE 478</td>
<td>Food Engineering: Solids</td>
</tr>
<tr>
<td>BE 481</td>
<td>Water Resources Systems Analysis and Modeling</td>
</tr>
<tr>
<td>BLD 482</td>
<td>Diffuse-Source Pollution Engineering</td>
</tr>
<tr>
<td>CHE 468</td>
<td>Biomass Conversion Engineering</td>
</tr>
</tbody>
</table>

Concentrations in Biosystems Engineering

The department offers concentrations for students who wish to focus on a specific application area in the discipline. The concentrations are available to, but not required of, any student enrolled in the Bachelor of Science degree program in Biosystems Engineering. Courses completed to satisfy requirement 3. above may also be used to satisfy the requirements of a concentration. The concentration will be noted on the students transcript.

Bioenergy and Bioproduct Engineering

To earn a Bachelor of Science degree in Biosystems Engineering with a bioenergy and bioproduct engineering concentration, students must complete degree requirements 1., 2., and 3. above and the following:

<table>
<thead>
<tr>
<th>COURSE</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSS 451</td>
<td>Biotechnology Applications for Plant Breeding</td>
</tr>
</tbody>
</table>

Biomedical Engineering

To earn a Bachelor of Science degree in Biosystems Engineering with a biomedical engineering concentration, students must complete degree requirements 1., 2., and 3. above and the following:

<table>
<thead>
<tr>
<th>COURSE</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLD 450</td>
<td>Eukaryotic Pathogens</td>
</tr>
<tr>
<td>PSL 425</td>
<td>Physiological Biophysics</td>
</tr>
</tbody>
</table>

Ecosystems Engineering

To earn a Bachelor of Science degree in Biosystems Engineering with an ecosystem engineering concentration, students must complete degree requirements 1., 2., and 3. above and the following:

<table>
<thead>
<tr>
<th>COURSE</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE 468</td>
<td>Biomass Conversion Engineering</td>
</tr>
</tbody>
</table>

Food Engineering

To earn a Bachelor of Science degree in Biosystems Engineering with a food engineering concentration, students must complete degree requirements 1., 2., and 3. above and the following:

<table>
<thead>
<tr>
<th>COURSE</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSS 451</td>
<td>Biotechnology Applications for Plant Breeding</td>
</tr>
</tbody>
</table>

LINKED BACHELOR’S-MASTER’S DEGREE IN BIOSYSTEMS ENGINEERING

Bachelor of Science Degree in Biosystems Engineering

Master of Science Degree in Biosystems Engineering

The department welcomes applications from Michigan State University Biosystems Engineering undergraduate students in their junior and senior year. Admission applications must be made during the prior spring semester for an anticipated spring graduation or the prior fall semester for an anticipated fall graduation to allow admission before the final semester as a Biosystems Engineering undergraduate. Admission to the program requires a minimum undergraduate grade-point average of 3.5 and an approved program of study for the Master of Science degree in Biosystems Engineering at the time of admission. Admission to
the Linked Bachelor’s-Master’s program allows the application of up to 9 credits toward the master’s program for qualifying 400-level and above course work taken at the undergraduate level at Michigan State University or another postsecondary accredited institution of comparable academic quality. The number of approved credits, not to exceed 9, are applied toward the credit requirement of the master’s degree. Credits applied to the Linked Bachelor’s-Master’s program are not eligible to be applied to any other graduate degree program.

GRADUATE STUDY

The department offers Master of Science and Doctor of Philosophy programs in biosystems engineering through the College of Agriculture and Natural Resources. For information about those programs, refer to the statement on the Department of Biosystems and Agricultural Engineering in the College of Agriculture and Natural Resources section of this catalog.

Students who are enrolled in Master of Science degree programs in the Department of Biosystems and Agricultural Engineering may elect a Specialization in Food Safety. For additional information, refer to the statement on the specialization in the College of Veterinary Medicine section of this catalog.

DEPARTMENT of CHEMICAL ENGINEERING and MATERIALS SCIENCE

Donald Morelli, Acting Chairperson

The undergraduate and graduate programs of the Department of Chemical Engineering and Materials Science have been training top-quality graduates for over 75 years. Graduates from the Department of Chemical Engineering and Materials Science are highly sought after for work on important technological and societal problems. The faculty is dedicated to strong classroom instruction and world-class research focused in the areas of energy and sustainability, advanced materials and nanotechnology, and biotechnology and medicine.

UNDERGRADUATE PROGRAMS

The Department of Chemical Engineering and Materials Science offers two Bachelor of Science degree programs, one in chemical engineering and one in materials science and engineering. Students learn to convert low-value raw materials into high-value products. Students learn how to analyze and understand different processes and how, at the macroscopic and molecular levels these processes result in different properties in the final product. Emphasis is placed on developing students who understand the technical aspects of production, the environmental, economic, and societal impact of engineering, and who possess a desire for lifelong learning and growth. Optional concentrations are available for students to focus their programs of study on areas of particular interest.

Graduates are trained to succeed in multidisciplinary teams that interface between disciplines. They work across a broad spectrum of fields including industrial chemicals, automotive, plastics, petroleum processing, pharmaceuticals, textiles, food, electronics, sensors, consumer goods, biomedical technology, and specialty materials of construction. Within these fields, our graduates are involved in research and development of products and processes, in the design and operation of manufacturing facilities, and in management and product quality control.

CHEMICAL ENGINEERING

Chemical engineers convert raw materials to finished products via pathways involving chemical and physical changes. The principles of mass, energy, and momentum conservation, chemical reactions, thermodynamics, and economics are applied to develop new products and to design and operate manufacturing facilities to produce products that benefit society. Chemical engineering principles are, in turn, based on the sciences of chemistry, biology, mathematics, and physics, which form the underlying foundation of the discipline.

Students in this degree program will study the application of chemical engineering principles to biochemical and biomedical systems, nanoscale devices, polymer processing, and novel energy systems. Principles of sustainability, environmentally-friendly “green” processing, entrepreneurship, and other emerging topics are also addressed in courses and concentrations.

The Bachelor of Science Degree program in Chemical Engineering is accredited by the Engineering Accreditation Commission of ABET, www.abet.org.

Requirements for the Bachelor of Science Degree in Chemical Engineering

1. The University requirements for bachelor’s degrees as described in the Undergraduate Education section of this catalog; 128 credits, including general elective credits, are required for the Bachelor of Science degree in Chemical Engineering. The University’s Tier II writing requirement for the Chemical Engineering major is met by completing Chemical Engineering 316 and 433. Those courses are referenced in item 3. a. below.

Students who are enrolled in the College of Engineering may complete the alternative track to Integrative Studies in Biological and Physical Sciences that is described in item 1. under the heading Graduation Requirements for All Majors in the College statement. Certain courses referenced in requirement 3. below may be used to satisfy the alternative track.

2. The requirements of the College of Engineering for the Bachelor of Science degree. The credits earned in certain courses referenced in requirement 3. below may be counted toward College requirements as appropriate.

3. The following requirements for the major:

 a. All of the following courses: ... 58

 BS 161 Cell and Molecular Biology 3
 CEM 151 General and Descriptive Chemistry 4
 CEM 152 Principles of Chemistry 3
 CEM 161 Chemistry Laboratory I 1
 CEM 162 Chemistry Laboratory II2
 CEM 351 Organic Chemistry I 3
 CEM 352 Organic Chemistry II 3
 CEM 355 Organic Laboratory I 2
 CHE 201 Material and Energy Balances 3
 CHE 210 Modeling and Analysis of Transport Phenomena 3
 CHE 301 Chemical Engineering as a Profession 1
 CHE 311 Fluid Flow and Heat Transfer 3
 CHE 312 Mass Transfer and Separations 4
 CHE 316 Laboratory Practice and Statistical Analysis 4
 CHE 321 Thermodynamics for Chemical Engineering 4
 CHE 431 Chemical Reaction Engineering 4
 CHE 432 Process Analysis and Control 3
 CHE 433 Process Design and Optimization I 4
 CHE 434 Process Design and Optimization II 3
 CHE 473 Chemical Engineering Principles in Polymers and Material Systems 3

 b. One of the following: .. 4 or 6

 (1) BMB 401 Comprehensive Biochemistry 4
 (2) BMB 461 Advanced Biochemistry I 3
 (3) BMB 462 Advanced Biochemistry II 3

 c. One of the following courses: 3
 CHE 472 Composite Materials Processing 3
 CHE 481 Chemical Engineering 3

 d. One of the following courses: 3
 CEM 483 Quantum Chemistry 3
 CEM 484 Molecular Thermodynamics 3

 e. Technical Electives. Students must complete at least 6 credits of technically oriented subject-related courses approved by the student’s advisor. Acceptable subjects include, but are not limited to, composites pro-
Concentrations in Chemical Engineering

In response to increasing interest in the application of chemical engineering principles to related fields, the Department of Chemical Engineering and Materials Science offers concentrations in biochemical engineering, bioenergy, biomedical engineering, environmental engineering, food science, and polymer science and engineering to students wishing an area of concentration in the degree. Concentrations are available to, but not required of, any student enrolled in the Bachelor of Science degree program in chemical engineering. The concentration will be noted on the student's transcript.

NOTE: Completing the Bachelor of Science degree in chemical engineering with a concentration may require more than 128 credits.

Biochemical Engineering
To earn a Bachelor of Science degree in Chemical Engineering with a biochemical engineering concentration, students must complete requirements 1., 2., 3. a., and 3.d. above and the following:

Both of the following courses: 6

CHE 481 Biochemical Engineering .. 3
MMG 301 Introductory Microbiology 3

One of the following courses: 4 or 6

(1) BMB 401 Comprehensive Biochemistry 4
(2) BMB 461 Advanced Biochemistry I 3
BMB 462 Advanced Biochemistry II 3

Two or three of the following courses. Students who chose BMB 401 above must complete three courses. Students who chose BMB 461 and 462 above must complete two courses:

BMB 829 Methods of Macromolecular Analysis and Synthesis 2
CHE 882 Advanced Biochemical Engineering 3
CHE 883 Multidisciplinary Bioprocessing Laboratory 3
MMG 409 Eukaryotic Cell Biology 3
MMG 421 Prokaryotic Cell Physiology 3
MMG 431 Microbial Genetics ... 3
MMG 445 Microbial Biotechnology (W) 3

Bioenergy
To earn a Bachelor of Science degree in Chemical Engineering with a bioenergy concentration, students must complete requirements 1., 2., 3. a., 3.b., and 3.d. above and the following:

All of the following courses: 12

BE 489 Sustainable Bioenergy Systems 3
CHE 486 Biomass Conversion Engineering 3
CHE 481 Biochemical Engineering 3
CSS 467 Bioenergy Feedback Production 3

One of the following courses: 3 or 4

AEC 829 Economics of Environmental Resources 3
CHE 882 Advanced Biochemical Engineering 3
CHE 883 Multidisciplinary Bioprocessing Laboratory 3
GLG 471 Applied Geophysics ... 4
MC 450 International Environmental Law and Policy 3
MMG 445 Microbial Biotechnology (W) 3

Biomedical Engineering
To earn a Bachelor of Science degree in Chemical Engineering with a biomedical engineering concentration, students must complete requirements 1., 2., 3. a., 3.b., and 3.d. above and the following:

All of the following courses: 9

CHE 481 Biochemical Engineering 3
MMG 409 Eukaryotic Cell Biology 3
PSL 431 Human Physiology I ... 3
BMB 471 Advanced Biochemistry Laboratory 6 or 7
CHE 883 Multidisciplinary Bioprocessing Laboratory 3
ME 494 Biofluid Dynamics and Heat Transfer 3
ZOL 341 Fundamental Genetics .. 4

Environmental
To earn a Bachelor of Science degree in Chemical Engineering with an environmental concentration, the student must complete requirements 1., 2., and 3. a., 3.b., and 3.d. above and the following:

Both of the following courses: 6

CHE 481 Biochemical Engineering 3
ENE 280 Principles of Environmental Engineering and Science ... 3

Three of the following courses: 9

CE 485 Landfill Design ... 3
CSUS 200 Introduction to Sustainability 3
CSUS 465 Environmental Law and Policy 3
EEP 255 Ecological Economics ... 3
EEP 320 Environmental Economics 3
EEP 405 Corporate Environmental Management 3
ENE 481 Environmental Chemistry: Equilibrium Concepts 3
ENE 483 Water and Wastewater Engineering 3
ENE 489 Air Pollution: Science and Engineering 3

Food Science
To earn a Bachelor of Science degree in Chemical Engineering with a food science concentration, students must complete requirements 1., 2., 3. a., 3.b., 3.c., and 3.d. above and all of the following:

All of the following courses: 9

FSC 401 Food Chemistry ... 3
FSC 440 Food Microbiology .. 3
MMG 301 Introductory Microbiology 3

One of the following courses: 3 or 4

BE 477 Food Engineering: Fluids 3
BE 478 Food Engineering: Solids 3
FSC 325 Food Processing. Unit Operations 3
FSC 455 Food and Nutrition Laboratory 3
FSC 470 Integrated Approaches to Food Product Development 3

Polymer Science and Engineering
To earn a Bachelor of Science degree in Chemical Engineering with a polymer science and engineering concentration, students must complete requirements 1., 2., 3. a., 3.b., and 3.d. above and all of the following:

All of the following courses: 9

CE 221 Statics .. 3
FSC 472 Composite Materials Processing 3
ME 222 Mechanics of Deformable Solids 3

Two of the following courses: 6 or 7

CHE 871 Material Surfaces and Interfaces 3
CHE 872 Polymers and Composites: Manufacturing, Structure and Performance .. 3

MSE 370 Synthesis and Processing of Materials 3
MSE 426 Introduction to Composite Materials 3
PKG 323 Packaging with Plastics .. 4

MATERIALS SCIENCE and ENGINEERING

Materials Science and Engineering majors learn to select and create materials used to realize engineering designs in fields such as bioengineering, microelectronics and aerospace. They also learn how to manipulate the elements of matter into the atomic arrangements that insure efficient and cost-effective materials performance, demanded by today’s advanced applications.

The core course work, students gain the scientific and engineering foundation needed to design metallic, ceramic, polymeric, and composite materials and, in turn, components manufactured from these materials. Students may enhance the knowledge they gain in metals, ceramics, and polymers by completing a concentration in biomedical materials, manufacturing, polymers, or metallurgy. Students may also choose to enroll in electives of complementary fields such as business, electronic materials or statistics. Honors students are encouraged to request an honors option with the instructors of MSE courses listed in item 3. a. below.

The Bachelor of Science Degree program in Materials Science and Engineering is accredited by the Engineering Accreditation Commission of ABET, www.abet.org.

Requirements for the Bachelor of Science Degree in Materials Science and Engineering

1. The University requirements for bachelor’s degrees as described in the Undergraduate Education section of this catalog. 128 credits, including general elective credits, are required for the Bachelor of Science degree in Materials Science and Engineering.

The University’s Tier II writing requirement for the Materials Science and Engineering major is met by completing Materials Science and Engineering 466. That course is referenced in item 3. a. below.

Students who are enrolled in the College of Engineering may complete the alternative track to Integrative Studies in Biological and Physical Sciences that is described in Item 1. under the heading Graduation Requirements for All Majors in the College statement. Certain courses referenced in requirement 3. b. below may be used to satisfy the alternative track.

2. The requirements of the College of Engineering for the Bachelor of Science degree.

The credits earned in certain courses referenced in requirement 3. b. below may be counted toward College requirements as appropriate.
ENGINEERING
Department of Chemical Engineering and Materials Science

3. The following requirements for the major:

a. All of the following courses: ... 41
 CE 221 Statics .. 3
 CEM 152 Principles of Chemistry 3
 CEM 161 Chemistry Laboratory 1
 ECE 345 Electronic Instrumentation and Systems 3
 ME 222 Mechanics of Deformable Solids 3
 MSE 250 Materials Science and Engineering 3
 MSE 260 Electronic, Magnetic, Thermal and Optical
 Properties of Materials ... 3
 MSE 310 Phase Equilibria in Materials 3
 MSE 320 Mechanical Properties of Materials 3
 MSE 331 Materials Characterization Methods I. 2
 MSE 360 Fundamentals of Microstructural Design 3
 MSE 370 Synthesis and Processing of Materials 3
 MSE 381 Materials Characterization Methods II. 2
 MSE 466 Design and Failure Analysis (W) 3
 STT 351 Probability and Statistics for Engineering 3
 Electrical and Computer Engineering 302 and 303 may be
 substituted for Electrical and Computer Engineering 345. ...

b. Four of the following courses: ... 12
 ME 477 Manufacturing Processes 3
 MSE 425 Biomaterials and Biocompatibility 3
 MSE 474 Electronic Structure and Bonding in Materials
 and Devices .. 3
 MSE 465 Design and Application of Engineering
 Materials .. 3
 MSE 476 Physical Metallurgy of Ferrous and Aluminum
 Alloys .. 3

c. Complete at least 6 credits from 400-level courses within the
 College of Engineering ...

d. Complete at least 3 credits in courses selected from a list of ap-
 proved technical electives available from the Department of
 Chemical Engineering and Materials Science.

Concentrations in Materials Science and Engineering

Students may elect to complete a more focused set of courses to enhance their ability to function at the interface with another scientific, engineering, or business discipline. Concentrations are available to, but not required of, any student enrolled in the Bachelor of Science degree in Materials Science and Engineering. Completing the Bachelor of Science degree in Materials Science and Engineering with a concentration may require more than 128 credits. The concentration will be noted on the student's transcript.

Biomedical Materials Engineering

To gain interdisciplinary skills in human biology and earn a Bachelor of Science degree in Materials Science and Engineering with a biomedical materials engineering concentration, students must complete requirement 3. a. above and the following (28 credits):

1. All of the following courses (16 credits):
 ANTR 350 Human Gross Anatomy for Pre-Health Professionals 3
 CEM 351 Organic Chemistry I 3
 ME 495 Tissue Mechanics ... 3
 MSE 425 Biomaterials and Biocompatibility 3
 ZOL 341 Fundamental Genetics 4

2. Two of the following courses (3 credits):
 ME 477 Manufacturing Processes 3
 MSE 474 Electronic, Magnetic, Thermal and Optical
 Properties of Materials .. 3
 MSE 465 Design and Application of Engineering Materials 3
 MSE 476 Physical Metallurgy of Ferrous and Aluminum
 Alloys .. 3

3. At least 6 credits from a list of approved technical electives 6

Manufacturing Engineering

To gain interdisciplinary skills with business and design engineers for manufacturing projects and earn a Bachelor of Science degree in Materials Science and Engineering with a manufacturing engineering concentration, students must complete requirement 3. a. above and the following (21 credits):

1. All of the following courses (12 credits):
 ECE 415 Computer Aided Manufacturing 3
 ME 474 Manufacturing Processes 3
 ME 478 Product Development 3
 MSE 465 Design and Application of Engineering Materials ... 3

2. Three of the following courses (9 credits):
 GBL 323 Introduction to Business Law 3
 MSE 426 Introduction to Composite Materials 3
 MSE 476 Physical Metallurgy of Ferrous and Aluminum
 Alloys .. 3

Completion of this concentration fulfills requirement 2. of the admission requirements for the Master of Science degree in Manufacturing and Engineering Management offered by The Eli Broad College of Business.

Metalurgical Engineering

To enhance the student's ability to characterize, process, and design with metals in association with mechanical engineers and earn a Bachelor of Science degree in Materials Science and Engineering with a metallurgical engineering concentration, students must complete requirement 3. a. above and the following (21 credits):

1. All of the following courses (16 credits):
 ME 423 Intermediate Mechanics of Deformable Solids 3
 ME 475 Computer Aided Design of Structures 3
 ME 477 Manufacturing Processes 3
 MSE 485 Spectroscopic and Diffraction Analysis of Materials ... 3
 MSE 465 Design and Application of Engineering Materials 3
 MSE 476 Physical Metallurgy of Ferrous and Aluminum Alloys 3

2. One of the following courses (3 credits):
 ME 425 Experimental Mechanics 3

Polymeric Engineering

To gain interdisciplinary skills to facilitate interactions with chemical engineers and earn a Bachelor of Science degree in Materials Science and Engineering with a polymeric engineering concentration, students must complete requirement 3. a. above and the following (21 credits):

1. All of the following courses (16 credits):
 CEM 351 Organic Chemistry I 3
 ME 477 Manufacturing Processes 3
 CHE 311 Fluid Flow and Heat Transfer 3
 CHE 472 Composite Materials Processing 3
 CHE 473 Chemical Engineering Principles in Polymers and
 Materials Systems ... 3
 MSE 426 Introduction to Composite Materials 3
 MSE 460 Electronic Structure and Bonding in Materials
 and Devices .. 3

2. Complete at least 3 credits in courses selected from a list of approved technical electives available from the Department of Chemical Engineering and Materials Science.

MINOR IN MATERIALS SCIENCE AND ENGINEERING

The Minor in Materials Science and Engineering, which is administered by the Department of Chemical Engineering and Materials Science, provides students with a basic foundation in materials science that is applicable to many disciplines. The minor also offers opportunities for students to work in industry, research, or government, as well as to prepare for graduate study in materials science.

The minor is available as an elective to students in a bachelor’s degree program in the College of Engineering, other than the Bachelor of Science Degree in Materials Science and Engineering. With the approval of the college, the courses that are used to satisfy the minor may also be used to satisfy the requirements for the bachelor’s degree.

Students who plan to complete the requirements for the minor must apply to the Department of Chemical Engineering and Materials Science. To be accepted into the minor, the student must be admitted into the College of Engineering. Enrollment for some MSE courses may be limited. Application forms are available at www.chems.msu.edu.

Requirements for the Minor in Materials Science and Engineering

CREDITS

Complete 16 credits from the following:

1. Both of the following courses (6 credits):
 MSE 250 Materials Science and Engineering 3
 MSE 360 Fundamentals of Microstructural Design 3

2. One of the following courses (3 credits):
 MSE 260 Electronic, Magnetic, Thermal and Optical
 Properties of Materials .. 3
 MSE 310 Phase Equilibria in Materials 3
 MSE 320 Mechanical Properties of Materials 3
 MSE 370 Synthesis and Processing of Materials 3

3. Three of the following courses (9 credits):
 MSE 310 Phase Equilibria in Materials 3
 MSE 320 Mechanical Properties of Materials 3
 MSE 410 Materials Foundations for Energy Applications 3
 MSE 425 Biomaterials and Biocompatibility 3
 MSE 460 Electronic Structure and Bonding in Materials
 and Devices .. 3
 MSE 465 Design and Application of Engineering Materials 3
 MSE 466 Design and Failure Analysis (W) 3
 MSE 474 Ceramic and Refractory Materials 3
 MSE 476 Physical Metallurgy of Ferrous and Aluminum Alloys 3

12
The Department of Chemical Engineering and Materials Science offers Master of Science and Doctor of Philosophy degree programs in chemical engineering and in materials science and engineering. A wide range of course offerings and research activities allows an individual program to be designed to fit the background, capabilities, and aims of the student. Studies in the department may be supplemented with courses offered by other departments in the College of Engineering and in other colleges.

LINKED BACHELOR’S-MASTER’S DEGREE IN CHEMICAL ENGINEERING

Bachelor of Science Degree in Chemical Engineering
Master of Science Degree in Chemical Engineering

The department welcomes applications from Michigan State University Chemical Engineering undergraduate students in their junior and senior year. Admission applications must be made during the prior spring semester for an anticipated spring graduation or the prior fall semester for an anticipated fall graduation to allow admission before the final semester as a Chemical Engineering undergraduate. Admission to the program requires a minimum undergraduate grade-point average of 3.5 and an approved program of study for the Master of Science degree in Chemical Engineering at the time of admission. Admission to the Linked Bachelor’s-Master’s program allows the application of up to 9 credits toward the master’s program for qualifying 400-level and above course work taken at the undergraduate level at Michigan State University or another postsecondary accredited institution of comparable academic quality. The number of approved credits, not to exceed 9, are applied toward the credit requirement of the master’s degree. Credits applied to the Linked Bachelor’s-Master’s program are not eligible to be applied to any other graduate degree program.

LINKED BACHELOR’S-MASTER’S DEGREE IN MATERIALS SCIENCE AND ENGINEERING

Bachelor of Science Degree in Materials Science and Engineering
Master of Science Degree in Materials Science and Engineering

The department welcomes applications from Michigan State University Materials Science and Engineering undergraduate students in their junior and senior year. Admission applications must be made during the prior spring semester for an anticipated spring graduation or the prior fall semester for an anticipated fall graduation to allow admission before the final semester as a Materials Science and Engineering undergraduate. Admission to the program requires a minimum undergraduate grade-point average of 3.5 and an approved program of study for the Master of Science degree in Materials Science and Engineering at the time of admission. Admission to the Linked Bachelor’s-Master’s program allows the application of up to 9 credits toward the master’s program for qualifying 400-level and above course work taken at the undergraduate level at Michigan State University or another postsecondary accredited institution of comparable academic quality. The number of approved credits, not to exceed 9, are applied toward the credit requirement of the master’s degree. Credits applied to the Linked Bachelor’s-Master’s program are not eligible to be applied to any other graduate degree program.

GRADUATE STUDY

The Department of Chemical Engineering and Materials Science offers Master of Science and Doctor of Philosophy degree programs in chemical engineering and in materials science and engineering. A wide range of course offerings and research activities allows an individual program to be designed to fit the background, capabilities, and aims of the student. Studies in the department may be supplemented with courses offered by other departments in the College of Engineering and in other colleges.

The graduate programs in chemical engineering and materials science and engineering are designed to develop research expertise needed for the graduate to serve as a principal investigator in industrial or academic research. Course work is designed to expand the student’s knowledge of engineering principles and applications. Each student conducts an extensive research project that significantly advances fundamental understanding of a chemical engineering or materials science system. Results of the research are documented in a thesis, dissertation, and research paper(s) for publication in a peer-reviewed journal.

CHEMICAL ENGINEERING

Emphasis in the graduate programs in chemical engineering is placed upon a fundamental approach to chemical engineering principles and the applications of chemistry and advanced mathematics. Selected topics in chemical engineering are developed from a fundamental viewpoint, with opportunity for study and research in such areas as process design; thermodynamics; chemical reaction engineering; mass, heat, and momentum transfer; separations; polymers and composite materials; nanomaterials; and biochemical and biomedical engineering. The department has three primary thematic areas: energy and sustainability, nanotechnology and materials, and biotechnology and medicine.

Master of Science

In addition to meeting the requirements of the University and of the College of Engineering, students must meet the requirements specified below.

Admission

An applicant for admission to the master’s degree program in chemical engineering must hold a bachelor’s degree in chemical engineering or a related field and must have a grade-point average that would indicate success in graduate study.

International applicants must submit their scores on the Graduate Record Examination General Test. Students who are admitted to the program with a bachelor’s degree in a field related to chemical engineering will be required to complete the following collateral courses, in addition to the courses that are required for the master’s degree:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE 432</td>
<td>Process Systems Control</td>
<td>3</td>
</tr>
<tr>
<td>CHE 433</td>
<td>Process Design and Optimization I</td>
<td>3</td>
</tr>
<tr>
<td>CHE 804</td>
<td>Thermodynamics and Kinetics in Chemical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CHE 805</td>
<td>Transport and Separation Processes</td>
<td>3</td>
</tr>
</tbody>
</table>

Equivalent undergraduate–level chemical engineering courses may be substituted for Chemical Engineering 804 and 805.

Requirements for the Master of Science Degree in Chemical Engineering

The students must complete a total of 30 credits for the degree under Plan A (with thesis) or Plan B (without thesis), and meet the requirements specified below. Students in Plan A must complete a minimum of 20 credits at the 800-level or above. Students in Plan B must complete a minimum of 18 credits at the 800-level or above. Courses at the 400-level are acceptable as long as the minimum credit requirement is met at the 800-level. Courses below the 400-level are not acceptable.

Requirements for Both Plan A and Plan B:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE 801</td>
<td>Advanced Chemical Engineering Calculations</td>
<td>3</td>
</tr>
<tr>
<td>CHE 802</td>
<td>Research Methods</td>
<td>3</td>
</tr>
<tr>
<td>CHE 821</td>
<td>Advanced Chemical Engineering Thermodynamics</td>
<td>3</td>
</tr>
</tbody>
</table>

- **1. Core Courses**. All of the following courses:
 - CHE 801 Advanced Chemical Engineering Calculations
 - CHE 802 Research Methods
 - CHE 821 Advanced Chemical Engineering Thermodynamics

15

13
EngineerinG
Department of Chemical Engineering and Materials Science

CHE 822 Advanced Transport Phenomena 3
CHE 831 Advanced Chemical Reaction Engineering 3
2. Supporting Courses. Six credits in courses outside the Department of Chemical Engineering and Materials Science approved by the student's academic advisor. 6

Additional Requirements for Plan A
1. Complete 6 credits of CHE 899 Master's Thesis Research
2. Additional elective credits as approved by the student's academic advisor.

Additional Requirements for Plan B
1. Complete 6 to 9 credits in a coordinated technical minor as approved by the student's academic advisor.
2. Pass a final examination, oral or written, given by the student's academic advisor.

Doctor of Philosophy
In addition to meeting the requirements of the university and of the College of Engineering, students must meet the requirements specified below.

Admission
An applicant for admission to the Ph.D. degree program in chemical engineering must hold a bachelor's or master's degree in chemical engineering or a related field and must have a grade-point average that would indicate success in graduate study.

Applicants must submit their scores on the Graduate Record Examination General Test.

Requirements for the Doctor of Philosophy Degree in Chemical Engineering
In addition to meeting the requirements of the university and of the College of Engineering, students must meet the requirements specified by their guidance committees.

The Doctor of Philosophy degree in Chemical Engineering, as detailed in the graduate handbook for chemical engineering, is comprised of course work, research and selection of an advisor, a qualifying examination, formation of a guidance committee and doctoral degree program, a comprehensive examination, and successful completion of a dissertation and final oral examination in defense of the dissertation.

MATERIALS SCIENCE AND ENGINEERING

Master of Science
In addition to meeting the requirements of the university and of the College of Engineering, students must meet the requirements specified below.

Admission
The department welcomes applications from students who possess a bachelor's degree in a related engineering or science discipline.

Requirements for the Master of Science Degree in Materials Science and Engineering
The student must complete a total of 30 credits for the degree under either Plan A (with thesis) or Plan B (without thesis) and meet the requirements specified below. Students must complete a minimum of 18 credits at the 800-level or above.

Requirements for Both Plan A and Plan B:
The student must complete:
1. Core Courses. All of the following courses (12 credits):

 - CHE 822 Advanced Transport Phenomena................................. 3
 - CHE 831 Advanced Chemical Reaction Engineering 3

2. Supporting Courses. Six credits in courses outside the Department of Chemical Engineering and Materials Science approved by the student's academic advisor. 6

Additional Requirements for Plan A
1. Complete 6 credits of CHE 899 Master's Thesis Research
2. Additional elective credits as approved by the student's academic advisor.

Additional Requirements for Plan B
1. Complete 6 to 9 credits in a coordinated technical minor as approved by the student's academic advisor.
2. Pass a final examination, oral or written, given by the student's academic advisor.

Doctor of Philosophy
In addition to meeting the requirements of the university and of the College of Engineering, students must meet the requirements specified below.

Admission
An applicant for admission to the Ph.D. degree program in materials science and engineering must hold a bachelor's or master's degree in materials science and engineering or a related field and must have a grade-point average that would indicate success in graduate study. Applicants must submit their scores on the Graduate Record Examination General Test.

Requirements for the Doctor of Philosophy Degree in Materials Science and Engineering
In addition to meeting the requirements of the university and of the College of Engineering, students must meet the requirements specified by their guidance committee.

The Doctor of Philosophy degree in Materials Science and Engineering, as detailed in the graduate handbook for materials science and engineering, is comprised of course work, research and selection of an advisor, a qualifying examination, formation of a guidance committee and doctoral degree program, a comprehensive examination, and successful completion of a dissertation and final oral examination in defense of the dissertation.

DEPARTMENT of CIVIL and ENVIRONMENTAL ENGINEERING

Venkatesh Kodur, Chairperson

UNDERGRADUATE PROGRAMS

The Department of Civil and Environmental Engineering offers Bachelor of Science degrees in Civil Engineering and Environmental Engineering. Each program is described below.
CIVIL ENGINEERING

The civil engineering major is designed to provide graduates with a broad understanding of the physical factors involved in the planning, design, and operation of public and private facilities. The bachelor’s degree program in civil engineering is oriented to the application of engineering principles to several areas of specialization, including transportation, structures, geotechnical engineering, environmental engineering, water resources, and pavement and materials. The Bachelor of Science degree program in Civil Engineering is accredited by the Engineering Accreditation Commission of ABET, www.abet.org.

Requirements for the Bachelor of Science Degree in Civil Engineering

1. The University requirements for bachelor’s degrees as described in the Undergraduate Education section of this catalog; 128 credits, including general elective credits, are required for the Bachelor of Science degree in Engineering.

 The University’s Tier II writing requirement for the Civil Engineering major is met by completing Civil Engineering 321 and 341. Those courses are referenced in item 3. a. below.

 Students who are enrolled in the College of Engineering may complete the alternative track to Integrative Studies in Biological and Physical Sciences that is described in item 1. under the heading Graduation Requirements for All Majors in the College statement. Certain courses referenced in requirement 3. below may be used to satisfy the alternative track.

2. The requirements of the College of Engineering for the Bachelor of Science degree.

 The credits earned in certain courses referenced in requirement 3. below may be counted toward College requirements as appropriate.

3. The following requirements for the major:

 a. All of the following courses: ... 43

 CREDITS

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 221</td>
<td>Statics</td>
<td>3</td>
</tr>
<tr>
<td>CE 273</td>
<td>Civil and Environmental Engineering Measurement</td>
<td>2</td>
</tr>
<tr>
<td>CE 274</td>
<td>Graphics for Civil and Environmental Engineers</td>
<td>1</td>
</tr>
<tr>
<td>CE 305</td>
<td>Introduction to Structural Analysis</td>
<td>3</td>
</tr>
<tr>
<td>CE 312</td>
<td>Soil Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>CE 321</td>
<td>Introduction to Fluid Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>CE 337</td>
<td>Civil Engineering Materials I</td>
<td>4</td>
</tr>
<tr>
<td>CE 341</td>
<td>Transportation Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CE 371</td>
<td>Sustainable Civil Environmental Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CE 372</td>
<td>Risk Analysis in Civil and Environmental Systems</td>
<td>3</td>
</tr>
<tr>
<td>CE 495</td>
<td>Senior Design in Civil and Environmental System</td>
<td>2</td>
</tr>
<tr>
<td>CEM 161</td>
<td>Chemistry Laboratory I</td>
<td>1</td>
</tr>
<tr>
<td>ENE 280</td>
<td>Principles of Environmental Engineering and Science</td>
<td>3</td>
</tr>
<tr>
<td>GLG 301</td>
<td>Geology of Continents and Oceans</td>
<td>3</td>
</tr>
<tr>
<td>ME 222</td>
<td>Mechanics of Deformable Solids</td>
<td>3</td>
</tr>
<tr>
<td>CE 461</td>
<td>Computational Methods in Civil Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ME 361</td>
<td>Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>BE 351</td>
<td>Thermodynamics for Biological Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ECE 345</td>
<td>Electronic Instrumentation and Systems</td>
<td>3</td>
</tr>
<tr>
<td>ME 201</td>
<td>Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td>MSE 250</td>
<td>Materials Science and Engineering</td>
<td>3</td>
</tr>
</tbody>
</table>

 b. One of the following courses: ... 3

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BS 161</td>
<td>Cell and Molecular Biology</td>
<td>3</td>
</tr>
<tr>
<td>BS 162</td>
<td>Organismal and Population Biology</td>
<td>3</td>
</tr>
<tr>
<td>CE 221</td>
<td>Statics</td>
<td>3</td>
</tr>
<tr>
<td>CE 273</td>
<td>Civil and Environmental Engineering Measurements</td>
<td>2</td>
</tr>
<tr>
<td>CE 274</td>
<td>Graphics for Civil and Environmental Engineers</td>
<td>1</td>
</tr>
<tr>
<td>CE 321</td>
<td>Introduction to Fluid Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>CE 371</td>
<td>Sustainable Civil Environmental Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CE 372</td>
<td>Risk Analysis in Civil and Environmental System</td>
<td>3</td>
</tr>
<tr>
<td>CE 495</td>
<td>Senior Design in Civil and Environmental System</td>
<td>2</td>
</tr>
<tr>
<td>CEM 161</td>
<td>Chemistry Laboratory I</td>
<td>1</td>
</tr>
<tr>
<td>CHE 201</td>
<td>Material and Energy Balances</td>
<td>3</td>
</tr>
<tr>
<td>ENE 280</td>
<td>Principles of Environmental Engineering and Science</td>
<td>3</td>
</tr>
</tbody>
</table>

 c. One of the following courses: ... 3

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENE 481</td>
<td>Environmental Chemistry: Equilibrium Concepts</td>
<td>3</td>
</tr>
<tr>
<td>ENE 483</td>
<td>Water and Wastewater Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ENE 487</td>
<td>Microbiology for Environmental Science and Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ENE 489</td>
<td>Air Pollution: Science and Engineering</td>
<td>3</td>
</tr>
<tr>
<td>GE 481</td>
<td>Geotechnical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CE 431</td>
<td>Pavement Design and Analysis I</td>
<td>3</td>
</tr>
<tr>
<td>CE 831</td>
<td>Advanced Concrete Pavement Analysis</td>
<td>3</td>
</tr>
<tr>
<td>CE 832</td>
<td>Advanced Asphalt Pavement Analysis</td>
<td>3</td>
</tr>
<tr>
<td>Structures</td>
<td>Design of Steel Structures</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Design of Concrete Structures</td>
<td>3</td>
</tr>
</tbody>
</table>

ENVIRONMENTAL ENGINEERING

The environmental engineering major is designed to provide graduates with the engineering and scientific principles to analyze, design, and manage environmental systems, including water supplies, wastewater treatment facilities, air pollution control systems, surface and groundwater resources, and landfills. The program offers a thorough background in engineering fundamentals, along with a broad understanding of mathematical, physical, chemical, and biological concepts as they relate to environmental engineering.

The Bachelor of Science degree program in Environmental Engineering is accredited by the Engineering Accreditation Commission of ABET, www.abet.org.

Requirements for the Bachelor of Science Degree in Environmental Engineering

1. The University requirements for bachelor’s degrees as described in the Undergraduate Education section of this catalog; 128 credits, including general elective credits, are required for the Bachelor of Science degree in Environmental Engineering.

 The University’s Tier II writing requirement for the Environmental Engineering major is met by completing Civil Engineering 321. That course is referenced in item 3. a. below.

 Students who are enrolled in the College of Engineering may complete the alternative track to Integrative Studies in Biological and Physical Sciences that is described in item 1. under the heading Graduation Requirements for All Majors in the College statement. Certain courses referenced in requirement 3. below may be used to satisfy the alternative track.

2. The requirements of the College of Engineering for the Bachelor of Science degree.

 The credits earned in certain courses referenced in requirement 3. below may be counted toward College requirements as appropriate.

3. The following requirements for the major:

 a. All of the following courses (51 credits): 3

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BS 161</td>
<td>Cell and Molecular Biology</td>
<td>3</td>
</tr>
<tr>
<td>BS 162</td>
<td>Organismal and Population Biology</td>
<td>3</td>
</tr>
<tr>
<td>CE 221</td>
<td>Statics</td>
<td>3</td>
</tr>
<tr>
<td>CE 273</td>
<td>Civil and Environmental Engineering Measurements</td>
<td>2</td>
</tr>
<tr>
<td>CE 274</td>
<td>Graphics for Civil and Environmental Engineers</td>
<td>1</td>
</tr>
<tr>
<td>CE 321</td>
<td>Introduction to Fluid Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>CE 371</td>
<td>Sustainable Civil Environmental Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CE 372</td>
<td>Risk Analysis in Civil and Environmental System</td>
<td>3</td>
</tr>
<tr>
<td>CE 495</td>
<td>Senior Design in Civil and Environmental System</td>
<td>2</td>
</tr>
<tr>
<td>CEM 161</td>
<td>Chemistry Laboratory I</td>
<td>1</td>
</tr>
<tr>
<td>CHE 201</td>
<td>Material and Energy Balances</td>
<td>3</td>
</tr>
<tr>
<td>ENE 280</td>
<td>Principles of Environmental Engineering and Science</td>
<td>3</td>
</tr>
</tbody>
</table>

 b. One of the following courses (3 credits): 3

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENE 421</td>
<td>Engineering Hydrology</td>
<td>3</td>
</tr>
<tr>
<td>ENE 422</td>
<td>Applied Hydraulics</td>
<td>3</td>
</tr>
<tr>
<td>ENE 480</td>
<td>Environmental Measurements Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>ENE 481</td>
<td>Environmental Chemistry: Equilibrium Concepts</td>
<td>3</td>
</tr>
<tr>
<td>ENE 483</td>
<td>Water and Wastewater Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ENE 487</td>
<td>Microbiology for Environmental Science and Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CMP 411</td>
<td>Cost Estimating and Analysis</td>
<td>3</td>
</tr>
<tr>
<td>CE 321</td>
<td>Thermodynamics for Commercial Engineering</td>
<td>4</td>
</tr>
<tr>
<td>ME 201</td>
<td>Thermodynamics</td>
<td>3</td>
</tr>
</tbody>
</table>

CREDITS

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 805</td>
<td>Advanced Design of Steel Structures</td>
<td>3</td>
</tr>
<tr>
<td>CE 806</td>
<td>Advanced Structural Concrete Design</td>
<td>3</td>
</tr>
<tr>
<td>CE 444</td>
<td>Principles of Traffic Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CE 448</td>
<td>Transportation Planning</td>
<td>3</td>
</tr>
<tr>
<td>CE 449</td>
<td>Highway Design</td>
<td>3</td>
</tr>
<tr>
<td>ENE 421</td>
<td>Engineering Hydrology</td>
<td>3</td>
</tr>
<tr>
<td>ENE 422</td>
<td>Applied Hydraulics</td>
<td>3</td>
</tr>
<tr>
<td>ENE 423</td>
<td>Groundwater Modeling</td>
<td>3</td>
</tr>
<tr>
<td>CMP 311</td>
<td>Construction Project Scheduling</td>
<td>3</td>
</tr>
<tr>
<td>CMP 415</td>
<td>Cost Estimating and Analysis</td>
<td>3</td>
</tr>
<tr>
<td>CE 321</td>
<td>Thermodynamics for Chemical Engineering</td>
<td>4</td>
</tr>
<tr>
<td>ME 201</td>
<td>Thermodynamics</td>
<td>3</td>
</tr>
</tbody>
</table>
The department welcomes applications from Michigan State University Civil Engineering undergraduate students in their junior and senior year. Admission applications must be made during the prior spring semester for an anticipated spring graduation or the prior fall semester for an anticipated fall graduation to gain admission before the final semester as a Civil Engineering undergraduate. Admission to the program requires a minimum undergraduate grade-point average of 3.5 and an approved program of study for the Master of Science degree in Civil Engineering at the time of admission. Admission to the Linked Bachelor’s-Master’s program allows the application of up to 9 credits toward the master’s program for qualifying 400-level and above course work taken at the undergraduate level at Michigan State University or an external accredited institution. The number of approved credits, not to exceed 9, are applied toward the credit requirement of the master’s degree. Credits applied to the Linked Bachelor’s-Master’s program are not eligible to be applied to any other graduate degree program.

GRADUATE STUDY

The Department of Civil and Environmental Engineering offers the graduate degree programs that are listed below:

Master of Science
- Civil Engineering
- Environmental Engineering

Doctor of Philosophy
- Civil Engineering
- Environmental Engineering

The civil engineering degrees offer tracks in structural, materials, pavement, and geotechnical engineering, and hydrology and water resources. The environmental engineering degrees offer specializations in environmental chemistry and physical-chemical processes, environmental microbiology and biotechnology, environmental hydrology and water resources, and geoenvironmental engineering.

The Master of Science degrees provide opportunities for students who seek to enter professional practice as specialists or to continue study in a doctoral program. The Doctor of Philosophy degrees are research focused, designed to prepare students for careers in teaching, research or advanced specialized practice.

CIVIL ENGINEERING

Students in the master’s and doctoral degree programs in civil engineering may pursue advanced study in the areas of structures, fluid mechanics and hydraulics, geotechnical engineering, pavement, and transportation.

Master of Science

The student plans a program of study with the help of his or her academic advisor and subject to the approval of the advisor. In addition to meeting the requirements of the university and of the College of Engineering, students must meet the requirements specified below.

Admission

An applicant for admission to the master’s degree program in civil engineering should have a bachelor’s degree in civil engineering or a related field and should have a grade–point average that would indicate success in graduate study. Examples of fields that are related to civil engineering are other engineering professional fields, physics, computer science, urban planning, and chemistry.

Depending on their undergraduate programs and their specialties within civil engineering, students who are admitted to the master’s degree program with bachelor’s degrees in fields related to civil engineering may be required to complete collateral courses.

All applicants are encouraged to submit their scores from the Graduate Record Examination General Test.
Requirements for the Master of Science Degree in Civil Engineering

The student must complete a total of 30 credits for the degree under either Plan A (with thesis) or Plan B (without thesis).

A student under Plan A must complete at least 4, but not more than 8, credits of Civil Engineering 899. Should the student complete more than 8 credits of Civil Engineering 899, no more than 8 credits may be counted toward the requirements for the degree.

A student under Plan B may choose to complete a research project or a design project as part of the 30 credits required for the degree. A student who elects either of these options must complete at least 1, but not more than 3, credits of Civil Engineering 892 or at least 3, but not more than 5, credits of Civil Engineering 893.

Doctor of Philosophy

Admission

All applicants are encouraged to submit their scores from the Graduate Record Examination General Test.

Requirements for the Doctor of Philosophy Degree in Civil Engineering

In addition to meeting the requirements of the university and of the College of Engineering, students must meet the requirements specified by their guidance committees.

ENVIRONMENTAL ENGINEERING

Students in the master's and doctoral degree programs in environmental engineering may pursue advanced study in the areas of biological and chemical treatment of hazardous substances in soils, leachates, industrial wastes, and groundwater; the fate and movement of chemical contaminants in surface water, groundwater, and soils; and environmental chemistry.

Master of Science

The student plans a program of study with the help of his or her academic advisor and subject to the approval of the advisor.

In addition to meeting the requirements of the university and of the College of Engineering, students must meet the requirements specified below.

Admission

Applicants for admission are expected to have a level of competency equivalent to that achieved by earning an undergraduate degree in environmental engineering, or in civil engineering with an environmental engineering specialization. The undergraduate program should have included courses in mathematics through differential equations, chemistry, physics (mechanics), fluid mechanics, computer programming, and the design of water and wastewater treatment processes.

Depending on their undergraduate programs and their specialties within environmental engineering, students who are admitted to the master's degree program with bachelor's degrees in fields related to environmental engineering may be required to complete collateral courses.

All applicants are encouraged to provide their scores from the Graduate Record Examination General Test.

Requirements for the Master of Science Degree in Environmental Engineering

The student must complete a total of 30 credits for the degree under either Plan A (with thesis) or Plan B (without thesis).

A student under Plan A must complete at least 4, but not more than 8, credits of Environmental Engineering 899. Should the student complete more than 8 credits of Environmental Engineering 899, no more than 8 credits may be counted toward the requirements for the degree.

A student under Plan B may choose to complete a research project or a design project as part of the 30 credits required for the degree. A student who elects either of these options must complete at least 1, but not more than 3, credits of Environmental Engineering 892 or at least 3, but not more than 5, credits of Environmental Engineering 893.

Doctor of Philosophy

Admission

All applicants are encouraged to submit their scores from the Graduate Record Examination General Test.

Requirements for the Doctor of Philosophy Degree in Environmental Engineering

In addition to meeting the requirements of the university and of the College of Engineering, students must meet the requirements specified by their guidance committees.

DEPARTMENT of COMPUTATIONAL MATHEMATICS, SCIENCE and ENGINEERING

Andrew J. Christlieb, Chairperson

Computational Mathematics, Science and Engineering is the multidisciplinary field that is concerned with the use of advanced computing capabilities to solve complex problems pertaining to computational modeling and data science. Among the areas of interest include the development and analysis of algorithms, high performance computing, including both parallel computing and heterogeneous architectures, and the application of both algorithms and high performance computing to modeling and data analysis, exploration, and visualization. The department offers a wide range of courses in computational and data science. Graduates will use their skills in large-scale computing and data science to address a wide variety of problems in science, engineering and other fields. The Department of Computational Mathematics, Science and Engineering is administered jointly by the colleges of Natural Science, and Engineering. The College of Natural Science is the primary administrative unit.
DEPARTMENT of
COMPUTER SCIENCE
and ENGINEERING

Matt W. Mutka, Chairperson

Computer science encompasses the broad areas of information processing and problem solving using digital computers. Students learn to analyze, design, and build integrated software and hardware digital systems that process, transmit, and reason about information in order to solve problems. Computer science graduates are employed in essentially all areas of industry, government, and education. They serve as system analysts involved with problems in business and research, designers and planners of process and production control software systems, computer component and system designers, programmers, and teachers.

UNDERGRADUATE PROGRAM

The Bachelor of Science program provides both a theoretical foundation in computer science, required for continued success in this rapidly changing field, as well as practical experience with current tools and techniques. To achieve these goals, students take courses that span a spectrum of knowledge ranging from theoretical foundations, which enable rigorous analysis of computational problems and solutions, to applied design and engineering methods. At the upper level, students choose from a wide range of elective courses focusing on computer networks, computer architecture, artificial intelligence, database systems, computer security, software engineering, and computer graphics. The senior year culminates with a team-oriented design course building on much of what one has learned throughout the undergraduate experience. Complementing these major areas, the cognate provides an excellent opportunity to develop an individually selected area of interest.

Students majoring in computer science with interests in other areas have the opportunity to consult and work with interested faculty from a wide range of academic disciplines.

Students who are enrolled in the Bachelor of Science degree program with a major in computer science may elect a Specialization in Game Design and Development. For additional information, refer to the Specialization in Game Design and Development statement in the Department of Telecommunication, Information Studies and Media section of this catalog.

The Bachelor of Science degree program in Computer Science is accredited by the Computing Accreditation Commission of ABET, www.abet.org.

Requirements for the Bachelor of Science Degree in Computer Science

1. The University requirements for bachelor’s degrees as described in the Undergraduate Education section of this catalog; 120 credits, including general elective credits, are required for the Bachelor of Science degree in Computer Science. The University’s Tier II writing requirement for the Computer Science major is met by completing Computer Science and Engineering 498, referenced in item 3. b. below.

 Students who are enrolled in the College of Engineering may complete the alternative track to Integrative Studies in Biological and Physical Sciences that is described in item 1. under the heading Graduation Requirements for All Majors in the College statement.

2. The requirements of the College of Engineering for the Bachelor of Science degree.

 The credits earned in certain courses referenced in requirement 3. below may be counted toward College requirements as appropriate.

3. The following requirements for the major:

 a. Bioscience - Courses may not be used to satisfy both (1) and (2) below.

 b. All of the following courses:

Course Code	Title	Credits
CSE 100	Computer Science as a Profession	1
CSE 231	Introduction to Programming I	4
CSE 232	Introduction to Programming II	4
CSE 260	Discrete Structures in Computer Science	4
CSE 320	Computer Organization and Architecture	3
CSE 331	Algorithms and Data Structures	3
CSE 335	Object-Oriented Software Design	4
CSE 410	Operating Systems	3
CSE 498	Collaborative Design (W)	4
STT 351	Probability and Statistics for Engineering	3

 c. An additional five courses selected from the following:

Course Code	Title	Credits
CSE 420	Computer Architecture	3
CSE 422	Computer Networks	3
CSE 425	Introduction to Computer Security	3
CSE 435	Software Engineering	3
CSE 440	Introduction to Artificial Intelligence	3
CSE 450	Translation of Programming Languages	3
CSE 460	Computability and Formal Language Theory	3
CSE 471	Media Processing and Multimedia Computing	3
CSE 472	Computer Graphics	3
CSE 473	Fundamentals of 3D Game Development	3
CSE 476	Mobile Application Development	3
CSE 477	Web Application Development	3
CSE 480	Database Systems	3
CSE 484	Information Retrieval	3
CSE 491	Selected Topics in Computer Science	4 to 6
MTH 451	Numerical Analysis I	3

 d. Required Cognate:

Course Code	Title	Credits

 Cognates in the following areas are available to students in Computer Science: business, communication arts and sciences, foreign language, mathematics, the natural sciences, philosophy, psychology, the social sciences, and telecommunication. Students may complete cognates in other areas with the approval of the Department of Computer Science and Engineering academic advisor. The cognate should enhance the student’s ability to apply analytical procedures in a specific subject area.

 The cognate requires a minimum of four courses totaling 15 or more credits outside the College of Engineering selected from (1) or (2) below. The academic advisor of the Department of Computer Science and Engineering must pre approve both the cognate and the cognate courses.

 (1) At least 6 of the 15 credits must be in courses at the 300-400 level. The cognate in the College of Business requires a specific set of courses: ACC 230, EC 210, FI 320, GBL 323, and MKT 327.

 (2) A sequence of at least four courses in a foreign language.

MINOR IN COMPUTER SCIENCE

The Minor in Computer Science and Engineering is administered by the Department of Computer Science and Engineering. This minor will provide students with a basic foundation in computer science that is applicable to many disciplines. This will also provide opportunities for students in industry or government, as well as prepare students for graduate-level study in computer science.

The minor is available as an elective to students who are enrolled in bachelor’s degree programs at Michigan State University other than the Bachelor of Science Degree in Computer Science or the Bachelor of Science Degree in Computer Engineering. With the approval of the department and college that administers the student’s degree program, the courses that are used to satisfy the minor may also be used to satisfy the requirements for the bachelor’s degree.

Students who plan to complete the requirements for the minor must apply to the Department of Computer Science and Engineering. The minimum criteria for acceptance is the completion of Computer Science and Engineering 231 and 260 with a combined grade-point average in those two courses of 3.0. Enroll-
Requirements for the Minor in Computer Science

Complete a minimum of 18 credits in the Department of Computer Science and Engineering from the following:

<table>
<thead>
<tr>
<th>COURSE</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSE 231 Introduction to Programming I</td>
<td>4</td>
</tr>
<tr>
<td>CSE 232 Introduction to Programming II</td>
<td>4</td>
</tr>
<tr>
<td>CSE 260 Discrete Structures in Computer Science</td>
<td>4</td>
</tr>
<tr>
<td>CSE 320 Computer Organization and Architecture</td>
<td>3</td>
</tr>
<tr>
<td>CSE 331 Algorithms and Data Structures</td>
<td>3</td>
</tr>
<tr>
<td>CSE 335 Object-Oriented Software Design</td>
<td>4</td>
</tr>
<tr>
<td>CSE 410 Operating Systems</td>
<td>3</td>
</tr>
<tr>
<td>CSE 420 Computer Architecture</td>
<td>3</td>
</tr>
<tr>
<td>CSE 422 Computer Networks</td>
<td>3</td>
</tr>
<tr>
<td>CSE 425 Introduction to Computer Security</td>
<td>3</td>
</tr>
<tr>
<td>CSE 435 Software Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CSE 440 Introduction to Artificial Intelligence</td>
<td>3</td>
</tr>
<tr>
<td>CSE 450 Translation of Programming Languages</td>
<td>3</td>
</tr>
<tr>
<td>CSE 460 Computability and Formal Language Theory</td>
<td>3</td>
</tr>
<tr>
<td>CSE 471 Media Processing and Multimedia Computing</td>
<td>3</td>
</tr>
<tr>
<td>CSE 472 Computer Graphics</td>
<td>3</td>
</tr>
<tr>
<td>CSE 473 Fundamentals of 3D Game Development</td>
<td>3</td>
</tr>
<tr>
<td>CSE 476 Mobile Application Development</td>
<td>3</td>
</tr>
<tr>
<td>CSE 477 Web Application Architecture and Development</td>
<td>3</td>
</tr>
<tr>
<td>CSE 480 Database Systems</td>
<td>3</td>
</tr>
<tr>
<td>CSE 484 Information Retrieval</td>
<td>3</td>
</tr>
</tbody>
</table>

TEACHER CERTIFICATION OPTION

A computer science disciplinary minor is available for teacher certification.

Students who elect the computer science disciplinary minor must contact the Department of Computer Science and Engineering.

For additional information, refer to the statement on TEACHER CERTIFICATION in the Department of Teacher Education section of this catalog.

LINKED BACHELOR’S-MASTER’S DEGREE IN COMPUTER SCIENCE

Bachelor of Science Degree in Computer Engineering

Master of Science Degree in Computer Science

The department welcomes applications from Michigan State University Computer Engineering undergraduate students in their junior and senior year. Admission applications must be made during the prior spring semester for an anticipated spring graduation or the prior fall semester for an anticipated fall graduation to allow admission before the final semester as a Computer Engineering undergraduate. Admission to the program requires a minimum undergraduate grade-point average of 3.5 and an approved program of study for the Master of Science degree in Computer Science at the time of admission. Admission to the Linked Bachelor’s-Master’s program allows the application of up to 9 credits toward the master’s program for qualifying 400-level and above course work taken at the undergraduate level at Michigan State University or an external accredited institution. The number of approved credits, not to exceed 9, are applied toward the credit requirement of the master’s degree. Credits applied to the Linked Bachelor’s-Master’s program are not eligible to be applied to any other graduate degree program.

GRADUATE STUDY

The Department of Computer Science and Engineering offers programs leading to the Master of Science and Doctor of Philosophy degrees. Advanced study is available in a variety of computer science research areas such as algorithms, computer security, databases, data mining, machine learning, natural language processing, networking, pattern recognition and image processing, and software engineering, as well as many interdisciplinary research areas such as bioinformatics, cognitive science, and digital evolution.

Students who are enrolled in master’s or doctoral degree programs in the Department of Computer Science and Engineering may elect an Interdepartmental Specialization in Cognitive Science. For additional information, refer to the statement on Interdepartmental Graduate Specializations in Cognitive Science in the College of Social Science section of this catalog. For additional information, contact the Department of Computer Science and Engineering.

Master of Science

In addition to meeting the requirements of the university and of the College of Engineering, students must meet the requirements specified below.

Admission

Applicants for admission should possess a bachelor’s degree in computer science or a related field such as mathematics, physics, or electrical engineering. All applicants must submit their scores from the Graduate Record Examination (GRE) General Test. Additional information is available on the Department’s Web site at http://cse.msu.edu.

Requirements for the Master of Science Degree in Computer Science

The student must complete a total of 30 credits for the degree under either Plan A (with thesis) or Plan B (without thesis) and meet the requirements specified below.

LINKED BACHELOR’S-MASTER’S DEGREE IN COMPUTER SCIENCE

Bachelor of Science Degree in Computer Science

Master of Science Degree in Computer Science

The department welcomes applications from Michigan State University Computer Science undergraduate students in their junior and senior year. Admission applications must be made during the prior spring semester for an anticipated spring graduation or the prior fall semester for an anticipated fall graduation to allow admission before the final semester as a Computer Science undergraduate. Admission to the program requires a minimum undergraduate grade-point average of 3.5 and an approved program of study for the Master of Science degree in Computer Science at the time of admission. Admission to the Linked Bachelor’s-Master’s program allows the application of up to 9 credits toward the master’s program for qualifying 400-level and above course work taken at the undergraduate level at Michigan State University or an external accredited institution. The number of approved credits, not to exceed 9, are applied toward the credit requirement of the master’s degree. Credits applied to the Linked Bachelor’s-Master’s program are not eligible to be applied to any other graduate degree program.
Requirements for Both Plan A and Plan B:
The student must complete:
1. The breadth requirement as described in the Graduate Handbook which is available on the Department's Web site at http://www.cse.msu.edu.
2. At least 18 credits in courses eligible to satisfy the breadth requirement as approved by the student's academic advisor.

Additional Requirements for Plan A:
The student must complete:
1. A minimum of 21 credits in 800-900 level courses excluding Computer Science and Engineering 801, 890, and 899.
2. At least 6, but not more than 8, credits of CSE 899 Master's Thesis Research.

Additional Requirements for Plan B:
1. Complete a minimum of 24 credits in 800-900 level courses excluding Computer Science 801, 890, and 899.

Doctor of Philosophy
In addition to meeting the requirements of the university and of the College of Engineering, students must meet the requirements specified below.

Admission
Applicants should be in the top 25 percent of their master's degree classes and should have a grade–point average of at least 3.50 on a scale of 4.0.

Applicants must submit their scores on the Graduate Record Examination General Test.

Applicants who have a Bachelor of Science degree and who demonstrate exceptional potential for graduate study may be accepted for admission to the doctoral program.

Additional information is available on the Department's Web site at http://cse.msu.edu.

Requirements for the Doctor of Philosophy Degree in Computer Science
In addition to meeting the requirements of the university and of the College of Engineering, students must meet the requirements specified by the department in the Graduate Handbook available at http://cse.msu.edu as well requirements specified by their guidance committees. All courses that are used to satisfy the requirements for the degree must have been completed under the numerical grading system.

DEPARTMENT of ELECTRICAL and COMPUTER ENGINEERING
John Papapolymerou, Chairperson
The Department of Electrical and Computer Engineering offers two undergraduate programs and a concentration leading to a Bachelor of Science degree. The computer engineering program provides students the opportunity to customize their program through core electives in computer architecture, computer networks, and VLSI design and focus electives in hardware or software tracks. The program in electrical engineering allows students to choose their major electives from seven areas: electromagnetics, power, integrated circuits/VLSI, solid-state electronics/electroics, communications/signal processing, control/robotics, and biomedical engineering. In addition, a student in either program can choose a biomedical engineering concentration that is noted on the student's transcript.

UNDERGRADUATE PROGRAMS

COMPUTER ENGINEERING
Computer engineering is concerned with the organization and design of computers and computer systems. The study of computer hardware and software, and their integration and application, is emphasized. The undergraduate program in computer engineering integrates studies in mathematics, basic sciences, engineering sciences, and engineering design. The program is structured to establish analytical and design skills in areas such as computer architecture, digital logic design, analog and mixed-signal circuits, computer communication networks, digital computer control, integrated circuit engineering, software engineering, operating systems, data structures and algorithms, computer–aided engineering, and electronic design automation. Complementing these fundamentals, the program also provides opportunities for specialization in individually selected areas of interest.

The Bachelor of Science Degree program in Computer Engineering is accredited by the Engineering Accreditation Commission of ABET, www.abet.org.

Requirements for the Bachelor of Science Degree in Computer Engineering
1. The University requirements for bachelor's degrees as described in the Undergraduate Education section of this catalog; 128 credits, including general elective credits, are required for the Bachelor of Science degree in Computer Engineering.

The University's Tier II writing requirement for the Computer Engineering major is met by completing Electrical and Computer Engineering 480. That course is referenced in item 3. b. below.

Students who are enrolled in the College of Engineering may complete the alternative track to Integrative Studies in Biological and Physical Sciences that is described in item 1. under the heading Graduation Requirements for All Majors in the College statement. Certain courses referenced in requirement 3. below may be used to satisfy the alternative track.

2. The requirements of the College of Engineering for the Bachelor of Science degree.

The credits earned in certain courses referenced in requirement 3. below may be counted toward College requirements as appropriate.

3. The following requirements for the major:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>One of the following courses:</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>CEM 161 Chemistry Laboratory I</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>PHY 191 Physics Laboratory for Scientists</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>All of the following courses:</td>
<td>56</td>
</tr>
<tr>
<td>2</td>
<td>CSE 231 Introduction to Programming I</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>CSE 232 Introduction to Programming II</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>CSE 260 Discrete Structures in Computer Science</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>CSE 331 Algorithms and Data Structures</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>CSE 410 Operating Systems</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>ECE 201 Circuits and Systems I</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>ECE 202 Circuits and Systems II</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>ECE 203 Electric Circuits and Systems Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>ECE 230 Digital Logic Fundamentals</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>ECE 280 Electrical Engineering Analysis</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>ECE 302 Electronic Circuits</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>ECE 303 Electronics Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>ECE 331 Microprocessors and Digital Systems</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>ECE 390 Ethics, professionalism and Contemporary Issues</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>ECE 480 Senior Design</td>
<td>4</td>
</tr>
<tr>
<td>C</td>
<td>Electives</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Complete 24 credits of electives as specified below. At least 18 credits must be from core and focus track electives combined, with at least one course with a laboratory. Additional credits to meet the 24 credit requirement may be taken from other courses listed below, any 400-level Computer Science and Engineering (CSE) or Electrical and Computer Engineering (ECE) courses, or by completing an approved 3 or 4 credit experiential, out-of-class-</td>
<td></td>
</tr>
</tbody>
</table>
Requirements for the Bachelor of Science Degree in Electrical and Computer Engineering

1. The University requirements for bachelor's degrees as described in the Undergraduate Education section of this catalog. 128 credits, including general elective credits, are required for the Bachelor of Science degree in Electrical and Computer Engineering.

The University's Tier II writing requirement for the Electrical and Computer Engineering major is met by completing Electrical and Computer Engineering 480. That course is referenced in item 3. b. below.

The University's Tier II writing requirement for the Electrical and Computer Engineering major is met by completing Electrical and Computer Engineering 480. That course is referenced in item 3. b. below.

2. The requirements of the College of Engineering for the Bachelor of Science degree.

The credits earned in certain courses referenced in requirement 3. below may be counted toward College requirements as appropriate.

3. The following requirements for the major:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSE 425</td>
<td>Biomaterials and Biocompatibility</td>
<td>3</td>
</tr>
<tr>
<td>ECE 446</td>
<td>Biomedical Instrumentation</td>
<td>3</td>
</tr>
<tr>
<td>ECE 447</td>
<td>Introduction to Biomedical Imaging</td>
<td>3</td>
</tr>
<tr>
<td>ECE 448</td>
<td>Modeling and Analysis of Bioelectrical Systems</td>
<td>3</td>
</tr>
</tbody>
</table>

Biomedical Engineering Concentration

The department offers a concentration for students who plan to pursue graduate work in biomedical areas or seek employment in selected medical-related areas. The concentration is available to, but not required of, any student enrolled in the Bachelor of Science degree program in Computer Engineering. Courses completed to satisfy requirement 3. above may also be used to satisfy the requirements of the concentration. The concentration will be noted on the student's transcript.

Biomedical Engineering

To earn a Bachelor of Science degree in Computer Engineering with a biomedical engineering concentration, students must complete requirements 1., 2., and 3. above and the following:

Credits

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTR 350</td>
<td>Human Gross Anatomy for Pre-Health Professionals</td>
<td>3</td>
</tr>
<tr>
<td>BS 161</td>
<td>Cell and Molecular Biology</td>
<td>3</td>
</tr>
<tr>
<td>PSL 290</td>
<td>Introductory Physiology</td>
<td>3</td>
</tr>
<tr>
<td>PSL 310</td>
<td>Physiology for Pre-Health Professionals</td>
<td>4</td>
</tr>
<tr>
<td>ECE 445</td>
<td>Biomedical Instrumentation</td>
<td>3</td>
</tr>
<tr>
<td>ECE 446</td>
<td>Biomedical Signal Processing</td>
<td>3</td>
</tr>
<tr>
<td>ECE 447</td>
<td>Introduction to Biomedical Imaging</td>
<td>3</td>
</tr>
<tr>
<td>ECE 448</td>
<td>Modeling and Analysis of Bioelectrical Systems</td>
<td>3</td>
</tr>
</tbody>
</table>

ELECTRICAL AND COMPUTER ENGINEERING

The Bachelor of Science degree in Electrical and Computer Engineering is offered only at the MSU Dubai instructional site. The program is designed to provide students with an opportunity to study electrical engineering and computer engineering including exploration of both hardware and software.
The Bachelor of Science Degree program in Electrical Engineering is accredited by the Engineering Accreditation Commission of ABET, www.abet.org.

Requirements for the Bachelor of Science Degree in Electrical Engineering

1. The University requirements for bachelor's degrees as described in the Undergraduate Education section of this catalog; 128 credits, including general elective credits, are required for the Bachelor of Science degree in Electrical Engineering. The University's Tier II writing requirement for the Electrical Engineering major is met by completing Electrical and Computer Engineering 480. That course is referenced in item 3. below.

 Students who are enrolled in the College of Engineering may complete the alternative track to Integrative Studies in Biological and Physical Sciences that is described in item 1. under the heading Degree Requirements for All Majors in the College statement. Certain courses referenced in requirement 3. below may be used to satisfy the alternative track.

2. The requirements of the College of Engineering for the Bachelor of Science degree.

 The credits earned in certain courses referenced in requirement 3. below may be counted toward College requirements as appropriate.

3. The following requirements for the major:

 a. One of the following courses: ... 1
 CEM 161 Chemistry Laboratory I 1
 PHY 191 Physics Laboratory for Scientists I 1

 b. All of the following courses: ... 42
 CSE 220 Programming in C .. 3
 ECE 201 Circuits and Systems I 3
 ECE 202 Circuits and Systems II 3
 ECE 203 Electric Circuits and Systems Laboratory 1
 ECE 230 Digital Logic Fundamentals 3
 ECE 280 Electrical Engineering Analysis 3
 ECE 302 Electronic Circuits .. 3
 ECE 303 Electronics Laboratory 1
 ECE 305 Electromagnetic Fields and Waves I 4
 ECE 313 Control Systems .. 3
 ECE 320 Energy Conversion and Power Electronics 3
 ECE 331 Microprocessors and Digital Systems 4
 ECE 366 Introduction to Signal Processing 3
 ECE 390 Ethics, Professionalism and Contemporary Issues 1
 ECE 480 Senior Design ... 4

 c. One of the following courses: ... 3
 CE 221 Statics .. 3
 ME 201 Thermodynamics ... 3

 d. A minimum of 2 courses totaling a minimum of 18 credits, of 3 or 4 credits each, selected from at least four different areas. A laboratory course must be included. Students may substitute, for one of the six required courses, a 3 or 4 credit experiential education experience aligned with a minimum of three out-of-classroom experiences through engineering cooperative education or independent study. Students interested in the experiential education experience must contact the department for approval.

 Electromagnetics
 ECE 405 Electromagnetic Fields and Waves II 4
 ECE 407 Electromagnetic Compatibility 4

 Power
 ECE 420 Machines and Power Laboratory 1
 ECE 423 Power System Analysis ... 3
 ECE 425 Solid State Power Conversion 3

 Integrated Circuits/VLSI
 ECE 402 Applications of Analog Integrated Circuits 4
 ECE 404 Radio Frequency Electronic Circuits 4
 ECE 410 VLSI Design .. 4
 ECE 411 Electronic Design Automation 4
 ECE 412 Introduction to Mixed-Signal Circuit Design 4

 Solid-State Electronics/Electro-optics
 ECE 474 Principles of Electronic Devices 3
 ECE 476 Electro-Optics .. 4
 ECE 477 Microelectronic Fabrication 3

 Communications/Signal Processing
 ECE 442 Introduction to Communication Networks 3
 ECE 457 Communication Systems 3
 ECE 458 Communication Systems Laboratory 1
 ECE 466 Digital Signal Processing and Filter Design 3

 Control/Robotics
 ECE 415 Computer Aided Manufacturing 3
 ECE 416 Digital Control .. 3

 Biomedical Engineering
 ECE 445 Biomedical Instrumentation 3
 ECE 446 Biomedical Signal Processing 3
 ECE 447 Introduction to Biomedical Imaging 3
 ECE 448 Modeling and Analysis of Bioelectrical Systems 3

Biomedical Engineering Concentration

The department offers a concentration for students who plan to pursue graduate work in biomedical areas or seek employment in selected medical-related areas. The concentration is available to, but not required of, any student enrolled in the Bachelor of Science degree program in Electrical Engineering. Courses completed to satisfy requirement 3. above may also be used to satisfy the requirements of the concentration. The concentration will be noted on the student's transcript.

Biomedical Engineering

To earn a Bachelor of Science degree in Electrical Engineering with a biomedical engineering concentration, students must complete requirements 1., 2., and 3. above and the following:

1. Complete 6 credits from the following courses: 9
 ANTR 350 Human Gross Anatomy for Pre-Health Professionals . 3
 BS 161 Cell and Molecular Biology 3
 PSL 250 Introductory Physiology .. 4
 PSL 310 Physiology for Pre-Health Professionals 4

2. Complete 6 credits from the following courses: 9
 ECE 445 Biomedical Instrumentation 3
 ECE 446 Biomedical Signal Processing 3
 ECE 447 Introduction to Biomedical Imaging 3
 ECE 448 Modeling and Analysis of Bioelectrical Systems 3

3. Complete 3 credits from the following courses: 9
 BE 445 Biosensors for Medical Diagnostics 3
 ME 494 Biofluid Mechanics and Heat Transfer 3
 ME 495 Tissue Mechanics .. 3
 MISE 425 Biomaterials and Biocompatibility 3

A 400-level listed above or other approved Electrical and Computer Engineering (ECE) courses with biomedical engineering content as approved by the student's advisor. The course used to fulfill this requirement may not be used to fulfill concentration requirement 1. or 2.

LINKED BACHELOR'S-MASTER'S DEGREE IN COMPUTER SCIENCE

Bachelor of Science Degree in Computer Engineering Master of Science Degree in Computer Science

The department welcomes applications from Michigan State University Computer Engineering undergraduate students in their junior and senior year. Admission applications must be made during the prior spring semester for an anticipated fall graduation or the prior fall semester for an anticipated spring graduation to allow admission before the final semester as a Computer Engineering undergraduate. Admission to the program requires a minimum undergraduate grade-point average of 3.5 and an approved program of study for the Master of Science degree in Computer Science at the time of admission. Admission to the Linked Bachelor’s-Master’s program allows the application of up to 9 credits toward the master’s program for qualifying 400-level and above course work taken at the undergraduate level at Michigan State University or an external accredited institution. The number of approved credits, not to exceed 9, are applied toward the credit requirement of the master’s degree. Credits applied to the Linked Bachelor’s-Master’s program are not eligible to be applied to any other graduate degree program.
LINKED BACHELOR’S-MASTER’S DEGREE IN ELECTRICAL ENGINEERING

Bachelor of Science Degree in Computer Engineering
Master of Science Degree in Electrical Engineering

The department welcomes applications from Michigan State University Computer Engineering undergraduate students in their junior and senior year. Admission applications must be made during the prior spring semester for an anticipated spring graduation or the prior fall semester for an anticipated fall graduation to allow admission before the final semester as a Computer Engineering undergraduate. Admission to the program requires a minimum undergraduate grade-point average of 3.5 and an approved program of study for the Master of Science degree in Electrical and Computer Engineering at the time of admission. Admission to the Linked Bachelor’s-Master’s program allows the application of up to 9 credits toward the master’s program for qualifying 400-level and above course work taken at the undergraduate level at Michigan State University or an external accredited institution. The number of approved credits, not to exceed 9, are applied toward the credit requirement of the master’s degree. Credits applied to the Linked Bachelor’s-Master’s program are not eligible to be applied to any other graduate degree program.

Master of Science

In addition to meeting the requirements of the university and of the College of Engineering, students must meet the requirements specified below.

Admission

Applicants for admission should possess a Bachelor of Science degree in electrical engineering or a related field such as physics, mathematics, or computer science, and should have a grade-point average that would indicate success in graduate study.

Students who are admitted without a Bachelor of Science degree in electrical engineering may be required to complete collateral courses.

International applicants are required to submit Graduate Record Examination General Test scores.

Requirements for the Master of Science Degree in Electrical Engineering

The student must complete a total of 30 credits under either Plan A (with thesis) or Plan B (without thesis) and meet the requirements specified below.

Requirements for Both Plan A and Plan B:

1. Core Courses. Complete a minimum of four Electrical and Computer Engineering courses at the 800 or 950 level totaling at least 12 credits. Two of the courses must be selected from the following:
 - ECE 813 Advanced VLSI Design 3
 - ECE 820 Advanced Computer Architecture 3
 - ECE 821 Advanced Power Electronics and Applications 3
 - ECE 826 Linear Control Systems 3
 - ECE 833 Advanced Electromagnetic Fields and Waves I 3
 - ECE 863 Analysis of Stochastic Systems 3
 - ECE 874 Physical Electronics 3

 Electrical and Computer Engineering 801 cannot be used to fulfill this requirement.

2. Supporting Courses: At least 6 credits in approved courses in areas such as mathematics, statistics, or physics.

3. Seminar Requirement. First-year graduate students are required to attend seven seminars from the graduate seminar series.

Doctor of Philosophy

Admission

International applicants are required to submit Graduate Record Examination General Test scores.

Requirements for the Doctor of Philosophy Degree in Electrical Engineering

In addition to meeting the requirements of the university and of the College of Engineering, students must meet the requirements specified by their guidance committees.

1. The doctoral program must include a minimum of 36 credits, in addition to 24 credits of Electrical and Computer Engineering 999.

2. No 800-900 level independent study credits taken beyond the bachelor’s degree may be counted towards the doctoral degree.

3. A minimum of 3 credits must be taken outside of the College of Engineering in disciplinary areas such as mathematics, statistics, or physics.

4. All courses that are used to satisfy the requirements for the degree must have been completed under the numerical grading system.

5. Students may request up to 3 credits of master’s thesis research be applied towards this requirement.

6. First year graduate students are required to attend seven seminars from the graduate seminar series.
MECHANICAL ENGINEERING

James Klausner, Chairperson

UNDERGRADUATE PROGRAMS

Mechanical engineering is a diverse profession that relies on fundamental science principles to conceive, design, and manufacture everything from miniaturized individual parts (e.g., biosensors, printer nozzles, micro-reactors) to large complex systems and devices (e.g., rocket propulsion, jet engines, robotic tools, wind turbines, and automobiles). Mechanical engineers concentrate/focus on devices and systems that alter, transfer, transform, and utilize energy forms that cause motion. The mechanical engineering practitioner requires a broad range of skills and knowledge. The Department of Mechanical Engineering provides a curriculum that intertwines a foundation in mathematics and engineering science with creativity and innovation in design. Students learn the skills to develop ideas from concept to product. The program integrates individual mastery of these subjects with teamwork-based solutions to open-ended design problems and practical engineering experiences. Along with the required courses, optional concentrations are available for students to focus their program of study within a particular area of interest, as well as opportunities to study abroad.

MECHANICAL ENGINEERING

Mechanical engineers apply the fundamental principles of motion (mechanics) and energy (thermosciences) to serve the needs of people through the creative problem-solving process known as engineering design. These principles are represented in the subjects of solid and fluid mechanics, thermodynamics, heat transfer, mechanical systems, and material science. Practicing mechanical engineers work in many application areas, which include such industries as automotive, chemical, energy, consumer product, aerospace, computer and electronic, and biomedical.

The undergraduate mechanical engineering program prepares its graduates for the mechanical engineering profession through a foundation of engineering fundamentals; the development of analytical, computational, and experimental capabilities to recognize, model, and solve engineering problems; and the application of the engineering design method. Communication and teaming skills are integrated throughout the program.

For students who desire an international experience as part of their education, the department sponsors various programs such as "Mechanical Engineering in Aachen, Germany." During the spring semester, a small group of juniors and seniors pursue their normal studies abroad at the Technical University of Aachen where they have outstanding opportunities to participate in advanced research, explore industrial activities, and experience European culture and lifestyle.

The Bachelor of Science Degree program in Mechanical Engineering is accredited by the Engineering Accreditation Commission of ABET, www.abet.org.

Requirements for the Bachelor of Science Degree in Mechanical Engineering

1. The University requirements for bachelor's degrees as described in the Undergraduate Education section of this catalog; 128 credits, including general elective credits, are required for the Bachelor of Science degree in Mechanical Engineering.

Students who are enrolled in the College of Engineering may complete the alternative track to Integrative Studies in Biological and Physical Sciences that is described in item 1, under the heading Graduation Requirements for All Majors in the College statement. Certain courses referenced in requirement 3. below may be used to satisfy the alternative track.

2. The requirements of the College of Engineering for the Bachelor of Science degree. The credits earned in certain courses referenced in requirement 3. below may be counted toward College requirements as appropriate.

3. The following requirements for the major:

 a. All of the following courses outside the Department of Mechanical Engineering:
 - Mechanical Engineering: 17
 - Engineering: ... 17

 b. All of the following courses in the Department of Mechanical Engineering:
 - Mechanical Engineering: 40

 c. Concentration in Automotive Powertrain (a minimum of 9 credits):
 - 416 Computer Assisted Design of Thermal Systems 3
 - 417 Design of Alternative Energy Systems 3
 - 422 Introduction to Combustion 3
 - 423 Intermediate Mechanics of Deformable Solids 3
 - 425 Experimental Mechanics 3
 - 426 Introduction to Composite Materials 3
 - 433 Introduction to Computational Fluid Dynamics 3
 - 445 Automotive Powertrain Design 3
 - 456 Mechatronic System Design 3
 - 464 Intermediate Dynamics 3
 - 465 Computer Aided Design of Structures 3
 - 475 Manufacturing Processes 3
 - 476 Product Development .. 3

 d. Design-intensive Senior Electives (a minimum of 3 credits):
 - 416 Computer Assisted Design of Thermal Systems 3
 - 417 Design of Alternative Energy Systems 3
 - 445 Automotive Powertrain Design 3
 - 456 Mechatronic System Design 3
 - 464 Intermediate Dynamics 3
 - 465 Computer Aided Design of Structures 3
 - 475 Manufacturing Processes 3
 - 476 Product Development .. 3

Concentration in Automotive Powertrain:

A concentration in Automotive Powertrain is available to, but not required of, any student enrolled in the Bachelor of Science degree in Mechanical Engineering. Completing the Bachelor of Science degree in Mechanical Engineering with a concentration in automotive powertrain may require more than 128 credits. The concentration will be noted on the student's transcript.

Automotive Powertrain

To earn a Bachelor of Science degree in Mechanical Engineering with an automotive powertrain concentration, students must complete requirements 1., 2., 3.a., 3.b., and 3.d. above and the following:

All of the following courses (9 credits):

 - 422 Introduction to Combustion 3
 - 445 Automotive Powertrain Design 3
 - 447 Computer Aided Design of Structures 3

One of the following courses (3 credits):

CE 211 Statics .. 3
CEM 161 Chemistry Laboratory I 1
CE 231 Introduction to Programming Systems 3
ECE 345 Electronic Instrumentation and Systems 3
MSE 250 Materials Science and Engineering 3
STT 351 Probability and Statistics for Engineering 3
CE 221 Statics .. 3
CTE 231 Introduction to Programming Systems 3
ECE 345 Electronic Instrumentation and Systems 3
ME 221 Mechanics of Deformable Solids 3
ME 280 Graphic Communications 2
ME 361 Dynamics .. 3
ME 401 Independent Study in Mechanical Engineering 3
ME 416 Computer Assisted Design of Thermal Systems 3
ME 417 Design of Alternative Energy Systems 3
ME 422 Introduction to Combustion 3
ME 423 Intermediate Mechanics of Deformable Solids 3
ME 425 Experimental Mechanics 3
ME 426 Introduction to Composite Materials 3
ME 433 Introduction to Computational Fluid Dynamics 3
ME 440 Aerospace Engineering Fundamentals 3
ME 442 Turbomachinery ... 3
ME 444 Automotive Engines 3
ME 445 Automotive Powertrain Design 3
ME 456 Mechatronic System Design 3
ME 464 Intermediate Dynamics 3
ME 465 Computer Aided Design of Structures 3
ME 475 Manufacturing Processes 3
ME 476 Product Development 3
ME 491 Selected Topics in Mechanical Engineering 1
ME 494 Fluid Mechanics and Heat Transfer 4
ME 495 Tissue Mechanics .. 3
ME 497 Biomechanical Design in Product Development 3
ME 416 Computer Assisted Design of Thermal Systems 3
ME 417 Design of Alternative Energy Systems 3
ME 442 Turbomachinery ... 3
ME 445 Automotive Powertrain Design 3
ME 456 Mechatronic System Design 3
ME 465 Computer Aided Design of Structures 3
ME 475 Manufacturing Processes 3
ME 476 Product Development 3
ME 491 Selected Topics in Mechanical Engineering 1
ME 494 Fluid Mechanics and Heat Transfer 4
ME 495 Tissue Mechanics .. 3
ME 497 Biomechanical Design in Product Development 3

Courses used to fulfill item 3. c. may not be used to fulfill item 3. d.
Concentration in Biomedical Engineering
A concentration in Biomedical Engineering is available to, but not required of, any student enrolled in the Bachelor of Science degree in Mechanical Engineering. Completing the Bachelor of Science degree in Mechanical Engineering with a concentration in biomedical engineering may require more than 128 credits. The concentration will be noted on the student's transcript.

Biomedical Engineering
To earn a Bachelor of Science degree in Mechanical Engineering with a biomedical engineering concentration, students must complete requirements 1., 2., 3.a., 3.b., and 3.d. above and the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 433 Introduction to Computational Fluid Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>ME 442 Turbomachinery</td>
<td>3</td>
</tr>
</tbody>
</table>

Concentration in Computational Design
A concentration in Computational Design is available to, but not required of, any student enrolled in the Bachelor of Science degree in Mechanical Engineering. Completing the Bachelor of Science degree in Mechanical Engineering with a concentration in computational design may require more than 128 credits. The concentration will be noted on the student's transcript.

Computational Design
To earn a Bachelor of Science degree in Mechanical Engineering with a computational design concentration, students must complete requirements 1., 2., 3.a., 3.b., and 3.d. above and the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 416 Computer Assisted Design of Thermal Systems</td>
<td>3</td>
</tr>
<tr>
<td>ME 433 Introduction to Computational Fluid Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>ME 463 Computer Aided Optimal Design</td>
<td>3</td>
</tr>
<tr>
<td>ME 475 Computer Aided Design of Structures</td>
<td>3</td>
</tr>
</tbody>
</table>

Concentration in Energy
A concentration in Energy is available to, but not required of, any student enrolled in the Bachelor of Science degree in Mechanical Engineering. Completing the Bachelor of Science degree in Mechanical Engineering with a concentration in energy may require more than 128 credits. The concentration will be noted on the student's transcript.

Energy
To earn a Bachelor of Science degree in Mechanical Engineering with an energy concentration, students must complete requirements 1., 2., 3.a., 3.b., and 3.d. above and the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 416 Computer Assisted Design of Thermal Systems</td>
<td>3</td>
</tr>
<tr>
<td>ME 417 Design of Alternative Energy Systems</td>
<td>3</td>
</tr>
<tr>
<td>ME 422 Introduction to Combustion</td>
<td>3</td>
</tr>
<tr>
<td>ME 440 Aerospace Engineering Fundamentals</td>
<td>3</td>
</tr>
<tr>
<td>ME 442 Turbomachinery</td>
<td>3</td>
</tr>
<tr>
<td>ME 444 Automotive Engines</td>
<td>3</td>
</tr>
</tbody>
</table>

Concentration in Engineering Mechanics
A concentration in Engineering Mechanics is available to, but not required of, any student enrolled in the Bachelor of Science degree in Mechanical Engineering. Completing the Bachelor of Science degree in Mechanical Engineering with a concentration in engineering mechanics may require more than 128 credits. The concentration will be noted on the student's transcript.

Engineering Mechanics
To earn a Bachelor of Science degree in Mechanical Engineering with an engineering mechanics concentration, students must complete requirements 1., 2., and 3.a, and 3.b. above and the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 423 Intermediate Mechanics of Deformable Solids</td>
<td>3</td>
</tr>
<tr>
<td>ME 425 Experimental Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>ME 464 Intermediate Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>ME 475 Computer Aided Design of Structures</td>
<td>3</td>
</tr>
</tbody>
</table>

Concentration in Manufacturing Engineering
A concentration in Manufacturing Engineering is available to, but not required of, any student enrolled in the Bachelor of Science degree in Mechanical Engineering. Completing the Bachelor of Science degree in Mechanical Engineering with a concentration in manufacturing engineering may require more than 128 credits. The concentration will be noted on the student's transcript.

Manufacturing Engineering
To earn a Bachelor of Science degree in Mechanical Engineering with a manufacturing engineering concentration, students must complete requirements 1., 2., 3.a., 3.b., and 3.d. above and the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC 210 Economics Principles Using Calculus</td>
<td>3</td>
</tr>
<tr>
<td>ME 372 Machine Tool Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>ME 477 Manufacturing Processes</td>
<td>3</td>
</tr>
<tr>
<td>ME 478 Product Development</td>
<td>3</td>
</tr>
<tr>
<td>ME 479 Computer Aided Manufacturing</td>
<td>3</td>
</tr>
</tbody>
</table>

Concentration in Global Engineering
A concentration in Global Engineering is available to, but not required of, any student enrolled in the Bachelor of Science degree in Mechanical Engineering. Completing the Bachelor of Science degree in Mechanical Engineering with a concentration in global engineering may require more than 128 credits. The concentration will be noted on the student's transcript.

Global Engineering
To earn a Bachelor of Science degree in Mechanical Engineering with a global engineering concentration, students must complete requirements 1., 2., 3.a., and 3.b. above and 12 credits of approved mechanical engineering courses from a MSU co-sponsored Study Abroad institution. At least 3 credits must include a team design project.
LINKED BACHELOR’S-MASTER’S DEGREE IN ENGINEERING MECHANICS

Bachelor of Science Degree in Mechanical Engineering with a concentration in Engineering Mechanics
Master of Science Degree in Engineering Mechanics

The department welcomes applications from Michigan State University Mechanical Engineering undergraduate students in their junior and senior year, who are pursuing an engineering mechanics concentration within the Bachelor of Science degree in Mechanical Engineering. Admission applications must be made during the prior spring semester for an anticipated spring graduation or the prior fall semester for an anticipated fall graduation to allow admission before the final semester as a Mechanical Engineering undergraduate. Admission to the program requires a minimum undergraduate grade-point average of 3.5 and an approved program of study for the Master of Science degree in Engineering Mechanics at the time of admission. Admission to the Linked Bachelor’s-Master’s program allows the application of up to 9 credits toward the master’s program for qualifying 400-level and above course work taken at the undergraduate level at Michigan State University or an external accredited institution. The number of approved credits, not to exceed 9, are applied toward the credit requirement of the master’s degree. Credits applied to the Linked Bachelor’s-Master’s program are not eligible to be applied to any other graduate degree program.

LINKED BACHELOR’S-MASTER’S DEGREE IN MECHANICAL ENGINEERING

Bachelor of Science Degree in Mechanical Engineering
Master of Science Degree in Mechanical Engineering

The department welcomes applications from Michigan State University Mechanical Engineering undergraduate students in their junior and senior year. Admission applications must be made during the prior spring semester for an anticipated spring graduation or the prior fall semester for an anticipated fall graduation to allow admission before the final semester as a Mechanical Engineering undergraduate. Admission to the program requires a minimum undergraduate grade-point average of 3.5 and an approved program of study for the Master of Science degree in Mechanical Engineering at the time of admission. Admission to the Linked Bachelor’s-Master’s program allows the application of up to 9 credits toward the master’s program for qualifying 400-level and above course work taken at the undergraduate level at Michigan State University or an external accredited institution. The number of approved credits, not to exceed 9, are applied toward the credit requirement of the master’s degree. Credits applied to the Linked Bachelor’s-Master’s program are not eligible to be applied to any other graduate degree program.

GRADUATE STUDY

The Department of Mechanical Engineering offers programs leading to Master of Science and Doctor of Philosophy degrees, both in mechanical engineering and engineering mechanics. An individualized plan of study can be designed from a wide range of courses and research experiences to suit the professional aspirations of graduate students. A plan of study typically includes courses within and external to the department. The Mechanical Engineering Department offers research experiences in four broad areas: Fluid Thermal Science and Engineering; Biomechanics; Dynamic Systems and Controls; and Solid Mechanics, Design, and Manufacturing. The research opportunities are diverse, and include working closely with an individual faculty member and/or as part of a team in a large interdisciplinary research center. Graduate students are expected to engage in research that leads to new knowledge creation and pushes the boundaries of science and engineering.

ENGINEERING MECHANICS

Master of Science

In addition to meeting the requirements of the university and of the College of Engineering, students must meet the requirements specified below.

Admission

The department welcomes applications from students who possess a bachelor’s degree in a related engineering or science discipline.

Students who are admitted to the master’s program with a degree in a discipline other than engineering mechanics and who have not completed Mechanical Engineering 221, 222, 361, and 423 or equivalent courses may be admitted with provisional status. Such students will be required to demonstrate proficiency in the material in the courses referenced above, either by completing each of those courses with a grade of at least 3.0 or by passing an examination on the material in those courses sanctioned by the department Graduate Studies Committee. Of the courses referenced above, only Mechanical Engineering 423 may be counted toward the requirements for the master’s degree.

Requirements for the Master of Science Degree in Engineering Mechanics

The student must complete a total of 30 credits for the degree under either Plan A (with thesis) or Plan B (without thesis) and must meet the requirements specified below:

Requirements for Both Plan A and Plan B:
1. The following core courses in engineering mechanics: Mechanical Engineering 825 or 861, 820, and 821.
2. At least one of the following core courses in mechanical engineering: Materials Science and Engineering 851, 855, 862, or 865.
3. At least one credit of Materials Science and Engineering 885.
4. At least one course in mathematics or statistics at the 400-level or above approved by the student’s academic advisor.

Doctor of Philosophy

In addition to meeting the requirements of the university and of the College of Engineering, students must meet the requirements specified below.

Admission

An applicant for admission must identify at least one prospective faculty advisor that he or she would like to direct his or her program of study. Admission to the Ph.D program is contingent on a faculty advisor accepting the student as an advisee.

Requirements for the Doctor of Philosophy Degree in Engineering Mechanics

The student must complete:
1. At least one of the following core courses in materials science and engineering: Materials Science and Engineering 851, 855, 862, or 865.
2. At least one course in mathematics or statistics at the 400–level or above.
 These requirements are waived for those students who completed equivalent courses prior to enrolling in the doctoral program.

MECHANICAL ENGINEERING

Master of Science

In addition to meeting the requirements of the university and of the College of Engineering, students must meet the requirements specified below.

Admission

An applicant should possess a bachelor's degree in mechanical engineering or a related field.

The applicant must submit scores from the Graduate Record Examination General Test.

Requirements for the Master of Science Degree in Mechanical Engineering

The student must complete a total of 30 credits for the degree under either Plan A (with thesis) or Plan B (without thesis) and meet the requirements specified below:

Requirements for Both Plan A and Plan B:

The student must:

1. Complete at least one course in three of the following four areas:

b. Fluid Mechanics: Mechanical Engineering 830

2. Complete at least 6 additional credits in Mechanical Engineering courses at the 800–900 level, not including Mechanical Engineering 898 or 899.

Additional Requirements for Plan A:

The student must:

1. Complete at least 20 credits in courses at the 800–900 level including at least 6, but not more than 8, credits in Mechanical Engineering 899.
2. Submit a brief thesis proposal for approval by the student's academic advisor early in the student's program of study.

Additional Requirements for Plan B:

The student must complete at least 22 credits in courses at the 800–900 level.

Doctor of Philosophy

In addition to meeting the requirements of the university and of the College of Engineering, students must meet the requirements specified below.

Admission

The applicant must submit scores from the Graduate Record Examination General Test.

Requirements for the Doctor of Philosophy Degree in Mechanical Engineering

In addition to meeting the requirements of the university and the College of Engineering, students must meet the requirements specified by their guidance committees.