The College of Engineering prepares its students to solve technical, as well as social, economic, and global problems while instilling the essence of engineering – the iterative process of designing, predicting performance, building, and testing. Our engineering programs provide future engineers with firm knowledge and understanding of the fundamental engineering sciences, of engineering methods for the application of this knowledge and the project management and communications skills to bring designs to fruition. Programs require a strong base in mathematics, computing, and the sciences as the tools of the engineer. An engineering education provides a teams-based, systems approach to societal problems and therefore prepares students for a wide range of career options, including those outside engineering.

UNDERGRADUATE PROGRAMS

Programs With a Major in the Engineering Professional Fields

The Bachelor of Science degree may be earned in programs designed to prepare students for work in biosystems engineering, chemical engineering, civil engineering, computer engineering, electrical engineering, environmental engineering, materials science and engineering, and mechanical engineering.

Programs With a Major in the Engineering Sciences

The Bachelor of Science degree may also be earned in engineering sciences with a major in computer science or applied engineering sciences. A required cognate combines the Computer Science major with studies such as business management, the social and behavioral or physical sciences, or a foreign language. The Applied Engineering Sciences major is an interdisciplinary program that combines a broad foundation in core engineering disciplines with a required concentration area in business law, computer science, packaging, supply chain management, technical sales, or media and information.

Engineering Study Abroad

The field of engineering increasingly requires a global perspective. Opportunities exist for students to study in a variety of countries. Students often take major and university requirements during their studies abroad, so the international experience need not delay a student’s progress toward graduation. Students interested in studying abroad should contact the Engineering Study Abroad office as early as possible.

Minors

Students who are enrolled in bachelor’s degree programs in the college may elect the Minor in Environmental and Sustainability Studies. For additional information, refer to the statement on Minor in Environmental and Sustainability Studies in the College of Natural Science section of this catalog.

Students who are enrolled in bachelor’s degree programs in The Eli Broad College of Business, the College of Communication Arts and Sciences, and the College of Engineering may elect a Minor in Information Technology. For additional information, refer to the statement on Minor in Information Technology in The Eli Broad College of Business section of this catalog or contact The Eli Broad College of Business.

Students who are enrolled in the Bachelor of Science degree in Computer Science in the College of Engineering may elect a Minor in Game Design and Development. For additional informa-
Undergraduate Programs

Experiential Education - The Center for Spartan Engineering

The College of Engineering offers a variety of opportunities for students to gain real-world experience in the field of engineering. These programs prepare students for work in industry or to enter graduate programs in engineering, medicine, law, or business. They include cooperative education, engineering internships and undergraduate research.

Cooperative Engineering Education is a program of alternating full–time employment in industry and full–time study on campus. Employment provides practical on–the–job experience by exposing students to types of work done by engineers. Locations of jobs are nationwide and students must be willing to relocate temporarily.

Students are selected to participate in the program on the basis of demonstrated academic ability and a firm commitment to pursuing careers in the technical sector. Certification in the Cooperative Engineering Education program requires a minimum of three semesters of full–time employment in a pre-professional position that has been approved by the College of Engineering.

Engineering Internships are one–time–only, career-based experiences usually completed during the summer semester and may or may not be available for academic credit. Internships provide practical on–the–job experience in the field of engineering.

Undergraduate research opportunities are available at Michigan State University and throughout the United States. Students who are considering graduate school are encouraged to participate in an undergraduate research program for exposure to research opportunities and protocol at the graduate level.

Students interested in any of these programs should contact The Center for Spartan Engineering in Room 1340 Engineering Building.

Honors Study

The College of Engineering encourages honors students to develop distinctive undergraduate programs in either the engineering sciences or in the fields offered by the several professional programs. A member of the faculty is selected to serve as advisor to Honors College students in each major field, and will help the student plan a rigorous and balanced program which will also reflect the student’s special interests and competencies.

Accreditation

The following degree programs have been accredited by ABET, Inc.: Biosystems Engineering, Chemical Engineering, Civil Engineering, Computer Engineering, Computer Science, Electrical Engineering, Environmental Engineering, Materials Science and Engineering, and Mechanical Engineering.

Registration as a Professional Engineer

In Michigan, the State Board of Registration for Professional Engineers provides an opportunity for students during their senior year to take the first half of a sixteen–hour, two–part examination as the first step toward registration, provided the degree is to be awarded within six months and the degree program is one that has been accredited by ABET or determined as equivalent by the State Board. After a minimum of four years of experience, the applicant may take the second half of the examination.

Freshmen

Students admitted to the university are enrolled as Undergraduate University Division students, but may declare a pre–engineering major preference in the College of Engineering. Such students are guided by a professional advisor from the college. All students are encouraged to review their progress with an advisor each semester. Students become eligible for admission to the college upon completion of the requirements listed below in the Admission to the College section of this catalog.

Students interested in engineering but not yet sure of a major may be an Engineering No–Preference major until attaining 56 credits but students are encouraged to make their major selections as early as possible.

Students who elect a pre–engineering major preference should be strongly prepared in mathematics and sciences. Additional work in these areas is highly desirable and may make advanced placement in courses possible. Students entering with less than the minimum mathematics prerequisites may take some of the necessary courses after entering the University. However, such students will need additional time to complete the work for the degree.

CoRe Program (Cornerstone and Residential Experiences)

The CoRe program is a comprehensive set of experiences aimed at fostering success in engineering from the very start.

The Cornerstone Engineering Experience (first–year courses) provides a broad introduction to engineering as design, the engineering profession and its expectations, working in the global workplace, engineering ethics, engineering problem-solving skills, and teamwork skills. Hands–on, team-based design is a major focus.

The Engineering Residential Experience provides an opportunity to immerse one’s self in the world of engineering. Live and learn in a collaborative environment that affords early connections to the profession through corporate partners, and prepares students to face the National Academy of Engineering’s “Grand Challenges.”

Supportive Services

The college provides a full range of supportive services including professional academic advising, tutoring, services for underrepresented and female students, career guidance and employment assistance, faculty connections, and peer mentors.

Admission to the College

Admission to the College of Engineering and a specific major provides access to enroll in certain courses required for the major. Enrollments in the College of Engineering are limited.

Admission is based on the cumulative grade–point average of all courses taken and a grade–point average calculated on mathematics, physical and biological sciences, and engineering courses.

For additional information, students should contact the Office of the Associate Dean for Undergraduate Studies, College of Engineering.

Minimum criteria for admission to the college are:

1. Completion of at least 12 credits of Michigan State University courses, including at least 6 credits in mathematics, physical and biological sciences, and engineering for freshmen and sophomores, and at least 10 credits in mathematics, physical and biological sciences, and engineering for juniors and seniors.
2. Completion of Mathematics 132 and 133.
3. A minimum grade–point average of 2.0 in all mathematics courses.
4. Completion of Chemistry 141 or 151 or approved substitution or waiver. Computer Science majors are not required to fulfill this requirement.
5. Completion of Physics 183.
6. Completion of Engineering 102 or Computer Science and Engineering 231 or Computer Science and Engineering 220 or approved substitution or waiver.
7. Completion of Engineering 100.

Freshmen and sophomores who have declared specific engineering majors (excluding Engineering No-Preference) are automatically reviewed at the end of every semester, and are either admitted or informed of their progress. Others may apply for admission during each semester, and applications will be reviewed after the end of each semester. Students must be admitted to a degree-granting college at the time they have completed 56 credits.

Admission to a Second Bachelor’s Degree Program
Students seeking admission to a second bachelor's degree program must meet the same requirements as for admission to the college.

Graduation Requirements for All Majors
1. The University requirements for bachelor's degrees as described in the Undergraduate Education section of the catalog; 120 credits, including general elective credits, are required for the Bachelor of Science degree in Computer Science and the Bachelor of Science degree in Applied Engineering Sciences; and 128 credits, including general elective credits, are required for the Bachelor of Science degree in the other Engineering majors.

Students who are enrolled in majors leading to the Bachelor of Science degree in the College of Engineering may complete an alternative track to Integrative Studies in Biological and Physical Sciences that consists of the following courses:
 a. One of the following courses: Biological Science 161; Plant Biology 105; Entomology 205; Microbiology and Molecular Genetics 201, 301; Physiology 250; Zoology 141.
 b. Two of the following courses: Chemistry 141, Chemistry 151, Physics 183 or 183B, Physics 184.
 c. One of the following laboratory courses: Plant Biology 106; Chemistry 161; Physics 191.

Credits earned in the alternative track may also be counted toward college and major requirements for the Bachelor of Science degree.

2. The requirements of the College of Engineering for the Bachelor of Science degree that are listed below:
 b. Chemistry 141 or 151. Computer Science majors are not required to complete Chemistry 141 or 151.
 c. Physics 183 or 183B and 184.
 d. Engineering 102. Computer Science, Computer Engineering, and Electrical Engineering majors are not required to complete Engineering 102.
 e. Engineering 100.

Students who are enrolled in bachelor's degree programs in the College of Engineering may elect a Specialization in Environmental Studies. For additional information, refer to the Specialization in Environmental Studies statement in the College of Natural Science section of this catalog.

Students who are enrolled in the Bachelor of Science Degree in Computer Science in the College of Engineering may elect a Specialization in Game Design and Development. For additional information, refer to the Specialization in Game Design and Development statement in the Department of Telecommunication, Information Studies and Media section of this catalog.

Students who are enrolled in bachelor's degree programs in the College of Engineering may elect a Specialization in Information Technology. For additional information, refer to the Specialization in Information Technology statement in The Eli Broad College of Business section of this catalog.

APPLIED ENGINEERING SCIENCES
The Applied Engineering Sciences major provides undergraduate opportunities leading to the Bachelor of Science degree. The core goal of applied engineering sciences is to prepare technically competent, broad-based engineering graduates who have acquired a systems perspective for problem-solving and business expertise. The program provides a broad foundation in science and mathematics, engineering, and business management and is designed to develop graduates who can apply the rigor of their technical education to diverse problems and settings. The program is structured to establish skills in areas such as effective management, contemporary technical issues, deployment of new technologies, resolving ethical dilemmas, effective communication across technical disciplines both in oral and written communication, and lifelong learning.

Requirements for the Bachelor of Science Degree in Applied Engineering Sciences
1. The University requirements for bachelor's degrees as described in the Undergraduate Education section of this catalog; 120 credits, including general elective credits, are required for the Bachelor of Science degree in Applied Engineering Sciences.

The University's Tier II writing requirement for the Applied Engineering Sciences major is met by completing Applied Engineering Sciences 410. That course is referenced in item 3. a. below.

Students who are enrolled in the College of Engineering may complete the alternative track to Integrative Studies in Biological and Physical Sciences that is described in Item 1. under the heading Graduation Requirements for All Majors in the College catalog. Certain courses referenced in requirement 3. below may be used to satisfy the alternative track.

2. The requirements of the College of Engineering for the Bachelor of Science degree.

The credits earned in certain courses referenced in requirement 3. below may be counted toward College requirements as appropriate.

3. The following requirements for the major:
 a. All of the following courses:
 ACC 230 Survey of Accounting Concepts 3
 CE 221 Statics 3
 CEM 161 Chemistry Laboratory I 1
 COM 225 Introduction to Interpersonal Communication 3
 EC 201 Introduction to Microeconomics 3
 EC 202 Introduction to Macroeconomics 3
 ECE 201 Circuits and Systems I 3
 AESC 210 Global Systems: Economics, Engineering, Environment 3
 AESC 310 Sustainable Systems Analysis 3
 AESC 410 Capstone Project in Applied Engineering Sciences 3
 ME 201 Thermodynamics 2
 ME 280 Graphic Communications 2
 MGT 325 Management Skills and Processes 3
 MKT 317 Quantitative Business Research Methods 3
 MSE 250 Materials Science and Engineering 3
 PHY 191 Physics Laboratory for Scientists, I 1
 STT 315 Introduction to Probability and Statistics for Business 3
 b. One of the following courses:
 EEE 230 Engineering Analysis of Biological Systems 3
 ENE 280 Principles of Environmental Engineering and Science 3
 c. Concentration: 15 to 18

In consultation with their academic advisor, students must select one of the following concentrations: business law, computer science, packaging, supply chain management, technical sales, or media and information. For students interested in computer science, the minimum criteria for acceptance is the completion of Computer Science and Engineering 231 and 260 with a combined
grade-point average in those two courses of 3.0. The concentration will be noted on the student’s academic record.

Business Law (16 credits)

1. All of the following courses (13 credits):
 - EC 301 Intermediate Microeconomics 3
 - EC 429 Law and Economics (W) 3
 - GBL 285 Business Law, Public Policy and Ethics 3
 - GBL 480 Environmental Law and Sustainability for Business: From Local to Global 3
 - PHY 192 Physics Laboratory for Scientists, II 1

2. One of the following courses (3 or 4 credits):
 - PHL 345 Business Ethics 4
 - PHL 354 Philosophy of Law 3
 - PLS 320 Judicial Politics 3
 - PLS 321 Constitutional Law 3
 - PLS 322 Comparative Legal Systems 3

Computer Science (18 credits)

1. All of the following courses (12 credits):
 - CSE 231 Introduction to Programming I 4
 - CSE 232 Introduction to Programming II 4
 - CSE 260 Discrete Structures in Computer Science 4

2. One of the following courses (3 credits):
 - CSE 320 Computer Organization and Architecture 3
 - CSE 335 Object-oriented Software Design 3

3. One of the following courses (3 credits):
 - CSE 410 Operating Systems 3
 - CSE 420 Computer Architecture 3
 - CSE 440 Introduction to Artificial Intelligence 3
 - CSE 471 Media Processing and Multimedia Computing 3
 - CSE 472 Computer Graphics 3

Packaging (18 credits)

All of the following courses:
- CSE 143 Computer Organization and Architecture 3
- CSE 420 Computer Architecture 3
- CSE 440 Introduction to Artificial Intelligence 3
- CSE 471 Media Processing and Multimedia Computing 3
- CSE 472 Computer Graphics 3

Supply Chain Management (15 credits)

All of the following courses:
- FI 320 Introduction to Finance 3
- MKT 327 Introduction to Marketing 3
- SCM 393 Introduction to Supply Chain Management 3
- SCM 371 Procurement and Supply Management 3
- SCM 372 Manufacturing Planning and Control 3

Technical Sales (18 credits)

All of the following courses:
- COM 360 Advanced Sales Communication 3
- FI 320 Introduction to Finance 3
- MKT 313 Personal Selling and Buying Processes 3
- MKT 327 Introduction to Marketing 3
- MKT 333 Sales Management 3
- SCM 474 Negotiations 2

Media and Information (18 credits)

All of the following courses:
- MI 101 Understanding Media in the Information Age 3
- MI 201 Introduction to Media and Information Technologies and Industries 3
- MI 300 Media Policy and Economics 3
- MI 301 Media, Media to Market 3
- MI 361 Information and Communication Technology Management 3
- MI 458 Project Management (W) 3

TEACHER CERTIFICATION OPTION

A computer science disciplinary minor in the College of Engineering is available for teacher certification.

Students who elect the computer science disciplinary minor must contact the Department of Computer Science and Engineering.

For additional information, refer to the statement on TEACHER CERTIFICATION in the Department of Teacher Education section of this catalog.

GRADUATE STUDY

The College of Engineering offers programs leading to the Master of Science and Doctor of Philosophy degrees in the following fields:

- chemical engineering
- civil engineering
- computer science
- electrical engineering
- engineering mechanics
- environmental engineering
- materials science and engineering
- mechanical engineering

Programs leading to the Master of Science and Doctor of Philosophy degrees in biosystems engineering are offered through the College of Agriculture and Natural Resources.

All programs are designed to provide a fundamental approach to basic engineering principles with emphasis on scientific methods, and to lead to careers in engineering research and development or teaching. Advanced work in the major field of specialization is combined with supporting courses in one or more other fields to develop individuals capable of creative work in engineering science and areas of application.

Students who are enrolled in Master of Science degree programs in the Department of Biosystems and Agricultural Engineering may elect a Specialization in Food Safety. For additional information, refer to the statement on the specialization in the *College of Veterinary Medicine* section of this catalog.

Master of Science

In addition to meeting the requirements of the University as described in the *Graduate Education* section of this catalog, students must meet the requirements specified below.

Admission

Regular Status. Admission to a master's degree program with regular status may be granted by the department, subject to the availability of resources and to the approval of the dean, upon consideration of the likelihood that the applicant will be able to pursue a master's program successfully without taking collateral courses. As evidence of eligibility for admission, the student may offer any of the following:

a. The possession of a bachelor's degree in an accredited program in engineering with a grade-point average not lower than 3.00 for the final two years of the undergraduate program, or with standing in the upper quarter of the graduating class in the student's major.

b. The possession of a bachelor's degree in engineering or a related field where the applicant has shown very high academic achievement, as certified by the department.

c. Evidence of ability and resolution to complete a master's program, as attested by the department upon review of the applicant's academic record, test scores, experience, reference statements, professional qualifications, proposed studies, and other relevant information.

Provisional Status. Admission to a master's degree program with provisional status may be granted by the department, subject to the approval of the dean:

a. To an applicant qualified for regular admission except that collateral courses are deemed necessary, or

b. To an applicant whose record is incomplete.

If collateral courses are required, the minimum acceptable grades and the semesters by which those courses must be completed will be specified on the admission form. The provisional
status will be changed to regular status when the conditions specified on the admission form have been met, as certified by the department and approved by the dean.

Program Filing
The student's program of study must be approved before the student completes 6 credits of graduate work in order for the student to continue to enroll in the master's degree program.

For any independent study or selected topics course that is included in the student's approved program of study, the subject material and the instructor must be specified.

Modification of Program
With reference to the student's approved program of study, none of the following types of changes will be approved:
1. Adding or deleting a course for which a grade has already been assigned under any of the three grading systems (numerical, pass–no grade, or credit–no credit).
2. Adding or deleting a course for which grading was postponed by the use of the DF–Deferred marker.
3. Adding or deleting a course which the student dropped after the middle of the semester and for which “W” or “N” or “0.0” was designated.
4. Adding or deleting a course during the final semester of enrollment in the master's degree program.

Requirements for the Master of Science Degree
The student must:
1. Complete a minimum of 30 credits in 400–, 800–, and 900–level courses under either Plan A (with thesis) or Plan B (without thesis). Courses below the 400 level may not be counted toward the requirements for the degree.
 a. Requirements for Plan A: The student must:
 (1) Complete a minimum of 20 credits in courses at the 800–900 level.
 (2) Complete at least 4, but not more than 8, credits in Master's Thesis Research (course number 899 in the department of the student's major).
 (3) Provide to the major professor and to the department a hard–bound copy of the thesis made from the original unbound manuscript submitted to the Office of The Graduate School. Arrangements for delivery of the copies shall be made when the original manuscript is submitted to the Office of The Graduate School.
 b. Requirements for Plan B: The student must:
 (1) Complete a minimum of 18 credits in courses at the 800–900 level.
2. Pass the final certifying examination administered by the student’s department. It is the student's responsibility to obtain detailed information about this examination from the department.

Academic Standards
1. Grades. The student must earn a grade of 2.0 or higher in each course in the approved program of study. The student must repeat any course for which the grade earned was below 2.0.
2. Cumulative Grade–Point Average. The student must maintain a cumulative grade–point average of at least 3.00 in the courses in the approved program of study.
3. Probational Status. A student is placed on probational status if the student's cumulative grade–point average for the courses in the approved program of study is below 3.00. A student in probational status is not allowed to carry more than 7 credits per semester or to enroll in any course the primary focus of which is independent study.

4. Retention In and Dismissal From the Program.
 a. Cumulative Grade–Point Average. Should a student's cumulative grade–point average fall below 3.00 after having completed 16 or more credits in courses in the approved program of study, the student may be enrolled in probational status in the master's degree program for one additional semester. If at the end of the additional semester the student's cumulative grade–point average is 3.00 or higher, the student may continue to enroll in the master's degree program. If at the end of the additional semester the student's cumulative grade–point average is still below 3.00, the student will be dismissed from the program.
 b. Academic Progress and Professional Potential. Each student's academic progress and professional potential are evaluated by March 15 of each year. A student who in the judgment of the faculty is making satisfactory academic progress and has professional potential may continue to enroll in the master's degree program. A student who in the judgment of the faculty is not making satisfactory academic progress or lacks professional potential will be dismissed from the program.

Transfer Credits
As a member of the Michigan Coalition for Engineering Education (MCEE), Michigan State University will accept up to one less than half of the course credits required for the Master of Science degree program in the College of Engineering in transfer from other MCEE member institutions provided that (1) the student earned a grade of at least 3.0, or the equivalent, in the related courses; (2) the credits were not earned in research or thesis courses; and (3) the total number of credits accepted in transfer from MCEE member institutions and from other institutions does not exceed one less than half of the credits required.

Doctor of Philosophy
In addition to meeting the requirements of the university as described in the Graduate Education section of this catalog, students must meet the requirements specified below.

Admission
Regular Status. Admission to a doctoral degree program with regular status may be granted by the department, subject to the availability of resources and to the approval of the dean, upon consideration of the likelihood that the applicant will be able to pursue a doctoral program successfully without taking collateral courses. As evidence of eligibility for admission, the student may offer any of the following:
 a. The possession of a master's degree in engineering or a related field.
 b. The completion of the equivalent of a master's degree program in the major field.
 c. Evidence of ability and resolution to complete a doctoral program, as attested by the department upon review of the applicant's academic record, test scores, experience, reference statements, professional qualifications, proposed studies, and other relevant information.
Admission to the doctoral program without a master’s degree, or the equivalent thereof, will require special consideration by the department and the dean.

Provisional Status. Admission to a doctoral degree program with provisional status may be granted by the department, subject to the approval of the dean:

a. To an applicant qualified for regular admission except that collateral courses are deemed necessary, or
b. To an applicant whose record is incomplete.

If collateral courses are required, the minimum acceptable grades and the semesters by which those courses must be completed will be specified on the admission form. The provisional status will be changed to regular status when the conditions specified on the admission form have been met, as determined by the department and approved by the dean.

Guidance Committee
The student’s guidance committee is appointed by the department chairperson in consultation with the student and the appropriate faculty members, and with the approval of the dean. At least two members of the guidance committee shall be from the major department and at least one member shall be from a department outside of the major department. The chairperson of the guidance committee will be appointed by the department chairperson after consultation with the student and the person recommended to chair the committee.

Guidance Committee Report
The student’s program of study shall be submitted for approval to the department and to the Dean by no later than the end of the student’s second semester of enrollment in the doctoral program. For any independent study or selected topics course that is included in the student’s program of study, the subject material and the instructor must be specified.

The student’s program of study must be approved in order for the student to continue to enroll in the doctoral degree program beyond the second semester.

Modification of Program
With reference to the student’s approved guidance committee report, none of the following types of changes will be approved:

1. Adding or deleting a course for which a grade has already been assigned under any of the three grading systems (numerical, Pass–No Grade, or Credit–No Credit).
2. Adding or deleting a course for which grading was postponed by the use of the DF–Deferred marker.
3. Adding or deleting a course which the student dropped after the middle of the semester and for which “W” or “N” or “0.0” was designated.
4. Adding or deleting a course during the final semester of enrollment in the doctoral degree program.

Requirements for the Doctor of Philosophy Degree
The student must:

1. Pass the qualifying examination administered by the student’s department. It is the student’s responsibility to obtain detailed information about this examination from the department.
2. Pass the doctoral comprehensive examination at least six months prior to the final oral examination in defense of the dissertation. The examination may be retaken no more than twice. It is the student’s responsibility to obtain detailed information about this examination from the department.
3. Provide to the major professor and to the department a hard-bound copy of the dissertation made from the original unbound manuscript submitted to the Office of the Graduate School. Arrangements for delivery of the copies shall be made when the original manuscript is submitted to the Office of The Graduate School.

Academic Standards

1. Grades. The student must earn a grade of 2.0 or higher in each course in the approved guidance committee report, including collateral courses and courses accepted in transfer. The student must repeat any course for which the grade earned was below 2.0.
2. Cumulative Grade–Point Average. The student must maintain a cumulative grade–point average of at least 3.00 in courses in the approved guidance committee report, with the exception of collateral courses and courses accepted in transfer.
3. Deferred Grades. A student may accumulate no more than 3 deferred grades (identified by the DF–Deferred marker) in courses other than those courses the primary focus of which is independent study.
4. Probational Status. A student is placed on probational status if either or both of the following conditions apply:
 a. The student’s cumulative grade–point average for the courses in the approved guidance committee report is below 3.00.
 b. The student has accumulated more than three deferred grades (identified by the DF–Deferred marker) in courses other than those courses the primary focus of which is independent study.

A student in probational status is not allowed to carry more than 7 credits per semester or to enroll in any course the primary focus of which is independent study.

5. Retention In and Dismissal From the Program.
 a. Cumulative Grade–point Average. Should a student’s cumulative grade–point average fall below 3.00 after having completed half of the courses in the approved guidance committee report, the student may be enrolled in probational status in the doctoral degree program for one additional semester. If at the end of the additional semester the student’s cumulative grade–point average is 3.00 or higher, the student may continue to enroll in the doctoral degree program. If at the end of the additional semester the student’s cumulative grade–point average is still below 3.00, the student will be dismissed from the program.
 b. Deferred Grades. Should a student accumulate more than 3 deferred grades (identified by the DF–Deferred marker) in courses other than those courses the primary focus of which is independent study, the student may be enrolled on probational status in the doctoral degree program for one additional semester. If at the end of the additional semester the student has no more than 3 deferred grades, the student may continue to enroll in the doctoral degree program. If at the end of the additional semester the student still has more than 3 deferred grades, the student will be dismissed from the program.
 c. Academic Progress and Professional Potential. Each student’s academic progress and professional potential are evaluated by March 15 of each year. A student who in the judgment of the faculty is making satisfactory academic progress and has professional potential may continue to enroll in the doctoral degree program. A student who in the judgment of the faculty is
not making satisfactory academic progress or lacks professional potential will be dismissed from the program.

GRADUATE SPECIALIZATION IN ENVIRONMENTAL TOXICOLOGY
The College of Engineering, the College of Agriculture and Natural Resources, the College of Natural Science, and the College of Veterinary Medicine administer the Graduate Specialization in Environmental Toxicology. The College of Agriculture and Natural Resources is the primary administrative unit. For additional information, refer to the Graduate Specialization in Environmental Toxicology statement in the College of Agriculture and Natural Resources section of this catalog.

DEPARTMENT of BIOMEDICAL ENGINEERING
The Department of Biomedical Engineering’s mission is to apply engineering principles and design concepts to advance healthcare practices, including medical diagnosis, treatment, and monitoring. A particular focus of the research in biomedical engineering is the cross-cutting topic of translational research, defined as engineering research that makes findings from basic science useful for practical applications that improve human health. The department is a focal point for technological innovations in healthcare technology applied to medical needs as identified by physicians, nurses, and health scientists in hospital, clinic, and home settings.

DEPARTMENT of BIOSYSTEMS and AGRICULTURAL ENGINEERING
Darrell W. Donahue, Chairperson
The Department of Biosystems and Agricultural Engineering is administered jointly by the College of Engineering and the College of Agriculture and Natural Resources.

UNDERGRADUATE PROGRAM
The department offers a Bachelor of Science degree program with a major in biosystems engineering through the College of Engineering. That program is described below.

The department also offers a Bachelor of Science degree program with a major in technology systems management through the College of Agriculture and Natural Resources. For information about that program, refer to the statement on the Department of Biosystems and Agricultural Engineering in the College of Agriculture and Natural Resources section of this catalog.

Students who are enrolled in the Bachelor of Science degree program with a major in biosystems engineering may elect a Minor in Plant, Animal and Microbial Biotechnology. For additional information, refer to the Minor in Plant, Animal and Microbial Biotechnology statement in the College of Agriculture and Natural Resources section of this catalog.

BIOSYSTEMS ENGINEERING
Bachelor of Science
Biosystems engineers design solutions to technical problems that involve a critical biological component. They apply quantitative skills to create products, processes, and systems that improve human existence. Working at the interface of engineering and biology, biosystems engineers are engaged in the most important challenges of our time.
There are a wide variety of job functions and application areas for our graduates, including ecosystems protection, food safety, bioenergy, biosecurity, and human health. Biosystems engineers may, for example, design sterilization and pasteurization processes to eliminate microbial pathogens and maximize the nutritional value of our food. Other graduates may design constructed wetlands, which utilize biological systems to capture pollutants and protect our precious fresh water resources. Biosystems engineers are sought after by a wide variety of employers including food manufacturers, environmental consulting firms, health industries, and government agencies who need creative individuals to integrate principles of engineering and biology successfully.

The Bachelor of Science Degree program in Biosystems Engineering is accredited by the Engineering Accreditation Commission of ABET, www.abet.org.

Requirements for the Bachelor of Science Degree in Biosystems Engineering
1. The University requirements for bachelor’s degrees as described in the Undergraduate Education section of this catalog; 128 credits, including general elective credits, are required for the Bachelor of Science degree in Biosystems Engineering.
The University’s Tier II writing requirement for the Biosystems Engineering major is met by completing Biosystems Engineering 487. That course is referenced in item 3.a below.
Students who are enrolled in the College of Engineering may complete the alternative track to Integrative Studies in Biological and Physical Sciences that is described in item 1. under the heading Graduation Requirements for All Majors in the College statement. Certain courses referenced in requirement 3. below may be used to satisfy the alternative track.
2. The requirements of the College of Engineering for the Bachelor of Science degree.
The credits earned in certain courses referenced in requirement 3. below may be counted toward College requirements as appropriate.
3. The following requirements for the major:
 a. All of the following courses: ... 46 CREDITS
 BE 101 Introduction to Biosystems Engineering 1
 BE 230 Engineering Analysis of Biological Systems 3
 BE 332 Engineering Properties of Biological Materials 3
 BE 334 Biosystems Engineering Laboratory Practice 3
 BE 350 Heat and Mass Transfer in Biosystems 3
 BE 351 Thermodynamics for Biological Engineering 3
 BE 360 Microbial Systems Engineering 3
 BE 385 Engineering Design and Optimization for Biological Systems ... 3
 BE 485 Biosystems Design Techniques 3
 BE 487 Biosystems Design Project (W) 3
 BS 161 Cell and Molecular Biology 3
 BS 162 Organismal and Population Biology 3
 CE 221 Statics ... 3
 CE 321 Introduction to Fluid Mechanics 4
 CEM 143 Survey of Organic Chemistry 4
 CEM 161 Chemistry Laboratory I 1
 b. One of the following courses (2 credits): 2
 BS 171 Cell and Molecular Biology Laboratory 2
 BS 172 Organismal and Population Biology Laboratory 2
 c. One of the following courses: 3 or 4
 MMG 301 Introductory Microbiology 3
 PLB 301 Introductory Plant Physiology 4
 PSL 250 Introductory Physiology 4
 ZOL 341 Fundamental Genetics 4
 ZOL 355 Zoology ... 3
 d. One of the following courses: 3 or 4
Concentrations in Biosystems Engineering

The department offers concentrations for students who wish to focus on a specific application area in the discipline. The concentrations are available to, but not required of, any student enrolled in the Bachelor of Science degree program in Biosystems Engineering. Courses completed to satisfy requirements 1 to 3 above may also be used to satisfy the requirements of a concentration. The concentration will be noted on the students transcript.

Bioenergy Engineering

To earn a Bachelor of Science degree in Biosystems Engineering with a bioenergy engineering concentration, students must complete degree requirements 1, 2, and 3 above and the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE 449 Sustainable Bioenergy Systems</td>
<td>3</td>
</tr>
<tr>
<td>CHE 468 Biomass Conversion Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CSS 467 Bioenergy Feedstock Production</td>
<td>3</td>
</tr>
<tr>
<td>MMG 445 Microbial Biotechnology (W)</td>
<td>3</td>
</tr>
<tr>
<td>PLB 402 Biology of Fungi</td>
<td>4</td>
</tr>
<tr>
<td>PLB 424 Algal Biology</td>
<td></td>
</tr>
</tbody>
</table>

3. One of the following courses (3 or 4 credits):

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE 481 Biochemical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CHE 882 Advanced Biochemical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CHE 883 Multidisciplinary Bioprocessing Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>GLG 471 Applied Geophysics</td>
<td>4</td>
</tr>
<tr>
<td>MC 450 International Environmental Law and Policy</td>
<td>3</td>
</tr>
<tr>
<td>ME 417 Design of Alternative Energy Systems</td>
<td>3</td>
</tr>
<tr>
<td>ME 422 Introduction to Combustion</td>
<td></td>
</tr>
<tr>
<td>MMG 445 Microbial Biotechnology (W)</td>
<td>3</td>
</tr>
<tr>
<td>PLB 402 Biology of Fungi</td>
<td>4</td>
</tr>
<tr>
<td>PLB 424 Algal Biology</td>
<td></td>
</tr>
</tbody>
</table>

Courses used to fulfill requirement 2. in this concentration may not be used to fulfill this requirement.

Biomedical Engineering

To earn a Bachelor of Science degree in Biosystems Engineering with a biomedical engineering concentration, students must complete degree requirements 1, 2, and 3 above and the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE 445 Biosensors for Medical Diagnostics</td>
<td>3</td>
</tr>
<tr>
<td>ECE 445 Biomedical Instrumentation</td>
<td>3</td>
</tr>
<tr>
<td>ME 494 Biofluid Mechanics and Heat Transfer</td>
<td>3</td>
</tr>
<tr>
<td>One of the following courses (3 credits):</td>
<td></td>
</tr>
<tr>
<td>BLD 404 Eukaryotic Pathogens</td>
<td>3</td>
</tr>
<tr>
<td>PSL 425 Physiological Biophysics</td>
<td>3</td>
</tr>
<tr>
<td>4. Two of the following courses (5 or 6 credits):</td>
<td></td>
</tr>
<tr>
<td>BLD 204 Mechanisms of Disease</td>
<td>3</td>
</tr>
<tr>
<td>BLD 430 Molecular Laboratory Diagnostics</td>
<td>2</td>
</tr>
<tr>
<td>BLD 434 Clinical Immunology</td>
<td>3</td>
</tr>
<tr>
<td>BLD 450 Eukaryotic Pathogens</td>
<td>3</td>
</tr>
<tr>
<td>ECE 445 Biomedical Instrumentation</td>
<td>3</td>
</tr>
<tr>
<td>ME 494 Biofluid Mechanics and Heat Transfer</td>
<td>3</td>
</tr>
<tr>
<td>MSE 425 Biomaterials and Biocompatibility</td>
<td>3</td>
</tr>
<tr>
<td>PSL 425 Physiological Biophysics</td>
<td>3</td>
</tr>
</tbody>
</table>

Courses used to fulfill requirements 2. and 3. in this concentration may not be used to fulfill this requirement.

Ecosystems Engineering

To earn a Bachelor of Science degree in Biosystems Engineering with an ecosystem engineering concentration, students must complete degree requirements 1, 2, and 3 above and the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE 481 Water Resources Systems Analysis and Modeling</td>
<td>3</td>
</tr>
<tr>
<td>BE 482 Diffuse-Source Pollution Engineering</td>
<td>3</td>
</tr>
<tr>
<td>MMG 425 Microbial Ecology</td>
<td>3</td>
</tr>
</tbody>
</table>

2. Two of the following courses (5 or 6 credits):

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 422 Applied Hydraulics</td>
<td>3</td>
</tr>
<tr>
<td>CSS 210 Fundamentals of Soil Science</td>
<td>3</td>
</tr>
<tr>
<td>CSS 330 Soil Chemistry</td>
<td>2</td>
</tr>
<tr>
<td>CSS 360 Soil Biology</td>
<td>3</td>
</tr>
<tr>
<td>CSS 442 Agricultural Ecology</td>
<td>3</td>
</tr>
<tr>
<td>CSS 455 Pollutants in the Soil Environment</td>
<td>3</td>
</tr>
<tr>
<td>FOR 404 Forest Ecology</td>
<td></td>
</tr>
<tr>
<td>FW 417 Wetland Ecology and Management</td>
<td>3</td>
</tr>
<tr>
<td>FW 420 Stream Ecology</td>
<td>3</td>
</tr>
<tr>
<td>FW 443 Restoration Ecology</td>
<td>3</td>
</tr>
</tbody>
</table>

Food Engineering

To earn a Bachelor of Science degree in Biosystems Engineering with a food engineering concentration, students must complete degree requirements 1, 2, and 3 above and the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE 477 Food Engineering: Fluids</td>
<td>3</td>
</tr>
<tr>
<td>BE 478 Food Engineering: Solids</td>
<td>3</td>
</tr>
<tr>
<td>FSC 440 Food Microbiology</td>
<td>3</td>
</tr>
</tbody>
</table>

2. Two of the following courses, one of which must be at the 400-level

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMB 200 Introduction to Biochemistry</td>
<td>4</td>
</tr>
<tr>
<td>FSC 211 Principles of Food Science</td>
<td>3</td>
</tr>
<tr>
<td>FSC 401 Food Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>FSC 430 Food Processing: Fruits and Vegetables</td>
<td>3</td>
</tr>
<tr>
<td>FSC 431 Food Processing: cereals</td>
<td></td>
</tr>
<tr>
<td>FSC 432 Food Processing: Dairy Foods</td>
<td>3</td>
</tr>
<tr>
<td>FSC 433 Food Processing: Muscle Foods</td>
<td>3</td>
</tr>
</tbody>
</table>

LINKED BACHELOR’S-MASTER’S DEGREE IN BIOSYSTEMS ENGINEERING

Bachelor of Science Degree in Biosystems Engineering

Master of Science Degree in Biosystems Engineering

The department welcomes applications from Michigan State University Biosystems Engineering undergraduate students in their junior and senior year. Admission applications must be made during the prior spring semester for an anticipated spring graduation or the prior fall semester for an anticipated fall graduation to allow admission before the final semester as a Biosystems Engineering undergraduate. Admission to the program requires a minimum undergraduate grade-point average of 3.5 and an approved program of study for the Master of Science degree in Biosystems Engineering at the time of admission. Admission to the Linked Bachelor’s-Master’s program allows the application of up to 9 credits toward the master’s program for qualifying 400-level and above course work taken at the undergraduate level at Michigan State University or another postsecondary accredited institution of comparable academic quality. The number of approved credits, not to exceed 9, are applied toward the credit requirement of the master’s degree. Credits applied to the Linked Bachelor’s-Master’s program are not eligible to be applied to any other graduate degree program.
GRADUATE STUDY

The department offers Master of Science and Doctor of Philosophy programs in biosystems engineering through the College of Agriculture and Natural Resources. For information about those programs, refer to the statement on the Department of Biosystems and Agricultural Engineering in the College of Agriculture and Natural Resources section of this catalog.

Students who are enrolled in Master of Science degree programs in the Department of Biosystems and Agricultural Engineering may elect a Specialization in Food Safety. For additional information, refer to the statement on the specialization in the College of Veterinary Medicine section of this catalog.

DEPARTMENT of CHEMICAL ENGINEERING and MATERIALS SCIENCE

Donald Morelli, Acting Chairperson

The undergraduate and graduate programs of the Department of Chemical Engineering and Materials Science have been training top-quality graduates for over 75 years. Graduates from the Department of Chemical Engineering and Materials Science are highly sought after for work on important societal problems. The faculty is dedicated to strong classroom instruction and world-class research focused in the areas of energy and sustainability, advanced materials and nanotechnology, and biotechnology and medicine.

UNDERGRADUATE PROGRAMS

The Department of Chemical Engineering and Materials Science offers two Bachelor of Science degree programs, one in chemical engineering and one in materials science and engineering. Students learn to convert low-value raw materials into high-value products. Students learn how to analyze and understand different processes and how, at the macroscopic and molecular levels these processes result in different properties in the final product. Emphasis is placed on developing students who understand the technical aspects of production, the environmental, economic, and societal impact of engineering, and who possess a desire for lifelong learning and growth. Optional concentrations are available for students to focus their programs of study on areas of particular interest.

Graduates are trained to succeed in multidisciplinary teams that interface between disciplines. They work across a broad spectrum of fields including industrial chemicals, automotive, plastics, petroleum processing, pharmaceuticals, textiles, food, electronics, sensors, consumer goods, biomedical technology, and specialty materials of construction. Within these fields, our graduates are involved in research and development of products and processes, in the design and operation of manufacturing facilities, and in management and product quality control.

CHEMICAL ENGINEERING

Chemical engineers convert raw materials to finished products that benefit society. Chemical engineering principles are, in turn, based on the sciences of chemistry, biology, mathematics, and physics, which form the underlying foundation of the discipline.

Students in this degree program will study the application of chemical engineering principles to biochemical and biomedical systems, nanoscale devices, polymer processing, and novel energy systems. Principles of sustainability, environmentally-friendly “green” processing, entrepreneurship, and other emerging topics are also addressed in courses and concentrations.

The Bachelor of Science Degree program in Chemical Engineering is accredited by the Engineering Accreditation Commission of ABET, www.abet.org.

Requirements for the Bachelor of Science Degree in Chemical Engineering

1. The University requirements for bachelor’s degrees as described in the Undergraduate Education section of this catalog: 128 credits, including general elective credits, are required for the Bachelor of Science degree in Chemical Engineering.

The University’s Tier II writing requirement for the Chemical Engineering major is met by completing Chemical Engineering 316 and 433. Those courses are referenced in item 3. a. below.

Students who are enrolled in the College of Engineering may complete the alternative track to Integrative Studies in Physical and Biological Sciences that is described in item 1. under the heading Graduation Requirements for All Majors in the College statement. Certain courses referenced in requirement 3. below may be used to satisfy the alternative track.

2. The requirements of the College of Engineering for the Bachelor of Science degree.

The credits earned in certain courses referenced in requirement 3. below may be counted toward College requirements as appropriate.

3. The following requirements for the major:

a. All of the following courses:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 161 Cell and Molecular Biology</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 151 General and Descriptive Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 152 Principles of Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 161 Chemistry Laboratory I</td>
<td>1</td>
</tr>
<tr>
<td>CHEM 162 Chemistry Laboratory II</td>
<td>1</td>
</tr>
<tr>
<td>CHEM 351 Organic Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 352 Organic Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 355 Organic Laboratory I</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 201 Material and Energy Balances</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 210 Modeling and Analysis of Transport Phenomena</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 301 Chemical Engineering as a Profession</td>
<td>1</td>
</tr>
<tr>
<td>CHEM 311 Fluid Flow and Heat Transfer</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 312 Mass Transfer and Separations</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 316 Laboratory Practice and Statistical Analysis</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 321 Thermodynamics for Chemical Engineering</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 431 Chemical Reaction Engineering</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 432 Process Analysis and Control</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 433 Process Design and Optimization</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 434 Process Design and Optimization II</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 473 Chemical Engineering Principles in Polymers and Material Systems</td>
<td>3</td>
</tr>
</tbody>
</table>

b. One of the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 401 Comprehensive Biochemistry</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 401 Advanced Biochemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 402 Advanced Biochemistry</td>
<td>3</td>
</tr>
</tbody>
</table>

Note: Students must complete at least 6 credits of technically oriented subject-related courses approved by the student’s advisor. Acceptable subjects include, but are not limited to, courses processing or biochemical engineering (in addition to that required in 3. c. above), electronic materials, environment, advanced mathematics, transport phenomena, advanced chemistry, foods, legal and regulatory issues, advanced materials, advanced biology, statistics, biomedical engineering, bioenergetics, and polymers.

NOTE: Elective courses in item 3. e. must include at least 3 credits of engineering topics, which includes courses taught in the College of Engineering as well as courses taught in advanced mathematics, advanced chemistry, advanced biology, advanced statistics, and advanced physics. If Biochemistry and Molecular Biology 462 is
Concentrations in Chemical Engineering

In response to increasing interest in the application of chemical engineering principles to related fields, the Department of Chemical Engineering and Materials Science offers concentrations in biochemical engineering, bioenergy, biomedical engineering, environmental engineering, food science, and polymer science and engineering to students wishing an area of concentration in the degree. Concentrations are available to, but not required of, any student enrolled in the Bachelor of Science degree program in chemical engineering. The concentration will be noted on the student’s transcript.

NOTE: Completing the Bachelor of Science degree in chemical engineering with a concentration may require more than 128 credits.

Biochemical Engineering
To earn a Bachelor of Science degree in Chemical Engineering with a biochemical engineering concentration, students must complete requirements 1., 2., 3.a., and 3.d. above and the following:
Both of the following courses: ... 6
CHE 481 Biochemical Engineering .. 3
MMG 301 Introductory Microbiology ... 3
One of the following: .. 4 or 6
(1) BMB 401 Comprehensive Biochemistry 3
(2) BMB 481 Advanced Biochemistry I .. 3
BMB 462 Advanced Biochemistry II .. 3
Two or three of the following courses. Students who chose BMB 401 above must complete three courses. Students who chose BMB 461 and 462 above must complete two courses:
BMB 829 Methods of Macromolecular Analysis and Synthesis 2
CHE 882 Advanced Biochemical Engineering 3
CHE 883 Multidisciplinary Bioprocessing Laboratory 3
MMG 409 Eukaryotic Cell Biology .. 3
MMG 421 Prokaryotic Cell Physiology .. 3
MMG 431 Microbial Biotechnology .. 3
MMG 445 Microbial Biotechnology (W) ... 3

Bioenergy
To earn a Bachelor of Science degree in Chemical Engineering with a bioenergy concentration, students must complete requirements 1., 2., 3.a., 3.b., and 3.d. above and the following:
All of the following courses: ... 12
BE 469 Sustainable Bioenergy Systems 3
CHE 468 Biomass Conversion Engineering 3
CHE 481 Biochemical Engineering ... 3
CSS 467 Bioenergy Feedstock Production 3
One of the following courses: ... 3 or 4
AEC 829 Economics of Environmental Resources 3
CHE 882 Advanced Biochemical Engineering 3
CHE 883 Multidisciplinary Bioprocessing Laboratory 3
GLG 471 Applied Geophysics .. 4
MC 450 International Environmental Law and Policy 3
MMG 445 Microbial Biotechnology (W) ... 3

Biomedical Engineering
To earn a Bachelor of Science degree in Chemical Engineering with a biomedical engineering concentration, students must complete requirements 1., 2., 3.a., 3.b., and 3.d. above and the following:
All of the following courses: ... 9
CHE 481 Biochemical Engineering ... 3
CHE 489 Biomaterials ... 3
MMG 409 Eukaryotic Cell Biology .. 3
PSL 431 Human Physiology .. 3
Two of the following courses: ... 6 or 7
CHE 481 Biochemical Engineering ... 3
CHE 883 Multidisciplinary Bioprocessing Laboratory 3
ME 494 Biologic Fluids and Heat Transfer 3
ZOL 341 Fundamental Genetics .. 4

Environmental
To earn a Bachelor of Science degree in Chemical Engineering with an environmental concentration, the student must complete requirements 1., 2., 3.a., 3.b., and 3.d. above and the following:
Both of the following courses: ... 6
CHE 481 Biochemical Engineering ... 3
ENE 290 Principles of Environmental Engineering 3
Three of the following courses: ... 9
CE 485 Landfill Design ... 3
CSS 465 Environmental Law and Policy .. 3
EEN 481 Environmental Chemistry: Equilibrium Concepts 3
EEN 483 Water and Wastewater Engineering 3
EEN 489 Air Pollution: Science and Engineering 3
ZCL 446 Environmental Issues and Public Policy 3

Food Science
To earn a Bachelor of Science degree in Chemical Engineering with a food science concentration, students must complete requirements 1., 2., 3.a., 3.b., 3.c., and 3.d. above and all of the following:
All of the following courses: ... 9
CHE 401 Food Chemistry ... 3
FSC 440 Food Microbiology ... 3
MMG 301 Introductory Microbiology ... 3
BE 477 Food Engineering: Fluids .. 3
BE 478 Food Engineering: Solids .. 3
FSC 325 Food Processing: Unit Operations 3
FSC 455 Food and Nutrition Laboratory ... 3
FSC 470 Integrated Approaches to Food Product Development 3

Polymer Science and Engineering
To earn a Bachelor of Science degree in Chemical Engineering with a polymer science and engineering concentration, students must complete requirements 1., 2., 3.a., 3.b., and 3.d. above and all of the following:
All of the following courses: ... 9
CE 221 Statics ... 3
CHE 472 Composite Materials Processing 3
ME 222 Mechanics of Deformable Solids ... 3
Two of the following courses: ... 6 or 7
CHE 871 Material Surfaces and Interfaces 3
CHE 872 Polymers and Structure and Performance 3
MSE 370 Synthesis and Processing of Materials 3
MSE 426 Introduction to Composite Materials 3
PKG 323 Packaging with Plastics .. 4

Materials Science and Engineering

Materials Science and Engineering majors learn to select and create materials used to realize engineering designs in fields such as bioengineering, microelectronics and aerospace. They also learn how to manipulate the elements of matter into the atomic arrangements that assure efficient and cost-effective materials performance, demanded by today’s advanced applications.

Through the core course work, students gain the scientific and engineering foundation needed to design metallic, ceramic, polymeric, and composite materials and, in turn, components manufactured from these materials. Students may enhance the knowledge they gain in metals, ceramics, and polymers by completing a concentration in biomedical materials, manufacturing, polymers, or metallurgy. Students may also choose to enroll in electives of complementary fields such as business, electronic materials or statistics. Honors students are encouraged to request an honors option with the instructors of MISE courses listed in item 3.a. below.

The Bachelor of Science Degree program in Materials Science and Engineering is accredited by the Engineering Accreditation Commission of ABET, www.abet.org.

Requirements for the Bachelor of Science Degree in Materials Science and Engineering

1. The University requirements for bachelor’s degrees as described in the Undergraduate Education section of this catalog: 128 credits, including general elective credits, are required for the Bachelor of Science degree in Materials Science and Engineering.

2. The University’s Tier II writing requirement for the Materials Science and Engineering major is met by completing Materials Science and Engineering 466. That course is referenced in item 3.a. below.

3. The following requirements for the major:

 a. All of the following courses: .. 41

 Credits
Concentrations in Materials Science and Engineering

Students may elect to complete a more focused set of courses to enhance their ability to function at the interface with another scientific, engineering, or business discipline. Concentrations are available to, but not required of, any student enrolled in the Bachelor of Science degree in Materials Science and Engineering. Completing the Bachelor of Science degree in Materials Science and Engineering with a concentration may require more than 128 credits. The concentration will be noted on the student’s transcript.

Biomedical Materials Engineering

To gain interdisciplinary skills in human biology and earn a Bachelor of Science degree in Materials Science and Engineering with a biomedical materials engineering concentration, students must complete requirement 3. a. above and the following (12 credits):

1. All of the following courses (16 credits):
 - ANTR 350 Human Gross Anatomy for Pre-Health Professionals
 - CEM 351 Organic Chemistry I
 - ME 495 Tissue Mechanics
 - MSE 425 Biomaterials and Biocompatibility
 - ZQL 341 Fundamental Genetics
2. Two of the following courses (3 credits):
 - ME 477 Manufacturing Processes
 - ME 474 Ceramics and Refractory Materials
 - MSE 465 Design and Application of Engineering Materials
 - MSE 476 Physical Metallurgy of Ferrous and Aluminum Alloys
3. At least 6 credits from a list of approved elective credits

Manufacturing Engineering

To gain interdisciplinary skills with business and design engineers for manufacturing projects and earn a Bachelor of Science degree in Materials Science and Engineering with a manufacturing engineering concentration, students must complete requirement 3. a. above and the following (21 credits):

1. All of the following courses (12 credits):
 - ECE 415 Computer Aided Manufacturing
 - ME 477 Manufacturing Processes
 - ME 478 Product Development
 - MSE 465 Design and Application of Engineering Materials
2. Three of the following courses (9 credits):
 - GBL 323 Introduction to Business Law
 - MSE 426 Introduction to Composite Materials
 - MSE 474 Ceramic and Refractory Materials
 - MSE 476 Physical Metallurgy of Ferrous and Aluminum Alloys
3. Completion of this concentration fulfills requirement 2. of the admission requirements for the Master of Science degree in Manufacturing and Engineering Management offered by The Eli Broad College of Business.

Metallurgical Engineering

To enhance the student’s ability to characterize, process, and design with metals in association with mechanical engineers and earn a Bachelor of Science degree in Materials Science and Engineering with a metallurgical engineering concentration, students must complete requirement 3. a. above and the following (21 credits):

1. All of the following courses (16 credits):
 - ME 423 Intermediate Mechanics of Deformable Solids
 - ME 475 Computer Aided Design of Structures
2. One of the following courses (3 credits):
 - ME 477 Manufacturing Processes

Polymeric Engineering

To gain interdisciplinary skills to facilitate interactions with chemical engineers and earn a Bachelor of Science degree in Materials Science and Engineering with a polymeric engineering concentration, students must complete requirement 3. a. above and the following (21 credits):

1. All of the following courses (18 credits):
 - CEM 351 Organic Chemistry I
 - CHE 311 Fluid Flow and Heat Transfer
 - CHE 472 Composite Materials Processing
 - CHE 473 Chemical Engineering Principles in Polymers and Materials Systems
2. Complete at least 3 credits in courses selected from a list of approved technical electives available from the Department of Chemical Engineering and Materials Science

MINOR IN MATERIALS SCIENCE AND ENGINEERING

The Minor in Materials Science and Engineering, which is administered by the Department of Chemical Engineering and Materials Science, provides students with a basic foundation in materials science that is applicable to many disciplines. The minor also offers opportunities for students to work in industry, research, or government, as well as to prepare for graduate study in materials science.

The minor is available as an elective to students in a Bachelor's degree program in the College of Engineering, other than the Bachelor of Science Degree in Materials Science and Engineering. With the approval of the college, the courses that are used to satisfy the minor may also be used to satisfy the requirements for the bachelor’s degree. At least 12 unique credits counted towards the requirements for a student's minor must not be used to fulfill the requirements for that student's major.

Students who plan to complete the requirements for the minor must apply to the Department of Chemical Engineering and Materials Science. To be enrolled into the minor, the student must be admitted into the College of Engineering. Enrollment for some MSE courses may be limited. Application forms are available at www.chems.msu.edu.

Requirements for the Minor in Materials Science and Engineering

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete 18 credits from the following:</td>
<td></td>
</tr>
<tr>
<td>1. Both of the following courses (6 credits):</td>
<td></td>
</tr>
<tr>
<td>- ME 250 Materials Science and Engineering</td>
<td>3</td>
</tr>
<tr>
<td>- MSE 360 Fundamentals of Microstructural Design</td>
<td>3</td>
</tr>
<tr>
<td>2. One of the following courses (3 credits):</td>
<td></td>
</tr>
<tr>
<td>- ME 260 Electronic, Magnetic, Thermal and Optical Properties of Materials</td>
<td>3</td>
</tr>
<tr>
<td>- MSE 310 Phase Equilibria in Materials</td>
<td>3</td>
</tr>
<tr>
<td>- MSE 320 Mechanical Properties of Materials</td>
<td>3</td>
</tr>
<tr>
<td>- MSE 370 Synthesis and Processing of Materials</td>
<td>3</td>
</tr>
<tr>
<td>3. Three of the following courses (9 credits):</td>
<td></td>
</tr>
<tr>
<td>- MSE 310 Phase Equilibria in Materials</td>
<td>3</td>
</tr>
<tr>
<td>- MSE 320 Mechanical Properties of Materials</td>
<td>3</td>
</tr>
<tr>
<td>- MSE 370 Synthesis and Processing of Materials</td>
<td>3</td>
</tr>
<tr>
<td>- MSE 410 Materials Foundations for Energy Applications</td>
<td>3</td>
</tr>
<tr>
<td>- MSE 425 Biomaterials and Biocompatibility</td>
<td>3</td>
</tr>
<tr>
<td>- MSE 451 Spectroscopic and Diffraction Analysis of Materials</td>
<td>3</td>
</tr>
<tr>
<td>- MSE 454 Ceramic and Refractory Materials</td>
<td>3</td>
</tr>
<tr>
<td>- MSE 460 Electronic Structure and Bonding in Materials and Devices</td>
<td>3</td>
</tr>
</tbody>
</table>

A course used to fulfill requirement 2. above may not be used to fulfill this requirement.
LINKED BACHELOR’S-MASTER’S DEGREE IN CHEMICAL ENGINEERING

Bachelor of Science Degree in Chemical Engineering
Master of Science Degree in Chemical Engineering

The department welcomes applications from Michigan State University Chemical Engineering undergraduate students in their junior and senior year. Admission applications must be made during the prior spring semester for an anticipated spring graduation or the prior fall semester for an anticipated fall graduation to allow admission before the final semester as a Chemical Engineering undergraduate. Admission to the program requires a minimum undergraduate grade-point average of 3.5 and an approved program of study for the Master of Science degree in Chemical Engineering at the time of admission. Admission to the Linked Bachelor’s-Master’s program allows the application of up to 9 credits toward the master’s program for qualifying 400-level and above course work taken at the undergraduate level at Michigan State University or another postsecondary accredited institution of comparable academic quality. The number of approved credits, not to exceed 9, are applied toward the credit requirement of the master’s degree. Credits applied to the Linked Bachelor’s-Master’s program are not eligible to be applied to any other graduate degree program.

LINKED BACHELOR’S-MASTER’S DEGREE IN MATERIALS SCIENCE AND ENGINEERING

Bachelor of Science Degree in Materials Science and Engineering
Master of Science Degree in Materials Science and Engineering

The department welcomes applications from Michigan State University Materials Science and Engineering undergraduate students in their junior and senior year. Admission applications must be made during the prior spring semester for an anticipated spring graduation or the prior fall semester for an anticipated fall graduation to allow admission before the final semester as a Materials Science and Engineering undergraduate. Admission to the program requires a minimum undergraduate grade-point average of 3.5 and an approved program of study for the Master of Science degree in Materials Science and Engineering at the time of admission. Admission to the Linked Bachelor’s-Master’s program allows the application of up to 9 credits toward the master’s program for qualifying 400-level and above course work taken at the undergraduate level at Michigan State University or another postsecondary accredited institution of comparable academic quality. The number of approved credits, not to exceed 9, are applied toward the credit requirement of the master’s degree. Credits applied to the Linked Bachelor’s-Master’s program are not eligible to be applied to any other graduate degree program.

GRADUATE STUDY

The Department of Chemical Engineering and Materials Science offers Master of Science and Doctor of Philosophy degree programs in chemical engineering and in materials science and engineering. A wide range of course offerings and research activities allows an individual program to be designed to fit the background, capabilities, and aims of the student. Studies in the department may be supplemented with courses offered by other departments in the College of Engineering and in other colleges.

The graduate programs in chemical engineering and materials science and engineering are designed to develop research expertise needed for the graduate to serve as a principal investigator in industrial or academic research. Course work is designed to expand the student’s knowledge of engineering principles and applications. Each student conducts an extensive research project that significantly advances fundamental understanding of a chemical engineering or materials science system. Results of the research are documented in a thesis, dissertation, and research paper(s) for publication in a peer-reviewed journal.

CHEMICAL ENGINEERING

Emphasis in the graduate programs in chemical engineering is placed upon a fundamental approach to chemical engineering principles and the applications of chemistry and advanced mathematics. Selected topics in chemical engineering are developed from a fundamental viewpoint, with opportunity for study and research in such areas as process design; thermodynamics; chemical reaction engineering; mass, heat, and momentum transfer; separations; polymers and composite materials; nanomaterials; and biochemical and biomedical engineering. The department has three primary thematic areas: energy and sustainability, nanotechnology and materials, and biotechnology and medicine.

Master of Science

In addition to meeting the requirements of the University and of the College of Engineering, students must meet the requirements specified below.

Admission

An applicant for admission to the master’s degree program in chemical engineering must hold a bachelor’s degree in chemical engineering or a related field and must have a grade-point average that would indicate success in graduate study. International applicants must submit their scores on the Graduate Record Examination General Test.

Students who are admitted to the program with a bachelor’s degree in a field related to chemical engineering will be required to complete the following collateral courses, in addition to the courses that are required for the master’s degree:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE 432</td>
<td>Process Systems Control</td>
<td>3</td>
</tr>
<tr>
<td>CHE 433</td>
<td>Process Design and Optimization I</td>
<td>3</td>
</tr>
<tr>
<td>CHE 804</td>
<td>Thermodynamics and Kinetics in Chemical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CHE 805</td>
<td>Transport and Separation Processes</td>
<td>3</td>
</tr>
<tr>
<td>Equivalent undergraduate-level chemical engineering courses may be substituted for Chemical Engineering 804 and 805.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Requirements for the Master of Science Degree in Chemical Engineering

The students must complete a total of 30 credits for the degree under Plan A (with thesis) or Plan B (without thesis), and meet the requirements specified below. Students in Plan A must complete a minimum of 20 credits at the 800-level or above. Students in Plan B must complete a minimum of 18 credits at the 800-level or above. Courses at the 400-level are acceptable as long as the minimum credit requirement is met at the 800-level. Courses below the 400-level are not acceptable.

Requirements for Both Plan A and Plan B:

1. Core Courses. All of the following courses required. | Credits |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE 801</td>
<td>Advanced Chemical Engineering Calculations</td>
</tr>
<tr>
<td>CHE 802</td>
<td>Research Methods</td>
</tr>
<tr>
<td>CHE 821</td>
<td>Advanced Chemical Engineering Thermodynamics</td>
</tr>
<tr>
<td>CHE 822</td>
<td>Advanced Transport Phenomena</td>
</tr>
<tr>
<td>CHE 831</td>
<td>Advanced Chemical Reaction Engineering</td>
</tr>
</tbody>
</table>

2. Supporting Courses. Six credits in courses outside the Department of Chemical Engineering and Materials Science approved by the student’s academic advisor. | 6 |

Additional Requirements for Plan A

1. Complete 6 credits of CHE 899 Master’s Thesis Research
2. Additional elective credits as approved by the student’s academic advisor.
Additional Requirements for Plan B

1. Complete 6 to 9 credits in a coordinated technical minor as approved by the student’s academic advisor.
2. Pass a final examination, oral or written, given by the student’s academic advisor.

Doctor of Philosophy

In addition to meeting the requirements of the university and of the College of Engineering, students must meet the requirements specified below.

Admission

An applicant for admission to the Ph.D. degree program in chemical engineering must hold a bachelor's or master's degree in chemical engineering or a related field and must have a grade-point average that would indicate success in graduate study.

Applicants must submit their scores on the Graduate Record Examination General Test.

Requirements for the Doctor of Philosophy Degree in Chemical Engineering

In addition to meeting the requirements of the university and of the College of Engineering, students must meet the requirements specified by their guidance committees.

The Doctor of Philosophy degree in Chemical Engineering, as detailed in the graduate handbook for chemical engineering, is comprised of course work, research and selection of an advisor, a qualifying examination, formation of a guidance committee and doctoral degree program, a comprehensive examination, and successful completion of a dissertation and final oral examination in defense of the dissertation.

MATERIALS SCIENCE AND ENGINEERING

Master of Science

In addition to meeting the requirements of the university and of the College of Engineering, students must meet the requirements specified below.

Admission

The department welcomes applications from students who possess a bachelor’s degree in a related engineering or science discipline.

Requirements for the Master of Science Degree in Materials Science and Engineering

The student must complete a total of 30 credits for the degree under either Plan A (with thesis) or Plan B (without thesis) and meet the requirements specified below. Students must complete a minimum of 18 credits at the 800-level or above.

Requirements for Both Plan A and Plan B:

The student must complete:

1. Core Courses. All of the following courses (12 credits):
 - MSE 851 Thermodynamics of Solids 3
 - MSE 865 Advanced Theory and Diffusion 3
 - MSE 860 Advanced Theory of Solids 3
 - MSE 870 Electron Microscopy in Materials Science 3
 - Or
 - MSE 881 Advanced Spectroscopy and Diffraction Analysis of Materials 3

2. Additional Requirements for Plan A

 1. Complete the following course:
 - CHE 802 Research Methods .. 3

 2. Complete 6 credits of MSE 899 Master’s Thesis Research.
 3. One course at the 400-level or above in mathematics or statistics as approved by the student’s academic advisor.
 4. Additional elective credits as approved by the student’s academic advisor.

DEPARTMENT of CIVIL and ENVIRONMENTAL ENGINEERING

Neeraj Buch, Chairperson

UNDERGRADUATE PROGRAMS

CIVIL ENGINEERING

The civil engineering major is designed to provide graduates with a broad understanding of the physical factors involved in the planning, design, and operation of public and private facilities. The bachelor’s degree program in civil engineering is oriented to the application of engineering principles to several areas of specialization, including transportation, structures, geotechnical engineering, environmental engineering, water resources, and pavements and materials.

The Bachelor of Science Degree program in Civil Engineering is accredited by the Engineering Accreditation Commission of ABET, www.abet.org.
Requirements for the Bachelor of Science Degree in Civil Engineering

1. The University requirements for bachelor's degrees as described in the Undergraduate Education section of this catalog; 128 credits, including general elective credits, are required for the Bachelor of Science degree in Civil Engineering. The University's Tier II writing requirement for the Civil Engineering major is met by completing Civil Engineering 321 and 341. Those courses are referenced in item 3. below.

 Students who are enrolled in the College of Engineering may complete the alternative track to Integrative Studies in Biological and Physical Sciences that is described in item 1. under the heading Graduation Requirements for All Majors in the College statement. Certain courses referenced in requirement 3. below may be used to satisfy the alternative track.

2. The requirements of the College of Engineering for the Bachelor of Science degree.

 The credits earned in certain courses referenced in requirement 3. below may be counted toward College requirements as appropriate.

3. The following requirements for the major:

 a. All of the following courses: ... 42
 CE 221 Statics ... 3
 CE 271 Introduction to Civil and Environmental Engineering 4
 CE 272 Civil and Environmental Engineering 3
 CE 305 Introduction to Structural Analysis 3
 CE 312 Soil Mechanics ... 4
 CE 321 Introduction to Fluid Mechanics 4
 CE 337 Civil Engineering Materials I 4
 CE 341 Transportation Engineering .. 3
 CE 495 Senior Design in Civil and Environmental Engineering 4
 CEM 161 Chemistry Laboratory I ... 1
 ENE 280 Principles of Environmental Engineering and Science 3
 GLG 301 Geology of the Great Lakes Region 3
 ME 222 Mechanics of Deformable Solids 3
 b. One of the following courses: ... 3
 CE 461 Computational Methods in Civil Engineering 3
 ME 361 Dynamics .. 3
 c. One of the following courses: ... 3
 BE 351 Thermodynamics for Biomedical Engineering 3
 ECE 345 Electronic Instrumentation and Systems 3
 d. Tracks. Complete 18 credits of electives as specified below. At least 9 credits of one track must be completed as specified. The additional 9 credits must include courses from three different tracks. Construction Engineering and Management courses may count towards the additional 9 credits.

 Environmental Track
 1. Both of the following courses:
 EN 481 Environmental Chemistry: Equilibrium Concepts 3
 EN 483 Water and Wastewater Engineering ... 3
 2. One of the following courses:
 CE 485 Landfill Design .. 3
 EN 421 Engineering Hydraulics .. 3
 EN 487 Microbiology for Environmental Science and Engineering 3
 EN 489 Air Pollution: Science and Engineering 3

 Geotechnical Track
 1. Both of the following courses:
 CE 418 Geotechnical Engineering .. 3
 CE 485 Landfill Design .. 3
 2. One of the following courses:
 CE 431 Pavement Design and Analysis I ... 3
 CE 815 Selected Topics in Geotechnical Engineering 3
 CE 818 Advanced Geotechnical Design .. 3

 Pavement Track
 1. Both of the following courses:
 CE 431 Pavement Design and Analysis I ... 3
 CE 432 Pavement Rehabilitation .. 3
 2. One of the following courses:
 CE 418 Geotechnical Engineering ... 3
 CE 831 Advanced Concrete Pavement Analysis and Design 3
 CE 832 Advanced Asphalt Pavement Analysis and Design 3

 Structures Track
 1. Both of the following courses:
 CE 405 Design of Steel Structures ... 3
 CE 406 Design of Concrete Structures ... 3
 2. One of the following courses:
 CE 400 Structural Mechanics ... 3
 CE 805 Advanced Design of Steel Structures 3
 CE 806 Advanced Structural Concrete Design 3

 Transportation Track
 1. Both of the following courses:
 CE 448 Transportation Planning .. 3
 CE 449 Highway Design .. 3
 2. One of the following courses:
 CE 431 Pavement Design and Analysis I ... 3
 CE 432 Pavement Rehabilitation .. 3
 CE 444 Principles of Traffic Engineering ... 3

Water Resources Track
 1. Both of the following courses:
 EN 421 Engineering Hydraulics .. 3
 EN 422 Applied Hydraulics .. 3
 2. One of the following courses:
 ENE 822 Groundwater Modeling .. 3
 GLG 411 Hydrogeology ... 3
 GLG 412 Glacial Geology and the Record of Climate Change 3

General Track. Students may choose a general track in fulfillment of the Track requirement. Students must complete 12 credits from among four different tracks above. Students must also complete 6 additional credits across all tracks which may include course work from Construction Engineering and Management courses below.

Construction Engineering and Management Courses
 CE 471 Construction Engineering-Equipment, Methods and Planning 3
 CMP 311 Construction Project Scheduling .. 1
 CMP 415 Cost Estimating and Analysis .. 3
 CMP 423 Construction Project Management ... 3

ENVIRONMENTAL ENGINEERING

The environmental engineering major is designed to provide graduates with the engineering and scientific principles to analyze, design, and manage environmental systems, including water supplies, wastewater treatment facilities, air pollution control systems, surface and groundwater resources, and landfills. The program offers a thorough background in engineering fundamentals, along with a broad understanding of mathematical, physical, chemical, and biological concepts as they relate to environmental engineering.

The Bachelor of Science Degree program in Environmental Engineering is accredited by the Engineering Accreditation Commission of ABET, www.abet.org.

Requirements for the Bachelor of Science Degree in Environmental Engineering

1. The University requirements for bachelor's degrees as described in the Undergraduate Education section of this catalog; 128 credits, including general elective credits, are required for the Bachelor of Science degree in Environmental Engineering. The University's Tier II writing requirement for the Environmental Engineering major is met by completing Civil Engineering 321. That course is referenced in item 3. below.

 Students who are enrolled in the College of Engineering may complete the alternative track to Integrative Studies in Biological and Physical Sciences that is described in item 1. under the heading Graduation Requirements for All Majors in the College statement. Certain courses referenced in requirement 3. below may be used to satisfy the alternative track.

2. The requirements of the College of Engineering for the Bachelor of Science degree.

 The credits earned in certain courses referenced in requirement 3. below may be counted toward College requirements as appropriate.

3. The following requirements for the major:

 a. All of the following courses (47 credits):
 BS 161 Cell and Molecular Biology .. 3
 BS 162 Organismal and Population Biology .. 3
 CE 221 Statics ... 3
 CE 271 Introduction to Civil and Environmental Engineering 4
 CE 272 Civil and Environmental Engineering Analysis 3
 CE 321 Introduction to Fluid Mechanics ... 4
 CE 495 Senior Design in Civil and Environmental Engineering 4
 CEM 161 Chemistry Laboratory I .. 1
 CHE 201 Material and Energy Balances ... 3
 EN 280 Principles of Environmental Engineering and Science 3
 EN 421 Engineering Hydraulics ... 3
 EN 480 Environmental Measurements Laboratory 3
 EN 481 Environmental Chemistry: Equilibrium Concepts 3
 EN 483 Water and Wastewater Engineering ... 3
 EN 487 Microbiology for Environmental Science and Engineering 3
 EN 489 Air Pollution: Science and Engineering 3
 b. One of the following courses (6 credits):
 CEM 142 General and Inorganic Chemistry ... 3
 CEM 152 Principles of Chemistry ... 3
 c. One of the following courses (3 or 4 credits):
 CHE 321 Thermodynamics for Chemical Engineering 4
 ME 201 Thermodynamics ... 3
d. One of the following courses (3 or 4 credits):
 - GLG 201 The Dynamic Earth ... 4
 - GLG 301 Geology of the Great Lakes Region 3

e. Major Tracks. Complete 12 to 18 credits of electives as specified below.

Geo-environmental Engineering Track
All of the following courses (17 credits):
- CE 312 Soil Mechanics .. 4
- CE 337 Civil Engineering Materials I 4
- CE 418 Geotechnical Engineering 3
- CE 485 Landfill Design .. 3
- ME 222 Mechanics of Deformable Solids 3

Water Resources Track
All of the following courses (13 credits):
- ENE 422 Applied Hydraulics ... 3
- GLG 411 Hydrogeology .. 3
- GLG 412 Glacial Geology and the Record of Climate Change 3
- GLG 421 Environmental Geochemistry 4

General Track
1. At least one of the following courses (3 to 6 credits):
 - CE 485 Landfill Design .. 3
 - ENE 422 Applied Hydraulics .. 3

2. Additional credits in technical courses at the 300-level or above approved by the department to total 12 credits in the track. Courses selected should provide some focus related to an application area of environmental engineering.

LINKED BACHELOR’S-MASTER’S DEGREE IN CIVIL ENGINEERING
Bachelor of Science Degree in Civil Engineering
Master of Science Degree in Civil Engineering
The department welcomes applications from Michigan State University Civil Engineering undergraduate students in their junior and senior year. Admission applications must be made during the prior spring semester for an anticipated spring graduation or the prior fall semester for an anticipated fall graduation to allow admission before the final semester as a Civil Engineering undergraduate. Admission to the program requires a minimum undergraduate grade-point average of 3.5 and an approved program of study for the Master of Science degree in Civil Engineering at the time of admission. Admission to the Linked Bachelor’s-Master’s program allows the application of up to 9 credits toward the master’s program for qualifying 400-level and above course work taken at the undergraduate level at Michigan State University or an external accredited institution. The number of approved credits, not to exceed 9, are applied toward the credit requirement of the master’s degree. Credits applied to the Linked Bachelor’s-Master’s program are not eligible to be applied to any other graduate degree program.

LINKED BACHELOR’S-MASTER’S DEGREE IN ENVIRONMENTAL ENGINEERING
Bachelor of Science Degree in Civil Engineering with a concentration in Environmental Engineering
Master of Science Degree in Environmental Engineering
The department welcomes applications from Michigan State University Civil Engineering undergraduate students in their junior and senior year, who are pursuing an environmental engineering concentration within the Bachelor of Science degree in Civil Engineering. Admission applications must be made during the prior spring semester for an anticipated spring graduation or the prior fall semester for an anticipated fall graduation to allow admission before the final semester as a Civil Engineering undergraduate. Admission to the program requires a minimum undergraduate grade-point average of 3.5 and an approved program of study for the Master of Science degree in Environmental Engineering at the time of admission. Admission to the Linked Bachelor’s-Master’s program allows the application of up to 9 credits toward the master’s program for qualifying 400-level and above course work taken at the undergraduate level at Michigan State University or an external accredited institution. The number of approved credits, not to exceed 9, are applied toward the credit requirement of the master’s degree. Credits applied to the Linked Bachelor’s-Master’s program are not eligible to be applied to any other graduate degree program.

GRADUATE STUDY
The Department of Civil and Environmental Engineering offers the graduate degree programs that are listed below:

Master of Science
- Civil Engineering
- Environmental Engineering

Doctor of Philosophy
- Civil Engineering
- Environmental Engineering

The civil engineering degrees offer tracks in structural, materials, pavement, and geotechnical engineering, and hydrology and water resources. The environmental engineering degrees offer specializations in environmental chemistry and physical-chemical processes, environmental microbiology and biotechnology, environmental hydrology and water resources, and geoenvironmental engineering.

The Master of Science degrees provide opportunities for students who seek to enter professional practice as specialists or to continue study in a doctoral program. The Doctor of Philosophy degrees are research focused, designed to prepare students for careers in teaching, research or advanced specialized practice.

CIVIL ENGINEERING
Students in the master’s and doctoral degree programs in civil engineering may pursue advanced study in the areas of structures, fluid mechanics and hydraulics, geotechnical engineering, pavements, and transportation.

Master of Science
The student plans a program of study with the help of his or her academic advisor and subject to the approval of the advisor.

In addition to meeting the requirements of the university and of the College of Engineering, students must meet the requirements specified below.

Admission
An applicant for admission to the master's degree program in civil engineering should have a bachelor's degree in civil engineering or a related field and should have a grade-point average that would indicate success in graduate study. Examples of fields that are related to civil engineering are other engineering professional fields, physics, computer science, urban planning, and chemistry.

Depending on their undergraduate programs and their specialties within civil engineering, students who are admitted to the master’s degree program with bachelor’s degrees in fields related to civil engineering may be required to complete collateral courses.

All applicants are encouraged to submit their scores from the Graduate Record Examination General Test.
Requirements for the Master of Science Degree in Civil Engineering

The student must complete a total of 30 credits for the degree under either Plan A (with thesis) or Plan B (without thesis).

- A student under Plan A must complete at least 4, but not more than 8, credits of Civil Engineering 899. Should the student complete more than 8 credits of Civil Engineering 899, no more than 8 credits may be counted toward the requirements for the degree.

- A student under Plan B may choose to complete a research project or a design project as part of the 30 credits required for the degree. A student who elects either of these options must complete at least 1, but not more than 3, credits of Civil Engineering 892 or at least 3, but not more than 5, credits of Civil Engineering 893.

Doctor of Philosophy

Admission

All applicants are encouraged to submit their scores from the Graduate Record Examination General Test.

Requirements for the Doctor of Philosophy Degree in Civil Engineering

In addition to meeting the requirements of the university and of the College of Engineering, students must meet the requirements specified by their guidance committees.

ENVIRONMENTAL ENGINEERING

Students in the master's and doctoral degree programs in environmental engineering may pursue advanced study in the areas of biological and chemical treatment of hazardous substances in soils, leachates, industrial wastes, and groundwater; the fate and movement of chemical contaminants in surface water, groundwater, and soils; and environmental chemistry.

Master of Science

The student plans a program of study with the help of his or her academic advisor and subject to the approval of the advisor.

In addition to meeting the requirements of the university and of the College of Engineering, students must meet the requirements specified below.

Admission

Applicants for admission are expected to have a level of competency equivalent to that achieved by earning an undergraduate degree in environmental engineering, or in civil engineering with an environmental engineering specialization. The undergraduate program should have included courses in mathematics through differential equations, chemistry, physics (mechanics), fluid mechanics, computer programming, and the design of water and wastewater treatment processes.

Depending on their undergraduate programs and their specialties within environmental engineering, students who are admitted to the master's degree program with bachelor's degrees in fields related to environmental engineering may be required to complete collateral courses.

All applicants are encouraged to provide their scores from the Graduate Record Examination General Test.

Requirements for the Master of Science Degree in Environmental Engineering

The student must complete a total of 30 credits for the degree under either Plan A (with thesis) or Plan B (without thesis).

- A student under Plan A must complete at least 4, but not more than 8, credits of Environmental Engineering 899. Should the student complete more than 8 credits of Environmental Engineering 899, no more than 8 credits may be counted toward the requirements for the degree.

- A student under Plan B may choose to complete a research project or a design project as part of the 30 credits required for the degree. A student who elects either of these options must complete at least 1, but not more than 3, credits of Environmental Engineering 892 or at least 3, but not more than 5, credits of Environmental Engineering 893.

Doctor of Philosophy

Admission

All applicants are encouraged to submit their scores from the Graduate Record Examination General Test.

Requirements for the Doctor of Philosophy Degree in Environmental Engineering

In addition to meeting the requirements of the university and of the College of Engineering, students must meet the requirements specified by their guidance committees.

DEPARTMENT of COMPUTER SCIENCE and ENGINEERING

Matt W. Mutka, Chairperson

Computer science encompasses the broad areas of information processing and problem solving using digital computers. Students learn to analyze, design, and build integrated software and hardware digital systems that process, transmit, and reason about information in order to solve problems. Computer science graduates are employed in essentially all areas of industry, government, and education. They serve as system analysts involved with problems in business and research, designers and planners of process and production control software systems, computer component and system designers, programmers, and teachers.

UNDERGRADUATE PROGRAM

The Bachelor of Science program provides both a theoretical foundation in computer science, required for continued success in this rapidly changing field, as well as practical experience with current tools and techniques. To achieve these goals, students take courses that span a spectrum of knowledge ranging from theoretical foundations, which enable rigorous analysis of computational problems and solutions, to applied design and engineering methods. At the upper level, students choose from a wide range of elective courses focusing on computer networks, computer architecture, artificial intelligence, database systems, computer security, software engineering, and computer graphics. The
senior year culminates with a team-oriented design course building on much of what one has learned throughout the undergraduate experience. Complementing these major areas, the cognate provides an excellent opportunity to develop an individually selected area of interest.

Students majoring in computer science with interests in other areas have the opportunity to consult and work with interested faculty from a wide range of academic disciplines.

Students who are enrolled in the Bachelor of Science degree program with a major in computer science may elect a Specialization in Game Design and Development. For additional information, refer to the Specialization in Game Design and Development statement in the Department of Telecommunication, Information Studies and Media section of this catalog.

The Bachelor of Science degree program in Computer Science is accredited by the Computing Accreditation Commission of ABET, www.abet.org.

Requirements for the Bachelor of Science Degree in Computer Science

1. The University requirements for bachelor's degrees as described in the Undergraduate Education section of this catalog, 120 credits, including general elective credits, are required for the Bachelor of Science degree in Computer Science.

2. The University's Tier II writing requirement for the Computer Science major is met by completing Computer Science and Engineering 498, referenced in item 3. b. below.

3. The following requirements for the major:
 a. Biochemistry - Courses may not be used to satisfy both (1) and (2) below.

 (1) One of the following courses:
 - CSE 161 Cell and Molecular Biology .. 3
 - ENT 205 Pests, Society and Environment 3
 - MMG 201 Fundamentals of Microbiology 3
 - PLB 105 Plant Biology ... 3
 - PSL 250 Introductory Physiology .. 4
 - ZOL 141 Introductory Human Genetics 3

 (2) One of the following courses:
 - CSE 171 Cell and Molecular Biology Laboratory 3
 - CEM 161 Chemistry Laboratory I .. 1
 - CEM 162 Chemistry Laboratory II ... 1
 - PHY 191 Physics Laboratory for Phys I 1
 - PHY 192 Physics Laboratory for Phys II 2
 - PLB 106 Plant Biology Laboratory .. 1

 b. All of the following courses: .. 33
 - CSE 100 Computer Science as a Profession 4
 - CSE 231 Introduction to Programming I 4
 - CSE 232 Introduction to Programming II 4
 - CSE 260 Discrete Structures in Computer Science 4
 - CSE 320 Computer Organization and Architecture 3
 - CSE 331 Algorithms and Data Structures 3
 - CSE 335 Object-Oriented Software Design 4
 - CSE 410 Operating Systems .. 3
 - CSE 498 Collaborative Design (W) ... 4
 - STT 351 Probability and Statistics for Engineering 3

 c. An additional five courses selected from the following: 15
 - CSE 420 Computer Architecture ... 3
 - CSE 422 Computer Networks .. 3
 - CSE 425 Introduction to Computer Security 3
 - CSE 435 Software Engineering ... 3
 - CSE 440 Introduction to Artificial Intelligence 3
 - CSE 450 Translation of Programming Languages 3
 - CSE 460 Computer Language and Formal Language Theory 3
 - CSE 471 Media Processing and Multimedia Computing 3
 - CSE 472 Computer Graphics .. 3
 - CSE 473 Fundamentals of 3D Game Development 3
 - CSE 476 Mobile Application Development 3
 - CSE 477 Web Application Architecture and Development 3
 - CSE 480 Database Systems .. 3
 - CSE 484 Information Retrieval ... 3
 - CSE 491 Selected Topics in Computer Science 1 to 4
 - MTH 451 Numerical Analysis I .. 3

 d. Required Cognate: ... 15

 Cognates in the following areas are available to students in Computer Science: business, communication arts and sciences, foreign language, mathematics, the natural sciences, philosophy, psychology, the social sciences, and telecommunication. Students may complete cognates in other areas with the approval of the Department of Computer Science and Engineering academic advisor. The cognate should enhance the student's ability to apply analytical procedures in a specific subject area.

 The cognate requires a minimum of four courses totaling 15 or more credits outside the College of Engineering selected from (1) or (2) below. The academic advisor of the Department of Computer Science and Engineering must pre approve both the cognate

 (1) At least 6 of the 15 credits must be in courses at the 300-400 level. The cognate in the Tar Broad College of Business requires a specific set of courses: ACC 230, EC 210, FI 320, GBL 323, and MKT 327.

 (2) A sequence of at least four courses in a foreign language.

MINOR IN COMPUTER SCIENCE

The Minor in Computer Science and Engineering is administered by the Department of Computer Science and Engineering. This minor will provide students with a basic foundation in computer science that is applicable to many disciplines. This will also provide opportunities for students in industry or government, as well as prepare students for graduate-level study in computer science.

Students who elect the computer science disciplinary minor must contact the Department of Computer Science and Engineering.
For additional information, refer to the statement on TEACHER CERTIFICATION in the Department of Teacher Education section of this catalog.

LINKED BACHELOR’S-MASTER’S DEGREE IN COMPUTER SCIENCE

Bachelor of Science Degree in Computer Engineering
Master of Science Degree in Computer Science
The department welcomes applications from Michigan State University Computer Engineering undergraduate students in their junior and senior year. Admission applications must be made during the prior spring semester for an anticipated spring graduation or the prior fall semester for an anticipated fall graduation to allow admission before the final semester as a Computer Engineering undergraduate. Admission to the program requires a minimum undergraduate grade-point average of 3.5 and an approved program of study for the Master of Science degree in Computer Science at the time of admission. Admission to the Linked Bachelor’s-Master’s program allows the application of up to 9 credits toward the master’s program for qualifying 400-level and above course work taken at the undergraduate level at Michigan State University or an external accredited institution. The number of approved credits, not to exceed 9, are applied toward the credit requirement of the master’s degree. Credits applied to the Linked Bachelor’s-Master’s program are not eligible to be applied to any other graduate degree program.

LINKED BACHELOR’S-MASTER’S DEGREE IN COMPUTER SCIENCE

Bachelor of Science Degree in Computer Science
Master of Science Degree in Computer Science
The department welcomes applications from Michigan State University Computer Science undergraduate students in their junior and senior year. Admission applications must be made during the prior spring semester for an anticipated spring graduation or the prior fall semester for an anticipated fall graduation to allow admission before the final semester as a Computer Science undergraduate. Admission to the program requires a minimum undergraduate grade-point average of 3.5 and an approved program of study for the Master of Science degree in Computer Science at the time of admission. Admission to the Linked Bachelor’s-Master’s program allows the application of up to 9 credits toward the master’s program for qualifying 400-level and above course work taken at the undergraduate level at Michigan State University or an external accredited institution. The number of approved credits, not to exceed 9, are applied toward the credit requirement of the master’s degree. Credits applied to the Linked Bachelor’s-Master’s program are not eligible to be applied to any other graduate degree program.

GRADUATE STUDY

The Department of Computer Science and Engineering offers programs leading to the Master of Science and Doctor of Philosophy degrees. Advanced study is available in a variety of computer science research areas such as algorithms, computer security, databases, data mining, machine learning, natural language processing, networking, pattern recognition and image processing, and software engineering, as well as many interdisciplinary research areas such as bioinformatics, cognitive science, and digital evolution.

Students who are enrolled in master’s or doctoral degree programs in the Department of Computer Science and Engineering may elect an Interdepartmental Specialization in Cognitive Science. For additional information, refer to the statement on Interdepartmental Graduate Specializations in Cognitive Science in the College of Social Science section of this catalog. For additional information, contact the Department of Computer Science and Engineering.

Master of Science

In addition to meeting the requirements of the university and of the College of Engineering, students must meet the requirements specified below.

Admission

Applicants for admission should possess a bachelor’s degree in computer science or a related field such as mathematics, physics, or electrical engineering. All applicants must submit their scores from the Graduate Record Examination (GRE) General Test. Additional information is available on the Department’s Web site at http://cse.msu.edu.

Requirements for the Master of Science Degree in Computer Science

The student must complete a total of 30 credits for the degree under either Plan A (with thesis) or Plan B (without thesis) and meet the requirements specified below:

Requirements for Both Plan A and Plan B:

The student must complete:

1. The breadth requirement as described in the Graduate Handbook which is available on the Department’s Web site at http://www.cse.msu.edu.
2. At least 18 credits in courses eligible to satisfy the breadth requirement as approved by the student’s academic advisor.

Additional Requirements for Plan A:

The student must complete:

1. A minimum of 21 credits in 800-900 level courses excluding Computer Science and Engineering 801, 890, and 899.
2. At least 6, but not more than 8, credits of CSE 899 Master’s Thesis Research.

Additional Requirements for Plan B:

1. Complete a minimum of 24 credits in 800-900 level courses excluding Computer Science 801, 890, and 899.

Doctor of Philosophy

In addition to meeting the requirements of the university and of the College of Engineering, students must meet the requirements specified below.

Admission

Applicants should be in the top 25 percent of their master’s degree classes and should have a grade–point average of at least 3.50 on a scale of 4.0. Applicants must submit their scores on the Graduate Record Examination General Test.

Applicants who have a Bachelor of Science degree and who demonstrate exceptional potential for graduate study may be accepted for admission to the doctoral program. Additional information is available on the Department’s Web site at http://cse.msu.edu.
Requirements for the Doctor of Philosophy Degree in Computer Science

In addition to meeting the requirements of the university and of the College of Engineering, students must meet the requirements specified by the department in the Graduate Handbook available at http://cse.msu.edu as well requirements specified by their guidance committees. All courses that are used to satisfy the requirements for the degree must have been completed under the numerical grading system.

DEPARTMENT of ELECTRICAL and COMPUTER ENGINEERING

Tim Hogan, Acting Chairperson

The Department of Electrical and Computer Engineering offers two undergraduate programs and a concentration leading to a Bachelor of Science degree. The computer engineering program provides students the opportunity to customize their program through core electives in computer architecture, computer networks, and VLSI design and focus electives in hardware or software tracks. The program in electrical engineering allows students to choose their major electives from seven areas including: electromagnetics, power, integrated circuits/VLSI, solid-state electronics/electroics, communications/signal processing, control/robotics, and biomedical engineering. In addition, students can choose a biomedical engineering concentration that is noted on the student’s transcript.

UNDERGRADUATE PROGRAMS

COMPUTER ENGINEERING

Computer engineering is concerned with the organization and design of computers and computer systems. The study of computer hardware and software, and their integration and application, is emphasized. The undergraduate program in computer engineering integrates studies in mathematics, basic sciences, engineering sciences, and engineering design. The program is structured to establish analytical and design skills in areas such as computer architecture, digital logic design, analog and mixed-signal circuits, computer communication networks, digital computer control, integrated circuit engineering, software engineering, operating systems, data structures and algorithms, computer-aided engineering, and electronic design automation. Complementing these fundamentals, the program also provides opportunities for specialization in individually selected areas of interest.

The Bachelor of Science Degree program in Computer Engineering is accredited by the Engineering Accreditation Commission of ABET, www.abet.org.

Requirements for the Bachelor of Science Degree in Computer Engineering

1. The University requirements for bachelor’s degrees as described in the Undergraduate Education section of this catalog; 128 credits, including general elective credits, are required for the Bachelor of Science degree in Computer Engineering.

 The University’s Tier II writing requirement for the Computer Engineering major is met by completing Electrical and Computer Engineering 480. That course is referenced in item 3. b. below.

 Students who are enrolled in the College of Engineering may complete the alternative track to Integrative Studies in Biological and Physical Sciences that is described in item 1. under the heading Graduation Requirements for All Majors in the College statement. Certain courses referenced in requirement 3. below may be used to satisfy the alternative track.

2. The requirements of the College of Engineering for the Bachelor of Science degree. The credits earned in certain courses referenced in requirement 3. below may be counted toward College requirements as appropriate.

3. The following requirements for the major:

 a. One of the following courses: .. 1
 CEM 161 Chemistry Laboratory I
 PHY 191 Physics Laboratory for Scientists, I
 b. All of the following courses: .. 56
 CSE 231 Introduction to Programming I
 CSE 232 Introduction to Programming II
 CSE 260 Discrete Structures in Computer Science
 CSE 331 Algorithms and Data Structures
 CSE 410 Operating Systems ...
 ECE 201 Circuits and Systems I
 ECE 202 Circuits and Systems II
 ECE 203 Electric Circuits and Systems Laboratory
 ECE 230 Digital Logic Fundamentals
 ECE 280 Electrical Engineering Analysis
 ECE 302 Electronic Circuits ..
 ECE 303 Electronics Laboratory
 ECE 331 Microprocessors and Digital Systems
 ECE 390 Ethics, Professionalism and Contemporary Issues.
 ECE 480 Senior Design ..
 c. Electives
 Complete 24 credits of electives as specified below. At least 18 credits must be from core and focus track electives combined, with at least one course with a laboratory. Additional credits to meet the 24 credit requirement may be taken from other courses listed below, any 400-level Computer Science and Engineering (CSE) or Electrical and Computer Engineering (ECE) courses, or by completing an approved 3 or 4 credit experiential, out-of-classroom education experience obtained through engineering cooperative education or independent study.

 Core
 At least 6 credits from the following:
 CSE 420 Computer Architecture
 CSE 422 Computer Networks ..
 ECE 442 Introduction to Communication Networks
 ECE 410 VLSI Design ..
 Both CSE 422 and ECE 442 may not be used to fulfill this requirement.

 Focus Track
 At least 12 credits from the following:

 Hardware
 ECE 402 Applications of Analog Integrated Circuits
 ECE 411 Electronic Design Automation
 ECE 412 Introduction to Mixed-Signal Circuit Design ...
 ECE 445 Biomedical Instrumentation

 Software
 CSE 335 Object-oriented Software Design
 CSE 450 Translation of Programming Languages
 CSE 471 Media Processing and Multimedia Computing ..
 ECE 366 Introduction to Signal Processing

 Recommended Electives
 ECE 305 Electromagnetic Fields and Waves I
 ECE 313 Control Systems ..
 ECE 404 Radio Frequency Electronic Circuits
 ECE 415 Computer Aided Manufacturing
 ECE 416 Digital Control ...
 ECE 457 Communication Systems
 ECE 458 Communication Systems Laboratory
 ECE 466 Digital Signal Processing and Filter Design ..
 ECE 474 Principles of Electronics Devices
Biomedical Engineering

To earn a Bachelor of Science degree in Computer Engineering with a biomedical engineering concentration, students must complete requirements 1., 2., and 3. above and the following:

1. Complete 6 credits from the following courses:
 - ANTR 350 Human Gross Anatomy for Pre-Health Professionals ...
 - BS 161 Cell and Molecular Biology ...
 - PSL 250 Introductory Physiology ...
 - PSL 310 Physiology for Pre-Health Professionals ...
 - CREDITS

2. Complete 6 credits from the following courses:
 - ECE 445 Biomedical Instrumentation ...
 - ECE 446 Biomedical Signal Processing ...
 - ECE 447 Introduction to Biomedical Imaging ...
 - ECE 448 Modeling and Analysis of Bioelectrical Systems ...
 - CREDITS

3. Complete 3 credits from the following courses:
 - BE 445 Biosensors for Medical Diagnostics ...
 - ME 494 Biofluid Mechanics and Heat Transfer ...
 - ME 495 Tissue Mechanics ...
 - MSE 425 Biocompatibility ...
 - CREDITS

A 400-level listed above or other approved Electrical and Computer Engineering (ECE) courses with biomedical engineering content as approved by the student’s advisor. The course used to fulfill this requirement may not be used to fulfill concentration requirement 1. or 2.

ELECTRICAL AND COMPUTER ENGINEERING

The Bachelor of Science degree in Electrical and Computer Engineering is offered only at the MSU Dubai instructional site. The program is designed to provide students with an opportunity to study electrical engineering and computer engineering including exploration of both hardware and software.

Requirements for the Bachelor of Science Degree in Electrical and Computer Engineering

1. The University requirements for bachelor’s degrees as described in the Undergraduate Education section of this catalog; 128 credits, including general elective credits, are required for the Bachelor of Science degree in Electrical and Computer Engineering. The University’s Tier II writing requirement for the Electrical and Computer Engineering major is met by completing Electrical and Computer Engineering 480. That course is referenced in item 3. below.

Students who are enrolled in the College of Engineering may complete the alternative track to Integrative Studies in Biological and Physical Sciences that is described in item 1. under the heading Graduation Requirements for All Majors in the College statement. Certain courses referenced in requirement 3. below may be used to satisfy the alternative track.

2. The requirements of the College of Engineering for the Bachelor of Science degree.

The credits earned in certain courses referenced in requirement 3. below may be counted toward College requirements as appropriate.

3. The following requirements for the major:
 a. One of the following courses: ...
 - CREDITS
 b. All of the following courses: ...

 c. Complete a minimum of 21 credits from the following courses. Specific courses offered at the Dubai instructional site can be expected to be a subset of this list during an individual student’s degree pursuit.

 (1) At least one of the following laboratory courses:
 - ECE 402 Applications of Analog Integrated Circuits ...
 - ECE 404 Radio Frequency Electronic Circuits ...
 - ECE 410 VLSI Design ...
 - ECE 411 Electronic Design Automation ...
 - ECE 412 Introduction to Mixed-Signal Integrated Circuits ...
 - ECE 416 Digital Control ...
 - ECE 458 Communication Systems Laboratory ...

 (2) At least one of the following courses:

 CREDITS

Electrical Engineering

The program provides both required and elective studies in communications, computers, control systems, electromagnetics, electronics, materials processing, power, signals, solid state, and biomedical engineering. It places emphasis on the fundamentals of science and mathematics and their application to the solution of contemporary problems that are within the purview of professional electrical engineers. The program is designed to establish a sound scientific basis for continuous growth in professional competence.

The Bachelor of Science Degree program in Electrical Engineering is accredited by the Engineering Accreditation Commission of ABET, www.abet.org.

Requirements for the Bachelor of Science Degree in Electrical Engineering

1. The University requirements for bachelor’s degrees as described in the Undergraduate Education section of this catalog; 128 credits, including general elective credits, are required for the Bachelor of Science degree in Electrical Engineering. The University’s Tier II writing requirement for the Electrical Engineering major is met by completing Electrical and Computer Engineering 480. That course is referenced in item 3. below.

Students who are enrolled in the College of Engineering may complete the alternative track to Integrative Studies in Biological and Physical Sciences that is described in item 1. under the heading Graduation Requirements for All Majors in the College statement. Certain courses referenced in requirement 3. below may be used to satisfy the alternative track.

2. The requirements of the College of Engineering for the Bachelor of Science degree.

The credits earned in certain courses referenced in requirement 3. below may be counted toward College requirements as appropriate.

3. The following requirements for the major:
 a. One of the following courses: ...
 - CREDITS
 b. All of the following courses: ...

 c. Complete an additional 30 credits in Elec 191 Physics Laboratory for Scientists, I ...

 d. A minimum of six courses totaling a minimum of 18 credits, of 3 or 4 credits each, selected from at least four different areas. A laboratory course must be included. Students may substitute, for one of the six required courses, a 3 or 4 credit experiential education experience obtained in a minimum of three out-of-classroom experiences through engineering cooperative education or inde-
Biomedical Engineering Concentration

The department offers a concentration for students who plan to pursue graduate work in biomedical areas or seek employment in selected medical-related areas. The concentration is available to, but not required of, any student enrolled in the Bachelor of Science degree program in Electrical Engineering. Courses completed to satisfy requirement 3. above may also be used to satisfy the requirements of the concentration. The concentration will be noted on the student’s transcript.

Biomedical Engineering

To earn a Bachelor of Science degree in Electrical Engineering with a biomedical engineering concentration, students must complete requirements 1., 2., and 3. above and the following:

1. Complete 6 credits from the following courses:
 - ANTR 350 Human Gross Anatomy for Pre-Health Professionals 3
 - BS 161 Cell and Molecular Biology 4
 - PSL 250 Introductory Physiology 4
 - PSL 310 Physiology for Pre-Health Professionals 4

2. Complete 6 credits from the following courses:
 - ECE 445 Biomedical Instrumentation 3
 - ECE 446 Biomedical Signal Processing 3
 - ECE 447 Introduction to Biomedical Imaging 3
 - ECE 448 Modeling and Analysis of Bioelectrical Systems 3

3. Complete 3 credits from the following courses:
 - BE 445 Biosensors for Medical Diagnostics 3
 - ME 495 Tissue Mechanics 3
 - MSE 425 Biomaterials and Biocompatibility 3

A 400-level listed above or other approved Electrical and Computer Engineering (ECE) courses with biomedical engineering content as approved by the student’s advisor. The course used to fulfill this requirement may not be used to fulfill concentration requirement 1. or 2.

LINKED BACHELOR’S-MASTER’S DEGREE IN ELECTRICAL ENGINEERING

Bachelor of Science Degree in Computer Engineering
Master of Science Degree in Electrical Engineering

The department welcomes applications from Michigan State University Computer Engineering undergraduate students in their junior and senior year. Admission applications must be made during the prior spring semester for an anticipated spring graduation or the prior fall semester for an anticipated fall graduation to allow admission before the final semester as a Computer Engineering undergraduate. Admission to the program requires a minimum undergraduate grade-point average of 3.5 and an approved program of study for the Master of Science degree in Computer Science at the time of admission. Admission to the Linked Bachelor’s-Master’s program allows the application of up to 9 credits toward the master’s program for qualifying 400-level and above course work taken at the undergraduate level at Michigan State University or an external accredited institution. The number of approved credits, not to exceed 9, are applied toward the credit requirement of the master’s degree. Credits applied to the Linked Bachelor’s-Master’s program are not eligible to be applied to any other graduate degree program.

LINKED BACHELOR’S-MASTER’S DEGREE IN ELECTRICAL ENGINEERING

Bachelor of Science Degree in Computer Engineering
Master of Science Degree in Electrical Engineering

The department welcomes applications from Michigan State University Computer Engineering undergraduate students in their junior and senior year. Admission applications must be made during the prior spring semester for an anticipated spring graduation or the prior fall semester for an anticipated fall graduation to allow admission before the final semester as a Computer Engineering undergraduate. Admission to the program requires a minimum undergraduate grade-point average of 3.5 and an approved program of study for the Master of Science degree in Electrical Engineering at the time of admission. Admission to the Linked Bachelor’s-Master’s program allows the application of up to 9 credits toward the master’s program for qualifying 400-level and above course work taken at the undergraduate level at Michigan State University or an external accredited institution. The number of approved credits, not to exceed 9, are applied toward the credit requirement of the master’s degree. Credits applied to the Linked Bachelor’s-Master’s program are not eligible to be applied to any other graduate degree program.
GRADUATE STUDY

The Department of Electrical and Computer Engineering offers programs leading to the Master of Science and Doctor of Philosophy degrees. Graduate study is in the department organized into three groups: computer engineering including computer architecture, computer networks, and VLSI/microelectronics; electrosciences including electromagnetics and electronic materials and devices; and systems including control and robotics, biomedical engineering, power, and signal processing and communications. An interdisciplinary approach marks many of the research projects that faculty share with graduate students.

Master of Science

In addition to meeting the requirements of the university and of the College of Engineering, students must meet the requirements specified below.

Admission

Applicants for admission should possess a Bachelor of Science degree in electrical engineering or a related field such as physics, mathematics, or computer science, and should have a grade-point average that would indicate success in graduate study.

Students who are admitted without a Bachelor of Science degree in electrical engineering may be required to complete collateral courses.

International applicants are required to submit Graduate Record Examination General Test scores.

Requirements for the Master of Science Degree in Electrical Engineering

The student must complete a total of 30 credits under either Plan A (with thesis) or Plan B (without thesis) and meet the requirements specified below:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Courses</td>
<td></td>
</tr>
<tr>
<td>ECE 813 Advanced VLSI Design</td>
<td>3</td>
</tr>
<tr>
<td>ECE 820 Advanced Computer Architecture</td>
<td>3</td>
</tr>
<tr>
<td>ECE 821 Advanced Power Electronics and Applications</td>
<td>3</td>
</tr>
<tr>
<td>ECE 826 Linear Control Systems</td>
<td>3</td>
</tr>
<tr>
<td>ECE 835 Advanced Electromagnetic Fields and Waves I</td>
<td>3</td>
</tr>
<tr>
<td>ECE 963 Analysis of Stochastic Systems</td>
<td>3</td>
</tr>
<tr>
<td>ECE 874 Physical Electronics</td>
<td>3</td>
</tr>
<tr>
<td>Electrical and Computer Engineering 801</td>
<td>3</td>
</tr>
</tbody>
</table>

CREDITS

1. Supporting Courses: At least 6 credits in approved courses in areas such as mathematics, statistics, or physics.
2. Seminar Requirement: First-year graduate students are required to attend seven seminars from the graduate seminar series.
3. Doctor of Philosophy

Admission

International applicants are required to submit Graduate Record Examination General Test scores.

Requirements for the Doctor of Philosophy Degree in Electrical Engineering

In addition to meeting the requirements of the university and of the College of Engineering, students must meet the requirements specified by their guidance committees.

1. The doctoral program must include a minimum of 36 credits, in addition to 24 credits of Electrical and Computer Engineering 999.

2. No 800-900 level independent study credits taken beyond the bachelor’s degree may be counted towards the doctoral degree.
3. A minimum of 3 credits must be taken outside of the College of Engineering in disciplinary areas such as mathematics, statistics, or physics.
4. All courses that are used to satisfy the requirements for the degree must have been completed under the numerical grading system.
5. Students may request up to 3 credits of master’s thesis research be applied towards this requirement.
6. First year graduate students are required to attend seven seminars from the graduate seminar series.

DEPARTMENT of MECHANICAL ENGINEERING

Alejandro R. Diaz, Chairperson

UNDERGRADUATE PROGRAMS

Mechanical engineers contribute to the design and manufacture of virtually every commodity in the modern world. They work in almost every industry including aerospace, automobile, biotechnology, energy production, food production, manufacturing, and pharmaceuticals. The flexibility that allows mechanical engineers to work in such varied fields requires study in a diverse breadth of subjects that include solid mechanics, thermodynamics, control theory, fluid mechanics, machine design, heat transfer, and vibrations. The Department of Mechanical Engineering provides a curriculum that combines a foundation in these mathematics and science-based courses with the creative processes of engineering design. Students learn the skills to develop ideas from concept to product. The program integrates individual mastery of these subjects with teamwork-based solutions to open-ended design problems and real-world experiences. Along with required courses, optional concentrations are also available for students to focus their programs of study on areas of particular interest.

MECHANICAL ENGINEERING

Mechanical engineers apply the fundamental principles of motion (mechanics) and energy (thermosciences) to serve the needs of people through the creative problem-solving process known as engineering design. These principles are represented in the subjects of solid and fluid mechanics, thermodynamics, heat transfer, mechanical systems, and material science. Practicing mechanical engineers work in many application areas, which include such industries as automotive, chemical, energy, consumer product, aerospace, computer and electronic, and biomedical.

The undergraduate mechanical engineering program prepares its graduates for the mechanical engineering profession through a foundation of engineering fundamentals; the development of analytical, computational, and experimental capabilities to recognize, model, and solve engineering problems; and the application of the engineering design method. Communication and teaming skills are integrated throughout the program.

For students who desire an international experience as part of their education, the department sponsors various programs such as "Mechanical Engineering in Aachen, Germany." During the spring semester, a small group of juniors and seniors pursue their normal studies abroad at the Technical University of Aachen
Requirements for the Bachelor of Science Degree in Mechanical Engineering

1. The University requirements for bachelor’s degrees as described in the Undergraduate Bulletin are also required of any student enrolled in the Bachelor of Science degree in Mechanical Engineering. The University’s Tier II writing requirement for the Mechanical Engineering major is met by completing Mechanical Engineering 332, 412, 451, 461, and 491. Those courses are referenced in item 3. b) (1) below.

2. The requirements of the College of Engineering for the Bachelor of Science degree.

3. The following requirements for the major:

 a. All of the following courses outside the Department of Mechanical Engineering: 13 CREDITS
 CE 221 Statics ... 3
 CEM 151 Chemistry Laboratory I 1
 ECE 345 Electronic Instrumentation and Systems 3
 MSE 250 Materials Science and Engineering 3
 STT 351 Probability and Statistics for Engineering 3

 b. All of the following courses in the Department of Mechanical Engineering: 39 CREDITS
 ME 222 Mechanics of Deformable Solids 3
 ME 250 Statics .. 3
 ME 341 Dynamics ... 3
 ME 342 Fluid Mechanics 4
 ME 371 Mechanical Design I 3
 ME 381 Mechanical Engineering Analysis 3
 ME 410 Heat Transfer 3
 ME 411 Heat Transfer Laboratory 2
 ME 451 Control Systems 4
 ME 461 Mechanical Vibrations 3
 ME 471 Mechanical Design II 1 to 4
 ME 481 Mechanical Engineering Design Projects 3

 c. Senior Electives (a minimum of 9 credits):
 ME 416 Computer Assisted Design of Thermal Systems . 3
 ME 417 Design of Alternative Energy Systems 3
 ME 422 Introduction to Combustion 3
 ME 423 Intermediate Mechanics of Deformable Solids . 3
 ME 425 Experimental Mechanics 3
 ME 426 Introduction to Composite Materials 3
 ME 440 Aerospace Engineering Fundamentals 3
 ME 442 Turbomachinery 3
 ME 444 Automotive Engines 3
 ME 445 Automotive Powertrain Design 3
 ME 456 Mechatronic System Design 3
 ME 464 Intermediate Dynamics 3
 ME 475 Computer Aided Design of Structures 3
 ME 477 Manufacturing Processes 3
 ME 478 Product Development 3
 ME 490 Independent Study in Mechanical Engineering. 1 to 3
 ME 491 Selected Topics in Mechanical Engineering . 1 to 4
 ME 494 Biofluid Mechanics and Heat Transfer 3
 ME 495 Tissue Mechanics 3

 d. Designative Senior Electives (a minimum of 3 credits):
 ME 416 Computer Assisted Design of Thermal Systems . 3
 ME 417 Design of Alternative Energy Systems 3
 ME 442 Turbomachinery 3
 ME 445 Automotive Powertrain Design 3
 ME 456 Mechatronic System Design 3
 ME 465 Computer Aided Optimal Design 3
 ME 475 Computer Aided Design of Structures 3
 ME 497 Biomechanical Design Projects 3

Concentration in Biomechanical Engineering

A concentration in Biomechanical Engineering is available to, but not required of, any student enrolled in the Bachelor of Science degree in Mechanical Engineering. Completing the Bachelor of Science degree in Mechanical Engineering with a concentration in biomechanical engineering may require more than 128 credits. The concentration will be noted on the student’s transcript.

Biomechanical Engineering

To earn a Bachelor of Science degree in Mechanical Engineering with a biomechanical engineering concentration, students must complete requirements 1., 2., 3.a., and 3.b. above and the following:

 CREDITS
 ME 494 Biofluid Mechanics and Heat Transfer 3
 ME 495 Tissue Mechanics 3
 ME 497 Biomechanical Design in Product Development . 3
 ME 498 Independent Study in Mechanical Engineering . 1 to 4
 ME 491 Selected Topics in Mechanical Engineering . 1 to 4
 MISE 425 Biomaterials and Biocompatibility 3

Students must obtain department approval prior to enrollment in ME 490 or 491.

Concentration in Engineering Mechanics

A concentration in Engineering Mechanics is available to, but not required of, any student enrolled in the Bachelor of Science degree in Mechanical Engineering. Completing the Bachelor of Science degree in Mechanical Engineering with a concentration in engineering mechanics may require more than 128 credits. The concentration will be noted on the student’s transcript.

Engineering Mechanics

To earn a Bachelor of Science degree in Mechanical Engineering with an engineering mechanics concentration, students must complete requirements 1., 2., 3.a., and 3.b. above and the following:

 CREDITS
 ME 423 Intermediate Mechanics of Deformable Solids . 3
 ME 425 Experimental Mechanics 3
 ME 464 Intermediate Dynamics 3
 ME 475 Computer Aided Design of Structures 3

Concentration in Manufacturing Engineering

A concentration in Manufacturing Engineering is available to, but not required of, any student enrolled in the Bachelor of Science degree in Mechanical Engineering. Completing the Bachelor of Science degree in Mechanical Engineering with a concentration in manufacturing engineering may require more than 128 credits. The concentration will be noted on the student’s transcript.

Manufacturing Engineering

To earn a Bachelor of Science degree in Mechanical Engineering with a manufacturing engineering concentration, students must complete requirements 1., 2., 3.a., 3.b., and 3.d. above and the following:

 CREDITS
 ME 491 Selected Topics in Mechanical Engineering . 1 to 4
 ME 494 Biofluid Mechanics and Heat Transfer 3
 ME 495 Tissue Mechanics 3
 ME 475 Computer Aided Design of Structures 3

Concentration in Global Engineering

A concentration in Global Engineering is available to, but not required of, any student enrolled in the Bachelor of Science degree in Mechanical Engineering. Completing the Bachelor of Science degree in Mechanical Engineering with a concentration in global engineering may require more than 128 credits. The concentration will be noted on the student’s transcript.
Global Engineering
To earn a Bachelor of Science degree in Mechanical Engineering with a global engineering concentration, students must complete requirements 1, 2, 3.a., and 3.b. above and 12 credits of approved mechanical engineering courses from a MSU co-sponsored Study Abroad institution. At least 3 credits must include a team design project.

LINKED BACHELOR’S-MASTER’S DEGREE IN ENGINEERING MECHANICS

Bachelor of Science Degree in Mechanical Engineering with a concentration in Engineering Mechanics
Master of Science Degree in Engineering Mechanics
The department welcomes applications from Michigan State University Mechanical Engineering undergraduate students in their junior and senior year, who are pursuing an engineering mechanics concentration within the Bachelor of Science degree in Mechanical Engineering. Admission applications must be made during the prior spring semester for an anticipated spring graduation or the prior fall semester for an anticipated fall graduation to allow admission before the final semester as a Mechanical Engineering undergraduate. Admission to the program requires a minimum undergraduate grade-point average of 3.5 and an approved program of study for the Master of Science degree in Engineering Mechanics at the time of admission. Admission to the Linked Bachelor’s-Master’s program allows the application of up to 9 credits toward the master’s program for qualifying 400-level and above course work taken at the undergraduate level at Michigan State University or an external accredited institution. The number of approved credits, not to exceed 9, are applied toward the credit requirement of the master’s degree. Credits applied to the Linked Bachelor's-Master’s program are not eligible to be applied to any other graduate degree program.

LINKED BACHELOR’S-MASTER’S DEGREE IN MECHANICAL ENGINEERING

Bachelor of Science Degree in Mechanical Engineering
Master of Science Degree in Mechanical Engineering
The department welcomes applications from Michigan State University Mechanical Engineering undergraduate students in their junior and senior year. Admission applications must be made during the prior spring semester for an anticipated spring graduation or the prior fall semester for an anticipated fall graduation to allow admission before the final semester as a Mechanical Engineering undergraduate. Admission to the program requires a minimum undergraduate grade-point average of 3.5 and an approved program of study for the Master of Science degree in Mechanical Engineering at the time of admission. Admission to the Linked Bachelor’s-Master’s program allows the application of up to 9 credits toward the master’s program for qualifying 400-level and above course work taken at the undergraduate level at Michigan State University or an external accredited institution. The number of approved credits, not to exceed 9, are applied toward the credit requirement of the master’s degree. Credits applied to the Linked Bachelor’s-Master’s program are not eligible to be applied to any other graduate degree program.

GRADUATE STUDY
The Department of Mechanical Engineering offers programs leading to Master of Science and Doctor of Philosophy degrees, both in mechanical engineering and in engineering mechanics. Individual programs can be designed from a wide range of courses to suit the background, capabilities and aims of the student. Studies in the department may be supplemented by courses offered by other departments in the College of Engineering and in other colleges. Courses and research opportunities are available in the following areas: fluid mechanics, combustion, heat transfer, thermodynamics, bioengineering, internal combustion engines, turbomachinery, computational fluid dynamics, system dynamics, controls, vibrations, nonlinear dynamics, mechatronics, manufacturing, computational design, computational solid mechanics, mechanics and processing of composite materials, elasticity, nonlinear elasticity, plasticity, experimental mechanics, and micromechanics.

ENGINEERING MECHANICS

Master of Science
In addition to meeting the requirements of the university and of the College of Engineering, students must meet the requirements specified below.

Admission
The department welcomes applications from students who possess a bachelor’s degree in a related engineering or science discipline.

Requirements for Both Plan A and Plan B:
1. The following core courses in engineering mechanics: Mechanical Engineering 825 or 861, 820, and 821.
2. At least one of the following core courses in mechanical engineering: Materials Science and Engineering 851, 855, 862, or 865.
3. At least one credit of Materials Science and Engineering 885.
4. At least one course in mathematics or statistics at the 400–level or above approved by the student's academic advisor.

Doctor of Philosophy
In addition to meeting the requirements of the university and of the College of Engineering, students must meet the requirements specified below.

Admission
An applicant for admission must identify at least one prospective faculty advisor that he or she would like to direct his or her pro-
gram of study. Admission to the Ph.D program is contingent on a faculty advisor accepting the student as an advisee.

Requirements for the Doctor of Philosophy Degree in Engineering Mechanics

The student must complete:

1. At least one of the following core courses in materials science and engineering: Materials Science and Engineering 851, 855, 862, or 865.
2. At least one course in mathematics or statistics at the 400–level or above.

These requirements are waived for those students who completed equivalent courses prior to enrolling in the doctoral program.

MECHANICAL ENGINEERING

Master of Science

In addition to meeting the requirements of the university and of the College of Engineering, students must meet the requirements specified below.

Admission

An applicant should possess a bachelor’s degree in mechanical engineering or a related field.

The applicant must submit scores from the Graduate Record Examination General Test.

Requirements for the Master of Science Degree in Mechanical Engineering

The student must complete a total of 30 credits for the degree under either Plan A (with thesis) or Plan B (without thesis) and meet the requirements specified below:

Requirements for Both Plan A and Plan B:

The student must:

1. Complete at least one course in three of the following four areas:
 - b. Fluid Mechanics: Mechanical Engineering 830

2. Complete at least 6 additional credits in Mechanical Engineering courses at the 800-900 level, not including Mechanical Engineering 898 or 899.

Additional Requirements for Plan A:

The student must:

1. Complete at least 20 credits in courses at the 800–900 level including at least 6, but not more than 8, credits in Mechanical Engineering 899.
2. Submit a brief thesis proposal for approval by the student's academic advisor early in the student's program of study.

Additional Requirements for Plan B:

The student must complete at least 22 credits in courses at the 800–900 level.

Doctor of Philosophy

In addition to meeting the requirements of the university and of the College of Engineering, students must meet the requirements specified below.

Admission

The applicant must submit scores from the Graduate Record Examination General Test.

Requirements for the Doctor of Philosophy Degree in Mechanical Engineering

In addition to meeting the requirements of the university and the College of Engineering, students must meet the requirements specified by their guidance committees.