The first college at the first land-grant institution, the College of Agriculture and Natural Resources is committed to advancing knowledge and transforming lives in communities, agriculture, and natural resources. The college provides innovative leadership in science, technology, design, management, biofuels, the bioeconomy, and international involvement. The wide selection of academic programs and career pathways include food, nutrition, and their applications to health; community, family and youth development; agricultural production; technology, management, and design; food processing; biofuels, the bioeconomy, globalization, international development, and sustainability.

Students learn to manage resources, people, and technology to improve the use, conservation and renewal of natural and created environments; develop sustainable systems; manage green spaces; enhance community and economic development; and advance food safety and nutrition. Graduates are employed as scientists, leaders, educators, managers, and stewards of human and natural resources.

The diverse disciplines and expertise in the college encompass research in animal and plant biotechnology, control of invasive species, control of pathogens, protection of biodiversity, management of urban sprawl, environmental remediation, wildlife management, use of biosensors to detect foodborne pathogens, tourism, ergonomics and lean construction, and the sustainability of agricultural and natural resource systems. Knowledge derived from research is integrated into course work and extended to benefit the community, state, nation and world – epitomizing the excellence of the land-grant tradition.

Educational programs nurture a learning environment that educates and prepares students for graduate study and/or for leadership in local, state, national, and international arenas. Graduates of the college have the tools they need to undertake endeavors that ensure the sustainability of food, prosperity and leisure activities in a world environment that has finite resources. For those interested in short-term certificate programs, the Institute of Agricultural Technology offers a variety of technical programs that are less than two years in length.

UNDERGRADUATE PROGRAMS

Personal attention is a key aspect of all college programs, and undergraduate research is promoted and encouraged. The college offers a highly student-oriented advising system. Students are assigned an academic advisor to suggest courses and career emphases. In the student-advisor relationship, the capabilities, aspirations and goals of the students remain paramount throughout their academic careers. Academic advisors work closely with students from the time they express an interest in the major, and undergraduate research is encouraged in all majors.

For students who desire one of the degree options available through the college, but wish to delay their choice of a specific major until a later date, a no-preference program is offered. Under this arrangement, freshmen enrolled in the Undergraduate University Division may designate their major preference as Agriculture and Natural Resources No-Preference. Students selecting this major preference are advised by faculty members in the College of Agriculture and Natural Resources. Through careful selection of courses, they are encouraged to explore a variety of areas to help in selecting a major. The key element of this program is its flexibility. Students may remain in it until they attain junior standing, or they may select other major preferences at any time before becoming juniors.
Bachelor of Science degree programs are offered in the following areas: Agribusiness Management; Animal Science; Construction Management; Crop and Soil Sciences; Dietetics; Entomology; Environmental Economics and Policy; Environmental Soil Science; Environmental Studies and Agriscience; Fisheries and Wildlife; Food Industry Management; Food Science; Forestry; Horticulture; Nutritional Sciences; Packaging; Park, Recreation and Tourism Resources; Plant Pathology; and Technology Systems Management. A Bachelor of Arts degree program in Interior Design and a Bachelor of Landscape Architecture degree program in Landscape Architecture are also offered.

The College of Agriculture and Natural Resources cooperates with the College of Engineering in offering an undergraduate program in Biosystems Engineering. The college also participates with the College of Social Science in offering an undergraduate program in Urban and Regional Planning.

Students who are enrolled in bachelor's degree programs in the college may elect the Specialization in Environmental Studies. For additional information, refer to the statement on Specialization in Environmental Studies in the College of Natural Science section of this catalog.

Honors Study
The College of Agriculture and Natural Resources encourages honors students to develop enriched and distinctive undergraduate programs. In each of the career pathways offered in the college, members of the faculty are carefully selected to serve as departmental Honors College advisors. These advisors assist each Honors College student in planning a rigorous and balanced program that reflects individual interests and competencies. In addition to the university-wide array of introductory Honors courses available to exceptional students, the college encourages participation in research and enrollment in graduate courses and independent study.

Opportunities for Individual Emphasis
In furthering the students' education, the flexible nature of the program in each major makes it possible for students to pursue areas of special interest through regular course work, special seminars, research and travel. By anticipating new and growing areas of need for trained personnel, the college makes it possible for students to prepare themselves adequately in these areas. Following are a few of the opportunities for special emphasis available to students in any major within the college.

International Study. The college offers opportunities for short-term and semester-length study abroad programs around the world. Undergraduates are encouraged to make a study abroad experience part of their curriculum. In addition, students in the College of Agriculture and Natural Resources, and others interested in agricultural development abroad, may select courses from numerous subject areas. Offerings in agricultural economics, agricultural engineering, animal science, crop and soil sciences, extension personnel development, forestry, horticulture and resource development have special relevance to international agriculture and rural development. Emphasis is placed on environmentally sound crop and animal production, application of new technical knowledge, planning and administration, and efficient use of human and natural resources for developing countries.

Science Emphasis. Many students realize early in their college years that they wish to prepare for careers in research or university teaching. Academic advisors assist them in selecting science courses (biological, physical and social) and mathematics courses that will offer the best possible preparation for graduate study.

Undergraduate Research. The college Undergraduate Research Program allows students to become more actively engaged in their education through intellectual inquiry and practical learning. Students work closely with a faculty mentor to conduct original research in the chosen area of interest.

Freshmen
Students meeting the general requirements for admission shown in the Undergraduate Education section of this catalog are enrolled in the Undergraduate University Division. However, they may declare a major preference in the College of Agriculture and Natural Resources and be assigned an academic advisor in the college. Freshmen who declare a major will usually have both an Undergraduate University Division advisor and an advisor in their major.

Admission as a Junior to the College of Agriculture and Natural Resources
1. Completion of a minimum of 56 credits acceptable to the college with an academic record, which at least meets the requirements of Academic Standing of Undergraduate Students.
2. Acceptance as a major in one of the academic programs of the college.

The number of students admitted as juniors to the construction management major and the packaging major are limited. For additional information, refer to the statements on the School of Planning, Design and Construction and the School of Packaging.

Graduation Requirements
1. The University requirements for bachelor's degrees as described in the Undergraduate Education section of this catalog.

 Alternative tracks to Integrative Studies in General Science have been approved for selected majors leading to the Bachelor of Science degree in the college. For additional information, refer to the lists of requirements for the major and degree programs that appear in the statements on the departments.

 The completion of the College of Agriculture and Natural Resources mathematics requirement referenced in item 2. a. below may also satisfy the University mathematics requirement.

2. The requirements of the College of Agriculture and Natural Resources for the Bachelor of Science degree that are listed below:
 a. The mathematics requirement may be met by completing one of the following or may be satisfied by placing into a calculus course based on the Mathematic Services Placement Exam.
 (1) Mathematics 103 and Statistics and Probability 200 or 201.
 (2) Mathematics 103 and 114.
 (3) Mathematics 116.
 b. Economics 201 or 202.
 c. At least 26 credits in courses in the college.
 d. The specific requirements for a major in the college.

Students who are enrolled in bachelor's degree programs in the College of Agriculture and Natural Resources may elect a Specialization in Environmental Studies. For additional information, refer to the Specialization in Environmental Studies statement in the College of Natural Science section of this catalog.
SPECIALIZATION IN AGRICULTURAL AND NATURAL RESOURCES BIOTECHNOLOGY

The Specialization in Agricultural and Natural Resources Biotechnology is available as an elective to students who are enrolled in Bachelor of Science degree programs with majors in animal science, biosystems engineering, crop and soil sciences, fisheries and wildlife, food science, forestry, and horticulture. The specialization is administered by the College of Agriculture and Natural Resources.

The specialization provides the opportunity for students who are enrolled in biological science–related undergraduate programs to become familiar with the concepts, techniques, and issues related to modern biotechnology. The specialization is designed for students who may be planning to pursue graduate study in biotechnology–related disciplines or who may be interested in careers with corporations or agencies for which a basic familiarity with biotechnology is a prerequisite.

With the approval of the department and college that administer the student’s degree program, courses that are used to satisfy the requirements for the specialization may also be used to satisfy the requirements for the bachelor’s degree.

Requirements for the Specialization in Agricultural and Natural Resources Biotechnology

The student must complete:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMB 401 Basic Biochemistry</td>
<td>4</td>
</tr>
<tr>
<td>HRT 486 Biotechnology in Agriculture: Applications and Ethical Issues</td>
<td>3</td>
</tr>
<tr>
<td>One of the following courses (3 or 4 credits):</td>
<td></td>
</tr>
<tr>
<td>ANS 314 Genetic Improvement of Domestic Animals</td>
<td>4</td>
</tr>
<tr>
<td>CSS 350 Introduction to Plant Genetics</td>
<td>3</td>
</tr>
<tr>
<td>ZOL 341 Fundamental Genetics</td>
<td>4</td>
</tr>
<tr>
<td>Complete one of the following, either a. or b. (4 or 5 credits):</td>
<td></td>
</tr>
<tr>
<td>a. ANS 404 Advanced Animal Genetics</td>
<td>2</td>
</tr>
<tr>
<td>b. ANS 425 Principles of Animal Biotechnology</td>
<td>3</td>
</tr>
<tr>
<td>CSS 451 Biotechnology Applications for Plant Breeding and Genetics</td>
<td>4</td>
</tr>
</tbody>
</table>
The Doctor of Philosophy degree may be earned with majors in agricultural economics; agricultural engineering; animal science; biosystems engineering; community, agriculture, recreation and resource studies; crop and soil sciences; entomology; fisheries and wildlife; food science; forestry, horticulture; human nutrition; human nutrition—environmental toxicology; packaging; planning, design and construction; plant breeding, genetics and biotechnology—crop and soil sciences; plant breeding, genetics and biotechnology—forestry; plant breeding, genetics and biotechnology—horticulture; plant breeding, genetics and biotechnology—plant biology; and plant pathology.

The following dual Juris Doctor (J.D.) programs with Michigan State University College of Law are available through the College of Agriculture and Natural Resources: Michigan State University M.S. degree program with a major in Fisheries and Wildlife and Michigan State University College of Law J.D.; Michigan State University M.S. degree program with a major in Forestry and Michigan State University College of Law J.D.

The regulations and requirements presented here are the minimum for the college as a whole and must be fulfilled by all students in all departments. Any requirements not set forth herein or in university regulations are matters of departmental policy. Individual departments may have additional requirements beyond the minimum established for the college. Admissions to graduate programs may be limited by unit resources.

Graduate Specializations and Certificates

Students who are enrolled in master’s degree programs in the College of Agriculture and Natural Resources may elect the master’s Specialization in Agribusiness. For additional information, refer to the statement in the Department of Agricultural, Food, and Resource Economics section of this catalog.

Students who are enrolled in master’s and doctoral degree programs may elect the Graduate Certificate in Conservation Law. For additional information, refer to the statement on Graduate Certificate in Conservation Law in the Department of Fisheries and Wildlife section of this catalog.

Students who are enrolled in master’s and doctoral degree programs may elect the Graduate Certificate in Forest Carbon Science, Policy and Management. For additional information, refer to the statement on Graduate Certificate in Forest Carbon Science, Policy and Management in the Department of Forestry section of this catalog.

Students who are enrolled in doctoral degree programs in departments and programs emphasizing environmental science and policy may elect the Graduate Specialization in Environmental Science and Policy. For additional information, refer to the Graduate Specialization in Environmental Science and Policy statement in the College of Social Science section of this catalog.

Students who are enrolled in master’s and doctoral degree programs in the College of Agriculture and Natural Resources, the College of Natural Science, and the College of Veterinary Medicine may elect the Graduate Specialization in Fish and Wildlife Disease Ecology and Conservation Medicine. For additional information, refer to the statement on Graduate Specialization in Fish and Wildlife Disease Ecology and Conservation Medicine.

Students who are enrolled in Master of Science degree programs in the departments of Agricultural, Food, and Resource Economics, Biosystems and Agricultural Engineering, Animal Science, Entomology, Food Science and Human Nutrition, Horticulture, Packaging, and Plant Pathology may elect a Specialization in Food Safety. For additional information, refer to the statement on the specialization in the College of Veterinary Medicine section of this catalog.

Students who are enrolled in Master of Science and Doctor of Philosophy degree programs in the Department of Food Science and Human Nutrition may elect a Interdepartmental Graduate Specialization in Infant and Early Childhood. For additional information, refer to the statement on Interdepartmental Graduate Specializations in Infant and Early Childhood in the College of Social Science section of this catalog.

Students who are enrolled in Master of Science and Doctor of Philosophy degree programs in the departments of Agricultural, Food, and Resource Economics; Fisheries and Wildlife; or Forestry may elect a Graduate Specialization in Environmental and Resource Economics. For additional information, refer to the statement on Interdepartmental Graduate Specializations in Environmental and Resource Economics.

Students who are enrolled in master’s and doctoral degree programs at Michigan State University may elect a Graduate Specialization in Food and Agricultural Standards. For additional information, refer to the statement on Graduate Specialization in Food and Agricultural Standards in the College of Social Science section of this catalog.

Master of Science

In addition to meeting the requirements of the university, students must meet the requirements specified below.

Admission

Acceptance of an applicant is determined by the department in which the applicant wishes to do his or her major work, with the approval of the dean of the college, after consideration of the applicant’s academic record, experience, personal qualifications, and objectives. Applicants who are admitted are classified in one of two groups: regular, for students who are fully qualified to undertake master’s degree programs, or provisional, for students who have some remediable inadequacy of qualifications, or deficiency in subject matter preparation.

Normally an undergraduate grade-point average of 3.00 (B) or higher is required for admission to any status. Credits earned in regular or provisional status are acceptable as part of a student’s degree requirements upon approval of the major professor and the dean.

Requirements for the Master of Science Degree

PROGRAM. The student, in consultation with the major professor, develops the prescribed program of study. The program should be established at the earliest possible date, consistent with departmental requirements, and filed with the department and the dean. Two plans of study are available:

Plan A—Completion of a research program and preparation of a satisfactory thesis are required. Research credits must equal at least 6, but not more than 10.

Plan B—Preparation of a thesis is not required. The program may include research or special problems not exceeding 6 credits.

EXAMINATION. The candidate must pass a final examination on the program of study before a committee selected by the major professor and approved by the department chairperson, in accordance with University and departmental policy for Plan A and Plan B programs.

In case of a failure, the student may appear for reexamination at a time specified by the examining committee.
Academic Standards

FOR RETENTION. The major professor and department in which the student is majoring review and make a decision concerning the retention of any student failing to fulfill departmental requirements, and may dismiss a student at the end of any semester. Notice of dismissal from a departmental program is given to the student by the department chairperson, and the dean is notified of such action.

Residence

The student should spend at least one full semester in residence on campus. At least 8 credits excluding research must be taken in course work on the campus in East Lansing.

Doctor of Philosophy

The Doctor of Philosophy degree is granted for distinctive attainment by the student in a special field, as evidenced by a dissertation which shows independent and creative thought and by passing detailed examinations over the student’s chosen fields.

In addition to meeting the requirements of the university, students must meet the requirements specified below.

Admission

Acceptance of an applicant is determined by the department in which the applicant wishes to do his or her major work, with the approval of the dean of the college, after consideration of the applicant’s academic record, experience, personal qualifications, and objectives. Applicants who are admitted are classified in one of two groups: regular, for students whose records and qualifications show that they are ready to pursue a course of study toward the doctorate, or provisional, for students who, although their previous work appears to have been at an acceptably high academic level, nevertheless lack some important requirements for the course of study they intend to follow toward the doctorate. Such deficiencies will often necessitate the completion of collateral courses for which credit will not be counted toward the degree.

Normally a grade–point average of 3.00 (B) or higher in all previous academic work is required for admission to regular or provisional status.

Admission is open to students with a master’s or bachelor’s degree or their equivalents; however, applicants meeting these requirements are not guaranteed admission into a doctoral program. Some departments may require completion of a master’s degree prior to admission into the doctoral program.

Credits earned in regular or provisional status are acceptable as part of a student’s degree requirements upon approval by the guidance committee and the dean.

Examinations

COMPREHENSIVE. A comprehensive knowledge of the student’s major and related fields must be demonstrated by examination, written or written and oral, to the guidance committee. If the student fails to pass, there may not be a reexamination until after one semester of additional work toward the degree is completed.

FINAL. The final oral examination, primarily in defense of the dissertation, is conducted by the guidance committee, supplemented, at the discretion of the dean, by two appointed faculty members. Other faculty members may attend at the chairperson’s discretion. The final oral examination cannot be conducted before the dissertation is in the final form unbound.
program is by approval of one of the four participating departments, the Plant Breeding, Genetics and Biotechnology faculty, and the Coordinator of the Plant Breeding, Genetics and Biotechnology Program. In special cases, applicants with deficiencies in background courses may be admitted on a provisional basis. Such students will not be considered for advanced degrees until they have fulfilled the requirements for admission to regular status.

Requirements for the Master of Science Degree

The student’s guidance committee, selected in consultation with the student and the major professor at the time that the student is admitted to the program, plans the student’s course of study with the student’s particular interests, capabilities, and professional goals in mind. The student’s guidance committee is composed of three faculty members; the student’s major professor and at least one other person must be members of the Plant Breeding, Genetics and Biotechnology faculty. At least one member must be from a department other than the one that administers the student’s major.

Only Plan A (with thesis) is available. The student is required to complete courses, learn research methodologies, and conduct thesis research pertinent to the plant species under study. The student must complete two credits of Horticulture 892, and two core courses as specified by the Plant Breeding, Genetics and Biotechnology faculty. Credits in Master’s Thesis Research (course number 899) must total at least 6 but not more than 10. One semester of teaching experience is also required. The student’s program will be reviewed by the Plant Breeding, Genetics and Biotechnology faculty. The degree is conferred upon recommendation of the department, the Coordinator of the Plant Breeding, Genetics and Biotechnology Program, and the Dean of the college.

Doctor of Philosophy

In addition to meeting the requirements of the university and of the College of Agriculture and Natural Resources, students must meet the requirements specified below.

Admission

A student seeking admission to the Plant Breeding, Genetics and Biotechnology program at the doctoral level must have completed a Bachelor or Master of Science degree in the plant sciences with an emphasis on plant breeding and genetics. A minimum grade-point average of 3.00 is required.

To be considered for admission to the program, the student must be accepted as an advisee by a faculty member in the student’s major department who is also a member of the Plant Breeding, Genetics and Biotechnology faculty. Admission to the program is by approval of one of the four participating departments, the Plant Breeding, Genetics and Biotechnology faculty, and the Coordinator of the Plant Breeding, Genetics and Biotechnology Program.

Requirements for the Doctor of Philosophy Degree

The guidance committee, selected in consultation with the student and the major professor at the time that the student is admitted to the program, plans the student’s course of study with the student’s particular interests, capabilities, and professional goals in mind. The student’s guidance committee is composed of four faculty members; the student’s major professor and at least one other person must be members of the Plant Breeding, Genetics and Biotechnology faculty. At least one member must be from a department other than the one that administers the student’s major.

The student is required to complete courses, learn research methodologies, and conduct dissertation research pertinent to the plant species under study. The student must complete at least 12 credits in 800–level plant breeding and genetics courses including four credits of Horticulture 892, and two core courses as specified by the Plant Breeding, Genetics and Biotechnology faculty. One semester of teaching experience is also required.

The student’s program is subject to review by the Plant Breeding, Genetics and Biotechnology faculty. The degree is conferred upon recommendation of the department, the Coordinator of the Plant Breeding, Genetics and Biotechnology Program, and the Dean of the college.

GRADUATE SPECIALIZATION in ENVIRONMENTAL TOXICOLOGY

The College of Agriculture and Natural Resources, the College of Engineering, the College of Natural Science, and the College of Veterinary Medicine administer the Graduate Specialization in Environmental Toxicology. The College of Agriculture and Natural Resources is the primary administrative unit.

The specialization is available as an elective to students who are enrolled in master’s degree programs in the departments of Animal Science, Civil and Environmental Engineering, Community, Agriculture, Recreation and Resource Studies, Crop and Soil Sciences, Entomology, Fisheries and Wildlife, Food Science and Human Nutrition, Geological Sciences, Pathobiology and Diagnostic Investigation, and Zoology. The specialization is designed for students who are interested in combining study in their disciplines with study in environmental toxicology, and in applying their knowledge to solve environmental problems.

A faculty member who is in the department that administers the student’s degree program and who is associated with the specialization in Environmental Toxicology will serve as the student’s academic advisor for the specialization. The academic advisor will assist the student in planning a program of study that is related to the student’s interests, capabilities, and professional goals. With the approval of the department and college that administer the student’s degree program, the courses that are used to satisfy the requirements for the specialization may also be used to satisfy the requirements for the master’s degree.

Requirements for the Graduate Specialization in Environmental Toxicology

The student’s program of study must be approved by the student’s academic advisor for the specialization. The student must meet the requirements specified below:

CREDITS

1. Have a grade–point average of at least 3.00 in the courses that are used to satisfy the requirements for the specialization.
2. Complete the following course (3 credits):
 CE 818 Environmental Engineering Chemistry 3
3. Complete one of the following courses (3 or 4 credits):
 PHM 814 Advanced Principles of Toxicology 3
 ZOL 814 Environmental Chemodynamics 4
 MMG 425 Aqueous Geochemistry 3
 MMG 841 Soil Microbiology 3

GRADUATE PROGRAM IN ENVIRONMENTAL TOXICOLOGY

The student’s guidance committee, selected in consultation with the student and the major professor at the time that the student is admitted to the program, plans the student’s course of study with the student’s particular interests, capabilities, and professional goals in mind. The student’s guidance committee is composed of four faculty members; the student’s major professor and at least one other person must be members of the Plant Breeding, Genetics and Biotechnology faculty. At least one member must be from a department other than the one that administers the student’s major.

The student is required to complete courses, learn research methodologies, and conduct dissertation research pertinent to the plant species under study. The student must complete at least 12 credits in 800–level plant breeding and genetics courses including four credits of Horticulture 892, and two core courses as specified by the Plant Breeding, Genetics and Biotechnology faculty. One semester of teaching experience is also required.

The student’s program is subject to review by the Plant Breeding, Genetics and Biotechnology faculty. The degree is conferred upon recommendation of the department, the Coordinator of the Plant Breeding, Genetics and Biotechnology Program, and the Dean of the college.

GRADUATE SPECIALIZATION in ENVIRONMENTAL TOXICOLOGY

The College of Agriculture and Natural Resources, the College of Engineering, the College of Natural Science, and the College of Veterinary Medicine administer the Graduate Specialization in Environmental Toxicology. The College of Agriculture and Natural Resources is the primary administrative unit.

The specialization is available as an elective to students who are enrolled in master’s degree programs in the departments of Animal Science, Civil and Environmental Engineering, Community, Agriculture, Recreation and Resource Studies, Crop and Soil Sciences, Entomology, Fisheries and Wildlife, Food Science and Human Nutrition, Geological Sciences, Pathobiology and Diagnostic Investigation, and Zoology. The specialization is designed for students who are interested in combining study in their disciplines with study in environmental toxicology, and in applying their knowledge to solve environmental problems.

A faculty member who is in the department that administers the student’s degree program and who is associated with the specialization in Environmental Toxicology will serve as the student’s academic advisor for the specialization. The academic advisor will assist the student in planning a program of study that is related to the student’s interests, capabilities, and professional goals. With the approval of the department and college that administer the student’s degree program, the courses that are used to satisfy the requirements for the specialization may also be used to satisfy the requirements for the master’s degree.

Requirements for the Graduate Specialization in Environmental Toxicology

The student’s program of study must be approved by the student’s academic advisor for the specialization. The student must meet the requirements specified below:

CREDITS

1. Have a grade–point average of at least 3.00 in the courses that are used to satisfy the requirements for the specialization.
2. Complete the following course (3 credits):
 RD 836 Legal Aspects of Environmental Regulation 3
3. Complete one of the following courses (3 or 4 credits):
 ANS 827 Integrated Risk Assessment of Environmental Hazards 3
 CE 821 Groundwater Hydraulics 3
 CE 481 Environmental Engineering Chemistry 3
4. Complete one of the following courses (3 credits):
 PHM 450 Introduction to Chemical Toxicology 3
 PHM 614 Advanced Principles of Toxicology 3
5. Complete one course from any of the five categories listed below (1 to 4 credits):
 CE 481 Environmental Engineering Chemistry 3
 CE 821 Groundwater Hydraulics 3
 CSS 455 Pollutants in the Soil Environment 3
 CSS 895 Interfacial Environmental Chemistry 4
 ENE 801 Dynamics of Environmental Systems 3
 GLG 421 Environmental Geochemistry 4
 GLG 821 Aqueous Geochemistry 3
 MMG 425 Microbial Ecology 3
 MMG 841 Soil Microbiology 3
GRADUATE SPECIALIZATION IN FISH AND WILDLIFE DISEASE ECOLOGY AND CONSERVATION MEDICINE

The Specialization in Fish and Wildlife Disease Ecology and Conservation Medicine is designed to provide students with improved understanding of the likely consequences of increased contact between fish and wildlife, domestic animals and human populations for emergence and spread of infectious diseases. Students will gain a sound understanding of the basis of fish and wildlife disease, and an appreciation of the diagnostic and surveillance tools needed to move toward effective disease control among wild populations and ecosystems. Students will also obtain the skills that will enable them to work effectively within interdisciplinary and interagency teams to develop disease surveillance, control, and prevention plans.

The specialization which is administered by the Department of Fisheries and Wildlife and the College of Agriculture and Natural Resources, is available as an elective to master’s and doctoral students in the College of Agriculture and Natural Resources, the College of Natural Science, and the College of Veterinary Medicine. Students enrolled in Plan A (thesis) master’s programs are encouraged to develop thesis topics which integrate their chosen discipline with the interdisciplinary focus integral to this specialization. It is designed for students who are interested in combining study in their disciplines with the study of fish and wildlife disease ecology and in applying their knowledge to the management of emerging and recurring disease in fish and wildlife populations and in ecosystems.

With the approval of the department or school and college that administers the student’s degree program, courses that are used to satisfy the requirements for the specialization may also be used to satisfy the requirements for the graduate degree program. The student’s program of study must be approved by the student’s academic advisor for the specialization.

Requirements for the Specialization in Fish and Wildlife Disease Ecology and Conservation Medicine

The student must:

1. Complete all of the following courses (10 credits):
 - FW 423 Principles of Fish and Wildlife Disease
 - FW 425 Principles of Fish and Wildlife Disease Laboratory
 - FW 455 Field Biology of Fish and Wildlife
 - FW 456 Wildlife Disease Ecology
 - FW 421 Conservation Medicine

2. Complete the following courses (10 credits):
 - FW 821 Conservation Medicine
 - FW 823 Principles of Fish and Wildlife Disease Laboratory
 - FW 825 Field Biology of Fish and Wildlife
 - FW 826 Wildlife Disease Ecology
 - FW 821 Conservation Medicine

3. Master’s and doctoral students will complete a thesis or dissertation reflecting the integration of the student’s discipline.

GRADUATE SPECIALIZATION IN GENDER, JUSTICE, AND ENVIRONMENTAL CHANGE

The Graduate Specialization in Gender, Justice, and Environmental Change is administered by the College of Agriculture and Natural Resources and the College of Social Science. The primary administrative unit for this specialization is the College of Agriculture and Natural Resources.

The Graduate Specialization in Gender, Justice, and Environmental Change is available as an elective for students who are enrolled in master’s and doctoral programs at Michigan State University. The goal of this program is to provide graduate students from different academic backgrounds with analytical and methodological tools to address environmental issues from the perspectives of gender relations and social justice. Students will be encouraged to develop an understanding of global perspectives on environmental issues in view of local-global linkages. The program will prepare students to foster the growth of research, service, and interdisciplinary collaboration in the fields of gender and environmental studies and to increase knowledge of the relationships between gender and domestic and international environmental issues.

Persons who are interested in the specialization must contact the advisor for the Graduate Specialization in Gender, Justice, and Environmental Change in the College of Agriculture and Natural Resources. To be admitted to the specialization, a student must have been admitted to a graduate program at Michigan State University.

With the approval of the department and college that administers the student’s degree program, courses that are used to satisfy the requirements for the specialization may also be used to satisfy the requirements for a master’s or doctoral degree.

Requirements for the Specialization in Gender, Justice, and Environmental Change

The student must complete a total of 12 credits:

1. Both of the following courses:
 - ANP 859 Gender, Justice, and Environmental Change: Methods and Application
 - FW 858 Gender, Justice, and Environmental Change: Issues and Concepts

2. Two courses relevant to gender, justice and environmental change. These courses will be selected, with advisor approval, after consideration of a recommended list of courses, furnished by the advisor, from such fields as agricultural economics, anthropology, forestry, fisheries and wildlife, political science, resource development, sociology, social work, and women’s studies.
 a. Policy course
 b. Elective course
INTERDEPARTMENTAL GRADUATE SPECIALIZATIONS in ENVIRONMENTAL AND RESOURCE ECONOMICS

The interdepartmental graduate specialization in environmental and resource economics is an elective for students in all graduate majors. The specialization is designed to:

1. provide an opportunity for graduate students to obtain advanced training in the field of environmental and natural resource economics.
2. develop an intellectual environment, which will foster the growth of research and public service in the area of environmental and natural resource economics.
3. foster an understanding among graduate students of the career opportunities and professional responsibilities in the fields of environmental and natural resource economics.
4. increase public awareness of environmental and natural resource problems and alternative solutions.

Students who elect this graduate specialization seek a high degree of proficiency in the economic analysis of environmental and natural resource problems. The specialization is suitable for graduate students who intend to specialize in this area of economic analysis, as well as for those who may have a departmental major in a non-economic aspect of the environment and natural resources, but who want to deepen their understanding of how economics influences their major area of study.

The College of Agriculture and Natural Resources and the College of Social Science jointly administer the specialization. The Coordinating Committee oversees the policies and program requirements adopted by the core faculty. Faculty members who comprise the core faculty may change with the mutual consent of the chairpersons of the departments, upon recommendation of the Coordinating Committee.

Requirements for the Specializations in Environmental and Resource Economics

Master's Students: The specialization consists of the completion of approximately 18 credits of resource economics and methods courses specified by the coordinating committee and approved by the core faculty. Credits in courses taken for the specialization may be counted toward the requirements for the student’s major at the discretion of the major department. At least one core faculty member serves on the student’s guidance committee.

Doctoral Students: The specialization consists of the completion of approximately 24 credits of resource economics and methods courses, and passing a written examination. Course work is specified by the coordinating committee and approved by the core faculty. The examination committee consists of three core faculty members selected by the Coordinating Committee. Credits in courses taken to meet the requirements of the specialization may be used for a student’s major at the discretion of the student’s major department. At least one core faculty member serves on the student’s guidance committee.

AGRICULTURE and NATURAL RESOURCES NO-PREFERENCE UNDERGRADUATE PROGRAM

An Agriculture and Natural Resources no-preference program is offered for students selecting the College of Agriculture and Natural Resources but desiring to delay their choice of a specific field until a later date. The program is basic to all majors offered by the College of Agriculture and Natural Resources and permits the student flexibility with respect to major choice. Students may remain in this no-preference program until they attain junior standing, or they may select major preferences at any time prior to becoming juniors.

DEPARTMENT of AGRICULTURAL, FOOD, and RESOURCE ECONOMICS

Steven D. Hanson, Chairperson

UNDERGRADUATE PROGRAMS

The department offers three undergraduate majors: agribusiness management, environmental economics and policy, and food industry management. These majors emphasize the application of business and social sciences to the management of public and private sector organizations. Each major is built on a liberal education base with a core of professional courses and sufficient electives for students and their advisors to tailor individualized programs.

AGRIBUSINESS MANAGEMENT

The agribusiness management major is designed for students who are interested in careers with agricultural input supply, agricultural production, commodity assembly and processing, and agricultural marketing organizations. The program, which focuses on the managerial functions performed by organizations throughout the agribusiness sector, provides a system-wide perspective of managerial problems confronting such organizations. Faculty who are associated with the program maintain close relationships with agribusiness companies. Those relationships benefit students who seek information about careers, scholarships, and employment in the field.

Requirements for the Bachelor of Science Degree in Agribusiness Management

1. The University requirements for bachelor's degrees as described in the Undergraduate Education section of this catalog; 120 credits, including general elective credits, are required for the Bachelor of Science degree in Agribusiness Management.

 The University's Tier II Writing Requirement for the Agribusiness Management major is met by completing Agribusiness Management 437. That course is referenced in item 3. a. below.

 The completion of the Agribusiness Management mathematics requirement may also satisfy the College of Agriculture and Natural Resources and the University mathematics requirement.

2. The requirements of the College of Agriculture and Natural Resources for the Bachelor of Science degree.

 Certain courses referenced in requirement 3. below may be counted toward College requirements as appropriate.
3. The following requirements for the major:

a. All of the following courses:
 - ABM 101 Decision-making in the Agri-Food System 3
 - ABM 210 Professional Seminar in Agribusiness Management 1
 - ABM 225 Commodity Marketing I 3
 - ABM 410 Advanced Professional Seminar in Agribusiness Management 1
 - ABM 422 Vertical Coordination in the Agri-Food System 3
 - ABM 435 Financial Management in the Agri-Food System 3
 - ABM 437 Agribusiness Strategic Management (W) 3
 - ACC 230 Survey of Accounting Concepts 3
 - CSE 101 Computing Concepts and Competencies 3
 - EC 201 Introduction to Microeconomics 3
 - EC 202 Introduction to Macroeconomics 3
 - FIM 220 Food Product Marketing 3
 - MGT 325 Management Skills and Processes 3
 - MKT 327 Introduction to Marketing 3
 - RET 460 Retail Information Systems 4
 - SCM 303 Introduction to Supply Chain Management 3
 - Students who pass a waiver examination will not be required to complete Computer Science and Engineering 101.
 - ABM 427 Global Agri-Food Industries and Markets 3
 - EE 260 World Food, Population and Poverty 3
 - STT 200 Statistical Methods 3
 - STT 201 Statistical Methods 4
 - STT 315 Introduction to Probability and Statistics for Business 3
 - MTH 124 Survey of Calculus I 3
 - Additional courses in Animal Science, Crop and Soil Sciences, Horticulture and Environmental Economics and Policy as approved by the academic advisor 3
 - CSE 101 Computing Concepts and Competencies 3

b. Five of the following courses: 12
 - ABM 130 Farm Management I 3
 - ABM 222 Agribusiness and Food Industry Sales (W) 3
 - ABM 332 Agribusiness Operations Management 3
 - ABM 337 Labor and Personnel Management in the Agri-Food System 3
 - ABM 400 Public Policy Issues in the Agri-Food System 3
 - ABM 425 Commodity Marketing II 3
 - EEP 405 Corporate Environmental Management 3
 - GBL 323 Introduction to Business Law 3
 - RET 373 Retail Entrepreneurship 3
 - ABM 427 Global Agri-Food Industries and Markets 3
 - EE 260 World Food, Population and Poverty 3
 - STT 200 Statistical Methods 3
 - STT 201 Statistical Methods 4
 - STT 315 Introduction to Probability and Statistics for Business 3
 - MTH 124 Survey of Calculus I 3
 - Additional courses in Food Science, Hospitality, Human Nutrition and Foods, Packaging, Retailing, and Environmental Economics and Policy as approved by the academic advisor 3

CREDITS

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>3a. All of the following courses:</td>
<td>41</td>
</tr>
<tr>
<td>3b. Five of the following courses:</td>
<td>15</td>
</tr>
<tr>
<td>3c. One of the following courses:</td>
<td>3</td>
</tr>
<tr>
<td>3d. One of the following courses:</td>
<td>3 or 4</td>
</tr>
<tr>
<td>3e. The following course:</td>
<td>3</td>
</tr>
<tr>
<td>3f. The following course:</td>
<td>3</td>
</tr>
<tr>
<td>3g. Additional courses in Food Science, Hospitality, Human Nutrition and Foods, Packaging, Retailing, and Environmental Economics and Policy as approved by the academic advisor</td>
<td>3</td>
</tr>
</tbody>
</table>

FOOD INDUSTRY MANAGEMENT

The food industry management major is designed for students who are interested in careers in the food industry. Graduates of this major enter managerial positions with food wholesalers-distributors and retailers as well as sales, account management, and production supervision positions with food manufacturers. The program provides a system-wide perspective of managerial problems confronting firms in the food industry, recognizes the increasing interdependence among such firms and focuses on creating consumer value. Faculty who are associated with the program maintain close relationships with food companies and trade associations, bring practical applications and examples to the classroom and provide current information about career and scholarship opportunities.

Requirements for the Bachelor of Science Degree in Food Industry Management

1. The University requirements for bachelor's degrees as described in the Undergraduate Education section of this catalog: 120 credits, including general elective credits, are required for the Bachelor of Science degree in Food Industry Management.

2. The requirements of the College of Agriculture and Natural Resources for the Bachelor of Science degree.

AGRICULTURE AND NATURAL RESOURCES

Department of Agricultural, Food, and Resource Economics

Environmental Economics and Policy prepares students for careers that require balancing environmental sustainability and economic development. The major develops economic analysis skills and basic environmental science knowledge and applies these skills and knowledge to analyze the role of environmental considerations in economic decisions of governments, firms and households. The major prepares students for employment opportunities with state, federal and international government agencies, environmental interest groups, environmental consulting firms, and industry. The major also offers students the opportunity to prepare for graduate study in environmental economics or environmental policy studies programs.

3. The following requirements for the major:

a. All of the following courses: | 42 |
3a. All of the following courses:	41
3b. Five of the following courses:	15
3c. One of the following courses:	3
3d. One of the following courses:	3 or 4
3e. The following course:	3
3f. The following course:	3
3g. Additional courses in Food Science, Hospitality, Human Nutrition and Foods, Packaging, Retailing, and Environmental Economics and Policy as approved by the academic advisor	3

CREDITS

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>3a. All of the following courses:</td>
<td>41</td>
</tr>
<tr>
<td>3b. Five of the following courses:</td>
<td>15</td>
</tr>
<tr>
<td>3c. One of the following courses:</td>
<td>3</td>
</tr>
<tr>
<td>3d. One of the following courses:</td>
<td>3 or 4</td>
</tr>
<tr>
<td>3e. The following course:</td>
<td>3</td>
</tr>
<tr>
<td>3f. The following course:</td>
<td>3</td>
</tr>
<tr>
<td>3g. Additional courses in Food Science, Hospitality, Human Nutrition and Foods, Packaging, Retailing, and Environmental Economics and Policy as approved by the academic advisor</td>
<td>3</td>
</tr>
</tbody>
</table>

9
Requirements for the Bachelor of Science Degree in Environmental Economics and Policy

1. The University requirements for bachelor's degrees as described in the Undergraduate Education section of this catalog; 120 credits, including general elective credits, are required for the Bachelor of Science degree in Environmental Economics and Policy.

2. The specialization is available as an elective to all students who are enrolled in bachelor's degree programs at Michigan State University. The specialization is administered by the Department of Agricultural, Food, and Resource Economics.

3. The specialization is designed to provide students with a fundamental knowledge of business management in relation to business firms.

4. The specialization is available as an elective to all students who are enrolled in bachelor's degree programs at Michigan State University other than the Bachelor of Science degree program with a major in agriculture management. The specialization is administered by the Department of Agricultural, Food, and Resource Economics.

5. The specialization is available as an elective to all students who are enrolled in bachelor's degree programs at Michigan State University other than the Bachelor of Science degree program with a major in food industry management. The specialization is administered by the Department of Agricultural, Food, and Resource Economics.
administered by the Department of Agricultural, Food, and Resource Economics.

With the approval of the department and college that administer the student’s degree program, the courses that are used to satisfy the requirements for the specialization may also be used to satisfy the requirements for the bachelor’s degree.

Requirements for the Specialization in Food Industry Management

The student must complete:

1. All of the following courses: 6
 - ABM 100 Decision-making in the Agri-Food System3
 - FIM 220 Food Product Marketing3
2. Two of the following courses: 6
 - ABM 222 Agribusiness and Food Industry Sales (W)3
 - ABM 337 Labor and Personnel Management in the Agri-Food System ..3
 - ABM 400 Public Policy Issues in the Agri-Food System3
 - ABM 422 Vertical Coordination in the Agri-Food System3
 - ABM 427 Global Agri-Food Industries and Markets3
 - ABM 435 Financial Management in the Agri-Food System3
3. One of the following courses: 3
 - ACC 201 Principles of Financial Accounting3
 - ACC 230 Survey of Accounting Concepts3
4. One of the following courses: 3
 - FIM 335 Food Marketing Management3
 - FIM 439 Food Business Analysis and Strategic Planning (W) ...3
 - GBL 323 Introduction to Business Law3
 - MGT 325 Management Skills and Processes3
 - MSC 327 Introduction to Marketing3

GRADUATE STUDY

The Department of Agricultural, Food, and Resource Economics offers Master of Science and Doctor of Philosophy degree programs in agricultural, food and resource economics.

AGRICULTURAL, FOOD and RESOURCE ECONOMICS

Graduate programs in agricultural, food and resource economics provide for coordinated study in several areas. The courses and programs are designed to help students become thoroughly grounded in the concepts and tools of economics and related fields and to enable them to solve practical problems. The department offers the following five fields of study: agribusiness strategy and management, agricultural markets and price analysis, environmental and resource economics, finance and production economics, and international agricultural development.

Students who are enrolled in Master of Science degree programs in the Department of Agricultural, Food, and Resource Economics may elect a Specialization in Food Safety. For additional information, refer to the statement on the specialization in the College of Veterinary Medicine section of this catalog.

Graduate students who are enrolled in the Department of Agricultural, Food, and Resource Economics may also elect specializations in resource economics (M.S. and Ph.D.) and agribusiness (M.S.). For additional information, refer to the statement on Inter-departmental Graduate Specializations in Resource Economics, and on the Master’s Specialization in Agribusiness.

Courses in agricultural, food and resource economics, mathematics, statistics, and related areas are available for those students who wish to begin or continue their graduate work during the summer months.

Admission

Many undergraduate programs provide background for graduate study in agricultural, food and resource economics. However, a student with inadequate background in areas deemed important to the program of study may be required to complete collateral courses in addition to the minimum credit requirements for the degree and may be admitted on a provisional status until some deficiencies are remedied. All applicants for admission to graduate degree programs in agricultural, food and resource economics are required to submit scores for the General Test of the Graduate Record Examination.

Master of Science

The master's programs in agricultural, food and resource economics may be designed to serve either as final preparation for professional employment or as the foundation for a doctoral program.

In addition to meeting the requirements of the university and of the College of Agriculture and Natural Resources, students must meet the requirements specified below.

Requirements for the Master of Science Degree in Agricultural, Food, and Resource Economics

The student may elect either Plan A (with thesis) or Plan B (non-thesis research paper). The student's plan of study should be approved by the department prior to the beginning of the second semester of enrollment in the program.

A total of 30 credits is required for the degree under Plan A, and a total of 33 credits is required for the degree under Plan B.

Requirements for Both Plan A and Plan B:

1. A grade-point average of at least 3.0 for all courses counting toward the master’s degree, and in each course used to satisfy the mathematics, statistics, and quantitative methods requirements.
2. A minimum of 12 credits in courses in agricultural, food and resource economics, with at least 9 credits at the 800-900 level.
3. A minimum of 3 credits in courses that the department has identified as containing primarily economic theory.
4. A minimum of 9 credits in courses in quantitative analysis, including 3 credits of mathematics for economists (equivalent to AEC 801) and one elective 3 credit quantitative methods course. Alternatively, students may replace AEC 801 by 1 credit of mathematics for economists (equivalent to AEC 800A) and a second 3 credit elective quantitative methods course for a total of 10 credits in quantitative analysis.

Additional Requirements for Plan A:

1. Six credits of master's thesis research.

Additional Requirements for Plan B:

1. A research paper or papers representing not fewer than 3 nor more than 4 credits.
2. Six credits in courses in a minor field, either within or outside the department.
Doctor of Philosophy

In addition to meeting the requirements of the university and of the College of Agriculture and Natural Resources, students must meet the requirements specified below.

Requirements for the Doctor of Philosophy Degree in Agricultural, Food and Resource Economics

The student must:
1. Acquire (a) competence in economics by completing 9 credits of Ph.D. level courses in economic theory and (b) 9 credits in a major field in one of the five fields within agricultural, food and resource economics referenced above.
2. Pass written comprehensive examinations in economics no later than the end of the second year and in the student's chosen major field by the end of the third year.
3. Complete (a) 6 credits in a minor field in agricultural, food and resource economics outside the major field, and (b) 6 credits in a second minor field that may be outside the Department of Agricultural, Food, and Resource Economics.
4. Acquire competence in quantitative methods by taking specified courses in mathematics for economists (3 credits), probability and statistics (3 credits), econometrics (3 credits) and one other quantitative methods course (3 credits). A grade of 3.0 must be achieved in each course.
5. Complete one graduate course (3 credits) in research methodology.
6. Complete 24 credits of dissertation research, present and obtain formal approval for the proposed dissertation research, present the results of the research at the outset of the final oral examination, and prepare a research paper suitable for submission to a professional journal.

The student’s dissertation research forms a part of the department's research program and contributes to it. Dissertation research may be conducted overseas in conjunction with university projects or with the support of other research grants. A detailed description of master's and doctoral program requirements and a timetable for completing them are included in the Graduate Education Policies document of the Department of Agricultural, Food, and Resource Economics.

MASTER'S SPECIALIZATION IN AGribUSINESS

The Master’s specialization in Agribusiness is designed to serve students who are interested in careers in agribusiness. The specialization is available as an elective to students who are enrolled in master’s degree programs in the College of Agriculture and Natural Resources, The Eli Broad Graduate School of Management, and the College of Veterinary Medicine. The specialization is administered by the Department of Agricultural, Food, and Resource Economics.

The student's program of study for the specialization must be approved by the academic advisor for agribusiness. Through the selection of courses, the specialization complements the student's major degree program. Students in agriculturally related disciplines complete courses in business management, marketing, finance, and human resource management as applied to agribusiness firms. Students in business management fields complete courses in agribusiness.

With the approval of the department and college that administer the student's degree program, the courses that are used to satisfy the requirements for the specialization may also be used to satisfy the requirements for the master's degree.

Requirements for the Master's Specialization in Agribusiness

The student must complete:

1. One of the following courses: .. 3
 AEC 800 Foundations of Agricultural Economics 3
 EC 805 Microeconomic Analysis 3
 Requirement 1. will be waived for students who have completed an intermediate-level course in microeconomics.

2. Two of the following courses: 6
 AEC 851 Agricultural Firm Management 3
 AEC 853 Financial Management in Agriculture 3
 AEC 857 Strategic Management in Agribusiness 3
 Agricultural Economics 851 or 853 or 857 may be used to satisfy either requirement 2. or requirement 3., but not both of those requirements.

3. Two of the following courses: 6
 ACC 800 Financial Accounting Concepts 3
 ACC 840 Managerial Accounting 3
 AEC 817 Political Economy of Agricultural and Trade Policy ... 3
 AEC 831 Food Marketing Management 3
 AEC 839 Applied Operations Research 3
 AEC 841 Analysis of Food System Organization and Performance .. 3
 AEC 845 Commodity Market Analysis 3
 AEC 851 Agricultural Firm Management 3
 AEC 853 Financial Management in Agriculture 3
 AEC 855 Agricultural Production Economics 3
 AEC 857 Strategic Management in Agribusiness 3
 GBL 848 Legal Environment of Business 3
 LIR 823 Organizational Behavior in Labor and Industrial Relations 3
 LIR 824 Human Resource Strategies and Decisions 3
 LIR 825 Compensation and Benefit Systems 3
 LIR 858 Collective Bargaining 3
 MGT 806 Management and Organizational Behavior 3
 MGT 810 Human Resource Management 3
 MSC 800 Materials and Logistics Management 3
 MSC 805 Marketing Management 3
 MSC 806 Marketing Analysis 3
 MSC 808 Entrepreneurial Marketing 3
 MSC 813 Marketing Research Methods 3
 VM 541 Veterinary Perspectives III 3
 Either Labor and Industrial Relations 823 or Management 806, but not both of those courses, may be used to satisfy requirement 3.
 Either Labor and Industrial Relations 823 or Management 806, but not both of those courses, may be used to satisfy the requirement 3.

Veterinary Medicine 541 may be used to satisfy requirement 3. only if the student also completes an additional credit in an approved Veterinary Medicine course.

DEPARTMENT of ANIMAL SCIENCE

Janice C. Swanson, Chairperson

UNDERGRADUATE PROGRAM

The undergraduate program in animal science, which leads to the Bachelor of Science degree, is designed to prepare students for a variety of careers by establishing a strong basic science foundation combined with practical experience with agricultural animals at the multiple farm facilities located near campus. Graduates may be employed in farm ownership, management, marketing, agribusiness, finance, manufacturing, public relations, extension, or consulting. Graduates often attend veterinary or graduate school.

Scientific principles of biology and animal science are important components of the program and are combined with opportunities to apply fundamental principles learned in class to farm management. The animal science major also provides students with flexibility. Academic advisors guide students in the development of a planned program of study that is consistent with their interests and goals.

All students in animal science must complete a set of required core courses including breeding and genetics, nutrition, physiology, and management. These programs are taught using horses,
dairy cattle, beef cattle, swine, poultry, sheep and companion animals. Students must choose from one of the following concentrations: animal industry, companion and exotic animal biology, animal biology/preveterinary, or production animal scholars. The animal industry concentration is designed to prepare students for careers in managing animal operations. Marketing, sales, and production of animals and animal products offer numerous employment opportunities. The companion and exotic animal biology concentration prepares students for careers in the areas of small animal nutrition, pet food sales, and captive and small animal management. Students may also use their elective credits to complete the preveterinary requirements and apply to the College of Veterinary Medicine. The animal biology/preveterinary concentration is designed for students who are interested in an advanced degree in animal science or a career in veterinary medicine. The requirements for admission to the College of Veterinary Medicine are included in the requirements for this concentration.

The production animal scholars concentration is a cooperative effort between the Department of Animal Science and the College of Veterinary Medicine. The concentration is for students committed to a career in food animal management and medicine and provides admissions pathway to Production Medicine Scholars in the College of Veterinary Medicine. Students must (1) declare the concentration when they reach junior standing; (2) submit a formal application for the production animal scholars concentration; (3) demonstrate a commitment to livestock agriculture, excluding horses, through youth activities, family experiences, employment, internships, extracurricular activities, and other participation in the livestock industry.

After completion of the production animal scholars concentration, students will earn a Bachelor of Science degree in Animal Science. Students may then enter veterinary college or pursue a career in farm-based, agricultural veterinary practice. Students completing this concentration must complete the Bachelor of Science degree in Animal Science prior to matriculation into the College of Veterinary Medicine. Students interested in pursuing the admissions pathway to Production Medicine Scholars in the College of Veterinary Medicine should see the admissions pathways to Production Medicine Scholars in the College of Veterinary Medicine. Students interested in pursuing the admissions pathway to Production Medicine Scholars in the College of Veterinary Medicine should see the College of Veterinary Medicine section of this catalog for further information.

Students who are enrolled in the Bachelor of Science degree program with a major in animal science may select a specialization in Agricultural and Natural Resources Biotechnology. For additional information, refer to the Specialization in Agricultural and Natural Resources Biotechnology statement.

Requirements for the Bachelor of Science Degree in Animal Science

1. The University requirements for bachelor’s degrees as described in the Undergraduate Education section of this catalog, 120 credits, including general elective credits, are required for the Bachelor of Science degree in Animal Science. The University’s Tier II writing requirement for the Animal Science major is met by completing all of the following courses: Animal Science 513, 314, 315. Those courses are referenced in item 3.a. below.

Students who are enrolled in the Animal Science major leading to the Bachelor of Science degree in the Department of Animal Science may complete an alternative track to Integrative Studies in Biological and Physical Sciences that consists of the following courses: Biological Science 111 and 111L, Chemistry 141, and Chemistry 143 or 251. The completion of Biological Science 111L satisfies the laboratory requirement. Biological Science 111 and 111L, Chemistry 141, and Chemistry 143 or 251 may be counted toward both the alternative track and the requirements for the major referenced in item 3.b. below.

The completion of the College of Agriculture and Natural Resources mathematics requirements may also satisfy the University mathematics requirement. The requirements of the College of Agriculture and Natural Resources for the Bachelor of Science degree may also satisfy the University mathematics requirement.

2. The requirements of the College of Agriculture and Natural Resources for the Bachelor of Science degree may also satisfy the University mathematics requirement. Certain courses referenced in requirement 3.b. below may be counted toward College requirements as appropriate.

3. The following requirements for the major:

<table>
<thead>
<tr>
<th>CREDITS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a. All of the following courses:</td>
<td>29</td>
</tr>
<tr>
<td>. ANS 101 Professional Development in Animal Science I</td>
<td>2</td>
</tr>
<tr>
<td>. ANS 170 Introductory Animal Agriculture</td>
<td>3</td>
</tr>
<tr>
<td>. ANS 301 Professional Development in Animal Science II</td>
<td>2</td>
</tr>
<tr>
<td>. ANS 313 Principles of Animal Feeding and Nutrition</td>
<td>4</td>
</tr>
<tr>
<td>. ANS 314 Genetic Improvement of Domestic Animals</td>
<td>2</td>
</tr>
<tr>
<td>. ANS 315 Anatomy and Physiology of Farm Animals</td>
<td>4</td>
</tr>
<tr>
<td>. ANS 401 Issues in Animal Agriculture</td>
<td>1</td>
</tr>
<tr>
<td>. ANS 411 Cells and Molecules</td>
<td>3</td>
</tr>
<tr>
<td>. BS 111L Cell and Molecular Biology Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>. CEM 141 General Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>b. One of the following courses:</td>
<td>3 or 4</td>
</tr>
<tr>
<td>. STT 200 Statistical Methods</td>
<td>3</td>
</tr>
<tr>
<td>. STT 201 Statistical Methods</td>
<td>4</td>
</tr>
<tr>
<td>. STT 421 Statistics I</td>
<td>3</td>
</tr>
<tr>
<td>. STT 464 Statistics for Biologists</td>
<td>3</td>
</tr>
<tr>
<td>c. One of the following courses:</td>
<td>3 or 4</td>
</tr>
<tr>
<td>. CEM 143 Survey of Organic Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>. CEM 251 Organic Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>d. One of the following species management courses:</td>
<td>3</td>
</tr>
<tr>
<td>. ANS 222 Introductory Beef Cattle Management</td>
<td>3</td>
</tr>
<tr>
<td>. ANS 232 Introductory Dairy Cattle Management</td>
<td>3</td>
</tr>
<tr>
<td>. ANS 242 Introductory Horse Management</td>
<td>3</td>
</tr>
<tr>
<td>. ANS 252 Introductory Management of Avian Species</td>
<td>3</td>
</tr>
<tr>
<td>. ANS 262 Introductory Sheep Management</td>
<td>3</td>
</tr>
<tr>
<td>. ANS 272 Introductory Swine Management</td>
<td>3</td>
</tr>
<tr>
<td>. ANS 282 Introductory Companion Animal Management</td>
<td>3</td>
</tr>
<tr>
<td>e. One of the following concentrations:</td>
<td>23 to 55</td>
</tr>
<tr>
<td>. Animal Industry (23 to 34 credits):</td>
<td></td>
</tr>
<tr>
<td>1. The following course (4 credits):</td>
<td></td>
</tr>
<tr>
<td>. ANS 210 Animal Products</td>
<td>4</td>
</tr>
<tr>
<td>2. One of the following courses (2 or 3 credits):</td>
<td></td>
</tr>
<tr>
<td>. CSE 101 Computing Concepts and Competencies</td>
<td>3</td>
</tr>
<tr>
<td>. CSS 110 Computer Applications in Agronomy</td>
<td>2</td>
</tr>
<tr>
<td>3. One of the following courses (3 credits):</td>
<td></td>
</tr>
<tr>
<td>. ABM 100 Decision-making in the Agri-Food System</td>
<td>3</td>
</tr>
<tr>
<td>. ABM 130 Farm Management</td>
<td>3</td>
</tr>
<tr>
<td>4. One of the following courses (3 credits):</td>
<td></td>
</tr>
<tr>
<td>. ANS 222 Introductory Beef Cattle Management</td>
<td>3</td>
</tr>
<tr>
<td>. ANS 232 Introductory Dairy Cattle Management</td>
<td>3</td>
</tr>
<tr>
<td>. ANS 242 Introductory Horse Management</td>
<td>3</td>
</tr>
<tr>
<td>. ANS 252 Introductory Management of Avian Species</td>
<td>3</td>
</tr>
<tr>
<td>. ANS 262 Introductory Sheep Management</td>
<td>3</td>
</tr>
<tr>
<td>. ANS 272 Introductory Swine Management</td>
<td>3</td>
</tr>
<tr>
<td>. ANS 282 Companion Animal Biology and Management</td>
<td>3</td>
</tr>
<tr>
<td>. The course used to fulfill this requirement may not be used to fulfill requirement 3. d. above.</td>
<td></td>
</tr>
<tr>
<td>5. One of the following courses (3 credits):</td>
<td></td>
</tr>
<tr>
<td>. ANS 422 Advanced Beef Cattle Management</td>
<td>3</td>
</tr>
<tr>
<td>. ANS 432 Advanced Dairy Cattle Management</td>
<td>3</td>
</tr>
<tr>
<td>. ANS 442 Advanced Horse Management</td>
<td>3</td>
</tr>
<tr>
<td>. ANS 472 Advanced Swine Management</td>
<td>3</td>
</tr>
<tr>
<td>. ANS 482 Advanced Companion Animal Management</td>
<td>3</td>
</tr>
<tr>
<td>6. Three of the following courses (6 to 12 credits):</td>
<td></td>
</tr>
<tr>
<td>. ANS 305 Applied Animal Behavior</td>
<td>3</td>
</tr>
<tr>
<td>. ANS 309 Health and Hygiene of Livestock</td>
<td>3</td>
</tr>
<tr>
<td>. ANS 404 Advanced Animal Genetics</td>
<td>2</td>
</tr>
<tr>
<td>. ANS 405 Endocrinology of Reproduction</td>
<td>4</td>
</tr>
<tr>
<td>. ANS 407 Food and Animal Toxicology</td>
<td>3</td>
</tr>
<tr>
<td>. ANS 413 Monoaesthetic Animal Nutrition</td>
<td>3</td>
</tr>
<tr>
<td>. ANS 414 Advanced Animal Breeding</td>
<td>3</td>
</tr>
<tr>
<td>. ANS 415 Growth and Musculoskeletal Biology</td>
<td>3</td>
</tr>
<tr>
<td>. ANS 416 Meat Science and Muscle Biology</td>
<td>2</td>
</tr>
<tr>
<td>. ANS 418 Biocomprehensive Nutrition Management Planning</td>
<td>3</td>
</tr>
<tr>
<td>. ANS 435 Mammary Physiology</td>
<td>4</td>
</tr>
<tr>
<td>. ANS 445 Equine Exercise Physiology</td>
<td>4</td>
</tr>
<tr>
<td>. ANS 455 Avian Physiology</td>
<td>4</td>
</tr>
<tr>
<td>. ANS 483 Ruminant Nutrition</td>
<td>3</td>
</tr>
<tr>
<td>7. One of the following courses (2 to 6 credits):</td>
<td></td>
</tr>
<tr>
<td>. ANS 493 Professional Internship in Animal Science</td>
<td>3</td>
</tr>
<tr>
<td>. ANS 300A Advanced Livestock Judging</td>
<td>2</td>
</tr>
<tr>
<td>. ANS 300C Advanced Dairy Cattle Judging</td>
<td>2</td>
</tr>
<tr>
<td>. ANS 300D Advanced Horse Judging</td>
<td>2</td>
</tr>
<tr>
<td>. Six credits in an approved Study Abroad program can be used to fulfill this requirement.</td>
<td></td>
</tr>
<tr>
<td>Animal Biology and Prevetinary (39 to 50 credits):</td>
<td></td>
</tr>
<tr>
<td>1. All of the following courses (22 credits):</td>
<td></td>
</tr>
<tr>
<td>. ANS 210 Animal Products</td>
<td>4</td>
</tr>
<tr>
<td>. ANS 425 Principles of Animal Biotechnology</td>
<td>3</td>
</tr>
<tr>
<td>. BMB 401 Basic Biochemistry</td>
<td>4</td>
</tr>
<tr>
<td>. BS 110 Organisms and Populations</td>
<td>4</td>
</tr>
<tr>
<td>. CEM 161 Chemistry Laboratory I</td>
<td>3</td>
</tr>
<tr>
<td>. CEM 252 Organic Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>. CEM 253 Organic Chemistry Laboratory II</td>
<td>2</td>
</tr>
<tr>
<td>2. Three of the following courses (7 to 11 credits):</td>
<td></td>
</tr>
<tr>
<td>. ANS 404 Advanced Animal Genetics</td>
<td>2</td>
</tr>
<tr>
<td>. ANS 405 Endocrinology of Reproduction</td>
<td>4</td>
</tr>
<tr>
<td>. ANS 413 Monoaesthetic Animal Nutrition</td>
<td>3</td>
</tr>
<tr>
<td>. ANS 415 Growth and Musculoskeletal Biology</td>
<td>3</td>
</tr>
<tr>
<td>. ANS 416 Meat Science and Muscle Biology</td>
<td>2</td>
</tr>
</tbody>
</table>
AGRICULTURE AND NATURAL RESOURCES
Department of Animal Science

3. Two of the following courses (6 credits):
 - ANS 412 Advanced Nutrition Management
 - ANS 414 Advanced Animal Breeding
 - ANS 425 Principles of Animal Biotechnology
 - ANS 435 Mammary Physiology

4. One of the following courses (3 to 6 credits):
 - ANS 422 Advanced Beef Cattle Management
 - ANS 432 Advanced Dairy Cattle Management
 - ANS 470 Advanced Cattle Breeding
 - ANS 472 Advanced Sheep Breeding

5. One of the following courses (3 credits):
 - ANS 424 Advanced Applied Animal Behavior
 - ANS 434 Advanced Animal Physiology
 - ANS 445 Avian Physiology
 - ANS 455 Avian Physiology

6. One of the following courses (2 to 4 credits):
 - ANS 404 Advanced Animal Genetics
 - ANS 407 Food and Animal Toxicology
 - ANS 414 Advanced Animal Breeding
 - ANS 416 Meat Science and Muscle Biology

7. The following course (2 credits):
 - ANS 490 Animal Science Practicum

GRADUATE STUDY

The graduate program in animal science is designed to provide students with opportunities to pursue a program that focuses on the basic biomedical and agricultural sciences or on applied management aspects of animal science.

The Department of Animal Science offers Master of Science and Doctoral of Philosophy degree programs in animal science and a Doctor of Philosophy degree program in animal science-environmental toxicology.

Students who are enrolled in Master of Science degree programs in the Department of Animal Science may elect a Specialization in Environmental Toxicology. For additional information, refer to the statement on the specialization in the College of Agriculture and Natural Resources section of this catalog.

Students who are enrolled in Master of Science degree programs in the Department of Animal Science may elect a Specialization in Food Safety. For additional information, refer to the statement on the specialization in the College of Veterinary Medicine section of this catalog.

ANIMAL SCIENCE

Programs of study are based on the strengths of the department and the goals of individual students. Although individual students’ programs may vary, all graduate programs in animal science are designed to:

1. Provide a strong foundation in biological science and an in-depth knowledge of a specific biological discipline of importance to animal agriculture.
2. Develop creative potential and foster independent thought.
3. Improve technical skills.
4. Provide the foundation for effective, independent careers in extension, research, teaching, or agribusiness.

The department offers the following areas of specialization within the field of animal science: quantitative genetics, systems science, nutrition, physiology of growth, lactation and reproduction, microbiology, molecular biology, toxicology, and livestock and farm management. Research for theses or dissertations may focus on beef or dairy cattle, sheep, swine, horses, poultry, or fur-bearing and laboratory species. Modern animal, computer, and library facilities support research.

Students who are enrolled in the Master of Science degree program in the Department of Animal Science may elect a Specialization in Environmental Toxicology. For additional information, refer to the Graduate Specialization in Environmental Toxicology statement.

In addition to meeting the requirements of the university and of College of Agriculture and Natural Resources, the student must meet the requirements specified below.
Admission
To be admitted to the master's or doctoral degree program in animal science, students must have a bachelor's degree in animal science or in a related biological science. To enroll in advanced courses in animal science and supporting sciences, students should have completed courses that establish principles in animal science and in basic physical and biological sciences pertinent to the area of specialization within the field of animal science that the student chooses. In some cases, students may need to complete collateral courses in addition to the courses that are required for the graduate degree.

Requirements for the Master of Science Degree in Animal Science
The student may elect either Plan A (with thesis) or Plan B (without thesis). A total of 30 credits is required for the degree under either Plan A or Plan B. In cooperation with the student's major professor, the student plans a program of study that includes courses related to one of the areas of specialization within the field of animal science referenced above, seminars, and teaching experience. The student's major professor and guidance committee must approve the student's program of study, including thesis research for students under Plan A.

Requirements for the Doctor of Philosophy Degree in Animal Science
In cooperation with the student's major professor, the student plans a program of study that includes courses related to one of the areas of specialization within the field of animal science referenced above, seminars, and teaching experience. The student's major professor and guidance committee must approve the student's program of study, including dissertation research.

ANIMAL SCIENCE—ENVIRONMENTAL TOXICOLOGY

Doctor of Philosophy
For information about the Doctor of Philosophy degree program in animal science—environmental toxicology, refer to the statement on Doctoral Program in Environmental and Integrative Toxicological Sciences in the Graduate Education section of this catalog.

DEPARTMENT of BIOSYSTEMS and AGRICULTURAL ENGINEERING

Ajit Srivastava, Chairperson
The Department of Biosystems and Agricultural Engineering is administered jointly by the College of Agriculture and Natural Resources and the College of Engineering.

UNDERGRADUATE PROGRAMS
The department offers a Bachelor of Science degree program with a major in technology systems management through the College of Agriculture and Natural Resources. That program is described below.

The department also offers a Bachelor of Science degree program with a major in biosystems engineering through the College of Engineering. For information about that program, refer to the statement on the Department of Biosystems and Agricultural Engineering in the College of Engineering section of this catalog.

TECHNOLOGY SYSTEMS MANAGEMENT

Bachelor of Science
The Technology Systems Management program is designed to meet the needs of students who aspire to apply new technology to solve problems in food, agricultural and biological systems. Prospective students should have an affinity for physical systems, computers, and technology, and they should be practical problem-solvers.

Students in the program acquire a strong technical background tempered by an overview of business and economics. They possess highly portable skills in technology transfer and technical problem-solving which are applicable to many related career paths.

Graduates find employment as agricultural and environmental research technicians, managers of processing and production facilities, technical sales representatives, and service and marketing managers for equipment manufacturers.

Requirements for the Bachelor of Science Degree in Technology Systems Management
1. The University requirements for bachelor’s degrees as described in the Undergraduate Education section of this catalog; 120 credits, including general elective credits, are required for the Bachelor of Science degree in Technology Systems Management.

The University’s Tier II writing requirement for the Technology Systems Management major is met by completing Technology Systems Management 481. That course is referenced in item 3. a. below.

Students who are enrolled in the Technology Systems Management major leading to the Bachelor of Science degree in the Department of Biosystems and Agricultural Engineering may complete an alternative track to Integrative Studies in Biological and Physical Sciences that consists of Chemistry 161, Physics 231 and 251, and one of the following courses: Biological Science 110 or 111, Entomology 205; Microbiology and Molecular Genetics 205; Physiology 250; or Plant Biology 105. The completion of Physics 251 or Biological Science 110 satisfies the laboratory requirement.

The completion of Mathematics 124 satisfies both the College of Agriculture and Natural Resources mathematics requirement and the University mathematics requirement.

2. The requirements of the College of Agriculture and Natural Resources for the Bachelor of Science degree. Certain courses referenced in requirement 3. below may be counted toward College requirements as appropriate.

3. The following requirements for the major:

a. All of the following courses: 56

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABM 100</td>
<td>3</td>
</tr>
<tr>
<td>ABM 332</td>
<td>3</td>
</tr>
<tr>
<td>CEM 141</td>
<td>4</td>
</tr>
<tr>
<td>CEM 161</td>
<td>1</td>
</tr>
<tr>
<td>CSE 101</td>
<td>3</td>
</tr>
<tr>
<td>GEO 221</td>
<td>3</td>
</tr>
<tr>
<td>MTH 124</td>
<td>3</td>
</tr>
<tr>
<td>PHY 231</td>
<td>3</td>
</tr>
<tr>
<td>PHY 251</td>
<td>3</td>
</tr>
<tr>
<td>TSM 121</td>
<td>4</td>
</tr>
<tr>
<td>TSM 122</td>
<td>3</td>
</tr>
<tr>
<td>TSM 223</td>
<td>4</td>
</tr>
<tr>
<td>TSM 224</td>
<td>3</td>
</tr>
<tr>
<td>TSM 341</td>
<td>3</td>
</tr>
<tr>
<td>TSM 342</td>
<td>3</td>
</tr>
<tr>
<td>TSM 343</td>
<td>3</td>
</tr>
<tr>
<td>TSM 351</td>
<td>3</td>
</tr>
<tr>
<td>TSM 481</td>
<td>3</td>
</tr>
<tr>
<td>TSM 482</td>
<td>3</td>
</tr>
</tbody>
</table>

TSM 481 Technology Systems Management –
Capstone I (W) .. 3
TSM 482 Technology Systems Management –
Capstone II ... 3
Students who pass a waiver examination will not be required to complete Computer Science and Engineering 101.

b. One of the following courses: .. 3 or 4

b. One of the following courses: .. 3

b. One of the following courses: .. 3

b. One of the following courses: .. 3

c. One of the following courses: .. 3

d. One of the following courses: .. 3 or 4

f. One of the following courses: .. 3

f. One of the following courses: .. 3

f. One of the following courses: .. 3

g. Cognate. The student must complete a minimum of 15 credits in an approved group of courses that includes courses in the College of Agriculture and Natural Resources. These courses must be chosen to form a career objective and be pre-approved by the student’s academic advisor. .. 15

LINKED BACHELOR’S-MASTER’S DEGREE IN BIOSYSTEMS ENGINEERING

Bachelor of Science Degree in Biosystems Engineering

Master of Science Degree in Biosystems Engineering

The department welcomes applications from Michigan State University Biosystems Engineering undergraduate students in their junior and senior year. Admission applications must be made during the prior spring semester for an anticipated spring graduation or the prior fall semester for an anticipated fall graduation to allow admission before the final semester as a Biosystems Engineering undergraduate. Admission to the program requires a minimum undergraduate grade-point average of 3.5 and an approved program of study for the Master of Science degree in Biosystems Engineering at the time of admission. Admission to the Linked Bachelor’s-Master’s program allows the application of up to 9 credits toward the master’s program for qualifying 400-level and above course work taken at the undergraduate level at Michigan State University or another postsecondary accredited institution of comparable academic quality. The number of approved credits, not to exceed 9, are applied toward the credit requirement of the master’s degree. Credits applied to the Linked Bachelor’s-Master’s program are not eligible to be applied to any other graduate degree program.

GRADUATE STUDY

The Department of Biosystems and Agricultural Engineering offers the programs listed below:

Master of Science

biosystems engineering

Doctor of Philosophy

biosystems engineering

Study for the department’s master’s and doctoral degree programs is administered by the College of Agriculture and Natural Resources.

Students who are enrolled in Master of Science degree programs in the Department of Biosystems and Agricultural Engineering may elect a Specialization in Food Safety. For additional information, refer to the statement on the specialization in the College of Veterinary Medicine section of this catalog.

BIOSYSTEMS ENGINEERING

Biosystems engineers apply the basic sciences, mathematics, engineering sciences, and technology to design sustainable solutions to problems with a critical biological component. Biosystems engineers work to ensure an adequate and safe food supply while efficiently utilizing natural resources and protecting the environment. Specific application areas include food and biomass production systems, food processing systems, processing systems for utilization and conversion of biological products, water and waste management systems, natural resource and environmental protection, and a range of other biological challenges that require engineering expertise.

The department offers both Master of Science and Doctor of Philosophy degree programs with majors in biosystems engineering.

Master of Science

The Master of Science degree program in biosystems engineering is designed to prepare graduates for advanced career opportunities that require disciplinary expertise beyond that available in the Bachelor of Science degree. The program is available under Plan A (thesis) and Plan B (without thesis). Plan A introduces the student to research methods, and the student is expected to execute, analyze, and publish an original research project under the guidance of an advisor. Plan B is suited for those who do not plan a research-related career, but desire additional skills and knowledge obtained through advanced course work.

In addition to meeting the requirements of the university and of the College of Agriculture and Natural Resources, students must meet the requirements specified below.

Admission

To be considered for admission to the Master of Science degree program in biosystems engineering, an applicant must take the Graduate Record Examination General Test and have the scores sent to the department.

Regular Status. Admission to the master’s degree program in biosystems engineering with regular status may be granted by the department, subject to the availability of resources and to the approval of the dean, upon consideration of the likelihood that the applicant will be able to complete a master’s degree program successfully. To be admitted to the master’s program in biosystems engineering, an applicant must have:

1. A grade–point average not lower than 3.00 for the final two years of the undergraduate program, or standing in the upper quarter of the graduating class in the student’s major.

2. A bachelor’s degree, either:
 a. from an accredited program in engineering, or
 b. from a related science-oriented program in which the applicant has shown very high academic achievement, or

An applicant without an engineering degree must demonstrate the abilities and experience necessary to succeed in the core courses, Biosystems Engineering 815, 825, and 835. The student must complete, previously, or within the master’s program, a significant engineering design experience.

Provisional Status. Admission to the master’s degree program in biosystems engineering with provisional status may be granted by the department, subject to the approval of the dean:

1. To an applicant qualified for regular admission except that collateral courses are deemed necessary, or
2. To an applicant whose record is incomplete.
If collateral courses are required, the minimum acceptable grades and the semesters by which those courses must be completed will be specified on the admission form. Biosystems Engineering 490 and 890 may not be used to satisfy collateral course requirements.

The provisional status will be changed to regular status when the conditions specified on the admission form have been met, as certified by the department and approved by the dean.

Registration as a Professional Engineer

Students who wish to satisfy the requirements of the State Board of Registration for Professional Engineers should consult with the Department of Biosystems and Agricultural Engineering.

Program Filing

The student's program of study must be approved before the student completes 6 credits of graduate work in order for the student to continue to enroll in the master's degree program.

The subject matter and instructor must be specified for every independent study, special problems, or selected topics course that is included in the student's approved program of study.

Modification of Program

After the Plan A or Plan B option has been selected by the student and approved, the student may not pursue the other option without approval of the department.

The following changes are not permitted in a student's approved program of study:

1. Adding or deleting a course for which a grade has already been assigned under any of the three grading systems (numerical, Pass–No Grade, or Credit–No Credit).
2. Adding or deleting a course for which grading was postponed by the use of the Deferred marker.
3. Adding or deleting a course which the student dropped after the middle of the semester and for which "W" or "N" or "0.0" was designated.
4. Adding or deleting a course during the final semester of enrollment in the master's degree program.

Requirements for the Master of Science Degree in Biosystems Engineering

The program is available under both Plan A (with thesis) and Plan B (without thesis).

The student's program of study must be developed in consultation with the major professor, must be approved by the department, and must meet the requirements specified below:

<table>
<thead>
<tr>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requirements for Both Plan A and Plan B:</td>
</tr>
<tr>
<td>The student must complete:</td>
</tr>
<tr>
<td>1. A total of 30 credits in 400–, 800–, and 900–level courses. At least 20 of the 30 credits must be in 800–900 level courses. Not more than 4 credits of Biosystems Engineering 890 may be counted toward the requirements for the degree under Plan A. Not more than 6 credits of Biosystems Engineering 890 may be counted toward the requirements for the degree under Plan B.</td>
</tr>
<tr>
<td>2. All of the following courses:</td>
</tr>
<tr>
<td>BE 415 Instrumentation for Biosystems Engineering 3</td>
</tr>
<tr>
<td>BE 820 Research Methods in Biosystems Engineering 1</td>
</tr>
<tr>
<td>BE 825 Properties and Characteristics of Biological Materials 3</td>
</tr>
<tr>
<td>BE 835 Engineering Analysis and Optimization of Biological Systems . 3</td>
</tr>
<tr>
<td>BE 892 Biosystems Engineering Seminar 1</td>
</tr>
<tr>
<td>Additional Requirements for Plan A:</td>
</tr>
<tr>
<td>The student must:</td>
</tr>
<tr>
<td>1. Complete the following course:</td>
</tr>
<tr>
<td>BE 899 Master's Thesis Research .. 6</td>
</tr>
<tr>
<td>Not more than 8 credits of Biosystems Engineering 899 may be counted toward the requirements for the degree under Plan A.</td>
</tr>
<tr>
<td>2. Pass a final oral examination over the written thesis administered by the department and conducted by three regular university faculty members, at least two of which must be Biosystems Engineering faculty.</td>
</tr>
</tbody>
</table>

3. Provide to the major professor and to the department a hard–bound copy of the thesis made from the original unbound manuscript submitted to the Office of The Graduate School. Arrangement for delivery of the copies shall be made when the original manuscript is submitted to the Office of The Graduate School.

Additional Requirements for Plan B:

The student must:

Pass the final examination administered by the department over the course work in the student's approved program of study. The examination may include both a written and an oral component. It is the student's responsibility to obtain detailed information about this examination from the department.

Academic Standards

1. Grades. The student must earn a grade of 2.0 or higher in each course in the approved program of study. The student must repeat any course in the approved program for which the grade earned was below 2.0.

2. Cumulative Grade–Point Average. The student must maintain a cumulative grade–point average of at least 3.00 in the courses in the approved program of study.

3. Probational Status. A student is placed on probation if the student's cumulative grade–point average for the courses in the approved program of study is below 3.00. A student in probationary status is not allowed to carry more than 7 credits per semester or to enroll in any course the primary focus of which is independent study.

4. Retention In and Dismissal From the Program.

- Cumulative Grade–Point Average. Should a student's cumulative grade–point average fall below 3.00 after having completed 16 or more credits in courses in the approved program of study, the student may be enrolled in probationary status in the master's degree program for one additional semester. At the end of the additional semester the student's cumulative grade–point average is 3.00 or higher, the student may continue to enroll in the master's degree program. If at the end of the additional semester the student's cumulative grade–point average is still below 3.00, the student will be dismissed from the program.

b. Academic Progress and Professional Potential. Each student's academic progress and professional potential are evaluated by March 15 of each year. A student who in the judgment of the faculty is making satisfactory academic progress and has professional potential may continue to enroll in the master's degree program. A student who in the judgment of the faculty is making satisfactory academic progress or lacks professional potential will be dismissed from the program.

Transfer Credits

As a member of the Michigan Coalition for Engineering Education (MCEE), Michigan State University will accept up to one less than half of the course credits required for the Master of Science degree program in Biosystems Engineering in transfer from other MCEE member institutions provided that (1) the student earned a grade of at least 3.0, or the equivalent, in the related courses; (2) the credits were not earned in research or thesis courses; and (3) the related courses are acceptable to the department.

For information about transfer credits from institutions that are not members of the MCEE, refer to the statement on MASTER'S PROGRAMS, Transfer Credits, in the Graduate Education section of this catalog.
Doctor of Philosophy

The Doctor of Philosophy degree in Biosystems Engineering is designed to prepare graduates for advanced careers that require demonstrated research skills and comprehensive knowledge of the discipline. The program is suitable only for those students who have shown outstanding ability and potential in the field, either by high quality work in a Master of Science degree or by exceptional achievement in a Bachelor of Science degree and additional technical and professional accomplishments. During teaching and training experiences, the student is expected to demonstrate in-depth and comprehensive knowledge of the discipline and skills essential to the dissemination of that knowledge. Additionally, the student must be able to plan, conduct, manage, and publish independent, original research via the dissertation and peer-reviewed manuscripts.

In addition to meeting the requirements of the university and of the College of Agriculture and Natural Resources, students must meet the requirements specified below.

Admission

To be considered for admission to the Doctor of Philosophy degree program in biosystems engineering, an applicant must take the Graduate Record Examination General Test and have the scores sent to the department.

Regular Status. Admission to the doctoral degree program in biosystems engineering with regular status may be granted by the department, subject to the availability of resources and to the approval of the dean.

To be admitted to the doctoral program in biosystems engineering, an applicant should have a master's degree and must:

1. Have either a Bachelor of Science degree in engineering or a master's degree in engineering.
2. Demonstrate evidence of ability and resolution to complete a doctoral program, as attested by the department upon review of the applicant's academic record, test scores, experience, reference statements, professional qualifications, proposed studies, and other relevant information.

Admission to the doctoral program without a master's degree, or the equivalent thereof, requires special approval by the department and the dean.

Provisional Status. Admission to the doctoral degree program in biosystems engineering with provisional status may be granted by the department, subject to the approval of the dean:

1. To an applicant qualified for regular admission except that collateral courses are deemed necessary, or
2. To an applicant whose record is incomplete.

A student who is admitted to the Doctor of Philosophy degree program without a Master of Science degree in engineering may be required to complete collateral courses, in addition to the courses that are required for the doctoral degree. If collateral courses are required, they will be specified on the admission form. Biosystems Engineering 490 and 890 may not be used to satisfy collateral course requirements.

The provisional status will be changed to regular status when the conditions specified on the admission form have been met, as determined by the department and approved by the dean.

Guidance Committee

The student's guidance committee consists of at least four regular faculty members and is appointed by the department chairperson in consultation with the student and the appropriate faculty members, and with the approval of the dean. At least two members of the guidance committee shall be from the Department of Biosystems and Agricultural Engineering and at least one member shall be from a different department preferably in the College of Agriculture and Natural Resources or the College of Engineering. The chairperson of the guidance committee will be appointed by the department chairperson after consultation with the student and the person recommended to chair the committee.

Guidance Committee Report

The student's program of study shall be submitted for approval to the Department of Biosystems and Agricultural Engineering and to the dean by no later than the end of the student's second semester of enrollment in the doctoral program. The subject matter and instructor must be specified for every independent study, special problems, or selected topics course that is included in the student's approved program of study.

The student's program of study must be approved in order for the student to continue to enroll in the doctoral degree program beyond the second semester.

Modification of Program

The following changes are not permitted in a student's approved program of study:

1. Adding or deleting a course for which a grade has already been assigned under any of the three grading systems (numerical, Pass–No Grade, or Credit–No Credit).
2. Adding or deleting a course for which grading was postponed by the use of the DF–Deferred marker.
3. Adding or deleting a course which the student dropped after the middle of the semester and for which "W" or "N" or "0.0" was designated.
4. Adding or deleting a course during the final semester of enrollment in the doctoral degree program.

Requirements for the Doctor of Philosophy Degree in Biosystems Engineering

The student must:

1. Complete a minimum of 24 credits in Biosystems Engineering 999.
2. Complete a minimum of 38 additional credits (excluding Biosystems Engineering 899) beyond the bachelor's degree, in courses at the 400–, 800–, and 900–level including:
 a. All of the following courses:
 BE 815 Instrumentation for Biosystems Engineering 3
 BE 820 Research Methods in Biosystems Engineering 3
 b. Additional course work approved by the student's guidance committee, based on the student’s prior academic background in relation to the selected area of study and research.
3. Pass the doctoral comprehensive examination within five years of the date of first enrollment and at least six months prior to the final oral examination in defense of the dissertation. The examination may be retaken once. It is the student's responsibility to obtain detailed information about this examination from the department.
4. Pass the examination in defense of the dissertation. The examination may be retaken once.
5. Provide to the major professor and to the department a hardbound copy of the dissertation made from the original unbound manuscript submitted to the Office of The Graduate School. Arrangements for delivery of the copies shall be made when the original manuscript is submitted to the Office of The Graduate School.

Academic Standards

1. Grades. The student must earn a grade of 2.0 or higher in each course in the approved guidance committee report, including collateral courses and courses accepted in transfer. The student must repeat any course on the approved program for which the grade earned was below 2.0.
2. **Cumulative Grade–Point Average.** The student must maintain a cumulative grade–point average of at least 3.00 in courses in the approved guidance committee report, with the exception of collateral courses and courses accepted in transfer.

3. **Deferred Grades.** A student may accumulate no more than three deferred grades (identified by the DF–Deferred marker) in courses other than independent study.

4. **Probational Status.** A student is placed on probation status if either or both of the following conditions apply:
 a. The student's cumulative grade–point average for the courses in the approved guidance committee report is below 3.00.
 b. The student has accumulated more than three deferred grades (identified by the DF–Deferred marker) in courses other than those courses the primary focus of which is independent study.

 A student in probational status is not allowed to carry more than 7 credits per semester or to enroll in any course the primary focus of which is independent study.

5. **Retention In and Dismissal From the Program.**
 a. **Cumulative Grade–point Average.** Should a student's cumulative grade–point average fall below 3.00 after having completed half of the courses in the approved guidance committee report, the student may be enrolled in probational status in the doctoral degree program for one additional semester. If at the end of the additional semester the student's cumulative grade–point average is 3.00 or higher, the student may continue to enroll in the doctoral degree program. If at the end of the additional semester the student's cumulative grade–point average is still below 3.00, the student will be dismissed from the program.
 b. **Deferred Grades.** Should a student accumulate more than three deferred grades (identified by the DF–Deferred marker) in courses other than independent study, the student may be enrolled on probational status in the doctoral degree program for one additional semester. If at the end of the additional semester the student still has more than three deferred grades, the student will be dismissed from the program.
 c. **Academic Progress and Professional Potential.** Each student's academic progress and professional potential are evaluated spring semester of each year. A student who in the judgment of the faculty is making satisfactory academic progress and has professional potential may continue to enroll in the doctoral degree program. A student who in the judgment of the faculty is not making satisfactory academic progress or lacks professional potential will be dismissed from the program.

DEPARTMENT of COMMUNITY, AGRICULTURE, RECREATION and RESOURCE STUDIES

Michael D. Kaplowitz, Acting Chairperson

The Department of Community, Agriculture, Recreation and Resource Studies is an interdisciplinary department that offers programs leading to the Bachelor of Science, Master of Science, and Doctor of Philosophy degrees. The department’s purpose is to educate scholars and practitioners who are trained to address current and future challenges across inter-related issues in natural resources, recreation, agriculture and communities.

The department has a multidisciplinary faculty committed to scholarly programs in four cross-cutting areas that assist the development of sustainable communities: natural resources and the environment; education, communication and leadership; community, food and agriculture; and recreation and tourism. The department’s programs provide opportunities for students to obtain a broad, interdisciplinary education, apply theory in practice, and emphasize one or more interdisciplinary professional areas.

The department offers credit and non-credit courses, both on and off campus, for a variety of professionals. Workshops, virtual courses, study abroad programs, and seminars also are conducted to provide professional development opportunities.

UNDERGRADUATE PROGRAMS

ENVIRONMENTAL STUDIES and AGRI SCIENCE

The Department of Community, Agriculture, Recreation and Resource Studies offers a Bachelor of Science degree program with a major in Environmental Studies and Agriscience. This program of study is concerned with who uses resources, how they use them, and how positive outcomes of use can be enhanced and negative impacts can be mitigated. The program is designed to educate a diverse assembly of professionals who will work across disciplines and at many levels to provide expertise and leadership in agricultural, environmental and natural resource professions. Students benefit from a broad range of interdisciplinary courses, as well as disciplinary courses carefully selected to enhance students’ technical knowledge. Professional internships and study abroad experiences are encouraged to provide students with experiences beyond the classroom and the campus. Graduates of this program will be prepared to enter professions in environmental, natural resource and agricultural fields through careers in education, government, private industry, non-profit organizations, and public relations and communications or enter a professional or graduate school program upon completion of the bachelor’s degree.

Students focus their studies by completing one of the interdisciplinary professional concentrations within the major designed to provide additional breadth and depth.
Requirements for the Bachelor of Science Degree in Environmental Studies and Agriscience

1. The University requirements for bachelor's degrees as described in the Undergraduate Education section of this catalog: 120 credits, including general electives credits, are required for the Bachelor of Science degree in Environmental Studies and Agriscience.

2. The University's Tier II writing requirement for the Environmental Studies and Agriscience major is met by completing Environmental Studies and Agriscience 401, 402, 413 or 420. Those courses are referenced in item 3. below.

Students who are enrolled in the Environmental Studies and Agriscience major leading to the Bachelor of Science degree in the Department of Community, Agriculture, Recreation and Resource Studies may complete an alternative track to Integrative Studies in Biological and Physical Sciences that consists of the following courses: Biological Science 162 and 172, and Chemistry 141. The completion of Biological Science 172 satisfies the laboratory requirement. Biological Science 162 and 172, and Chemistry 141 may be counted toward both the alternative track and the requirements for the major referenced in item 3. below.

The completion of the College of Agriculture and Natural Resources mathematics requirement may also satisfy the University mathematics requirement.

3. The following requirements for the major:
 a. All of the following courses: 16 CREDITS
 - ACR 202 Problem Solving in Community, Agriculture, and Environmental Systems
 - ACR 205 Agriculture and Natural Resources Communication Theory and Practice
 - ACR 492 Senior Seminar
 - ESA 200 Introduction to Environmental Studies and Agriscience
 - ESA 312 Principles of Leadership for Ecologists and Agriscience Professionals
 - ZOL 355 Ecology
 b. One of the following courses: 3 CREDITS
 - ESA 401 Communications Campaigns for Agricultural and Environmental Issues (W)
 - ESA 413 Grantwriting and Fund Development (W)
 - ESA 420 Risk and Decision Science for Environmental and Natural Resources Management (W)
 c. One of the following courses: 3 or 4 CREDITS
 - COM 300 Methods of Communication Inquiry
 - PSY 295 Data Analysis in Psychological Research
 - STT 200 Statistical Methods
 - STT 201 Statistical Methods
 - STT 224 Introduction to Probability and Statistics for Scientists
 d. One of the following courses: 3 or 4 CREDITS
 - CSS 210 Fundamentals of Soil Science
 - GLG 201 The Dynamic Earth
 - Students selecting the Teacher Education in Agriscience and Natural Resources concentration must complete Crop and Soil Science 210.
 e. One of the following courses: 3 CREDITS
 - ABM 100 Decision-making in the Agri-Food System
 - ABM 130 Farm Management I
 - EEP 255 Ecological Economics
 - Students selecting the Teacher Education in Agriscience and Natural Resources concentration must complete Crop and Soil Science 210.
 f. One of the following courses: 3 or 4 CREDITS
 - ANS 110 Introductory Animal Agriculture
 - FW 101 Fundamentals of Fisheries and Wildlife Ecology and Management
 - ZOL 313 Animal Behavior
 - Students selecting the Teacher Education in Agriscience and Natural Resources concentration must complete Animal Science 110.
 g. One of the following courses: 2 to 4 CREDITS
 - CSS 101 Introduction to Crop Science
 - FOR 202 Introduction to Forestry
 - FOR 204 Forest Vegetation
 - HRT 203 Principles of Horticulture
 - PLB 105 Plant Biology
 - Students selecting the Teacher Education in Agriscience and Natural Resources concentration must complete both Crop and Soil Science 101 and Horticulture 203.
 h. One of the following courses or fulfillment of an experiential education experience: 3 to 6 CREDITS
 - ESA 475 Agriscience and Natural Resources Studies Abroad
 - ESA 480 Environmental Studies Abroad
 - ESA 493 Professional Internship
 - Completion of an experiential education course approved by the department.
 - Up to 1,000 hours of the 4,000 required hours of relevant work experience for the vocational education endorsement may be counted through a planned program of directed and supervised work experience through Michigan State University. Students selecting the Teacher Education in Agriscience and Natural Resources concentration who apply 3 credits of Environmental Studies and Agriscience 493 to complete the experiential education requirement in item 3.h. above may not apply those hours to fulfill the vocational endorsement requirement.
 i. An additional 6 credits at the 300-level or above (not applicable to Tier II requirement) may be used to satisfy this requirement.

 Students may select courses from the College of Agriculture and Natural Resources, the College of Natural Science, the College of Social Science, or others as approved by the student's advisor.

 The courses used to satisfy requirements in items 3. e. through 3. h. may not be used to satisfy any other requirement for the major.

 Concentration: 19 to 24 CREDITS

 Students must select one of the following concentrations:
 - Communication
 - Community Engagement and Education
 - Science and Policy
 - Teacher Education in Agriscience and Natural Resources

 Communication

 Students who select the Communication concentration will be prepared for careers in agricultural, natural resource, and environmental journalism, public relations, advertising, or marketing communications. Professionals combine agriculture, natural resource and environmental subject-matter knowledge with skills in writing, speaking, layout and design, and information management. Colleges, advertising and public relations agencies, trade associations, government agencies, extension services, and corporations need professionals who can work in this field. Success in these organizations may lead to positions as editors, advertising account supervisors, public relations directors, and marketing communications managers.

 1. The following course: 3 CREDITS
 - JRN 200 Gathering and Writing News
 2. One of the following courses: 3 CREDITS
 - WRA 320 Technical Writing (W)
 - WRA 341 Writing Nature and the Nature of Writing
 3. Four of the following courses: 12 to 13 CREDITS
 - COM 240 Introduction to Organizational Communication
 - COM 275 Effects of Mass Communication
 - COM 325 Interpersonal Influence and Conflict
 - ESA 412 Special Topics in Leadership and Education
 - ESA 420 Risk and Decision Science for Environmental and Natural Resource Management (W)
 4. One of the following courses: 3 CREDITS
 - WRA 210 Introduction to Web Authoring

 Community Engagement and Education

 Students who select the Community Engagement and Education concentration will develop and conduct educational programs in non-formal settings, assist with formal, school-based educational programs, organize workshops and seminars, develop leadership programs for agribusiness, government agencies, recreation organizations and non-profits, and design environment, natural resource, agriculture, and recreation education and outreach programs for adults and youth in a variety of settings. There are many professional opportunities in non-profit organizations, trade associations, and federal, state and local government agencies, as well as volunteerism.

 1. All of the following courses: 13 CREDITS
 - ACR 415 Program Planning and Evaluation
 - ESA 335 Engaged Learning and Teaching in Agriscience and Natural Resources Concentration
 - ESA 434 Professional Skills for Nonformal Educators
 - ESA 435 Conservation Education
 - ESA 436 Conservation Education Practice
 2. Two of the following courses: 6 CREDITS
 - ESA 412 Special Topics in Leadership and Education
 - ESA 413 Grantwriting and Fund Development (W)
 - PRR 451 Interpretation and Visitor Information Systems
 3. One of the following courses: 3 CREDITS
 - TSM 251 Information Technology in Agricultural Systems

 Science and Policy

 Students who select the Science and Policy concentration will build a strong, interdisciplinary foundation in science and policy related to the environment, natural resources and agriculture. Students may focus on agriscience and policy, or they may choose to focus on environmental science and policy. Creatively combining course work in environmental science and agriscience will also prepare students for leadership roles in an increasingly complex field. Students who select this concentration will find careers in federal, state and local government, nonprofit organizations and trade associations, and private industry and consulting.

 1. One of the following courses: 3 or 4 CREDITS
 - CSS 210 Fundamentals of Soil Science
 - GLG 201 The Dynamic Earth
 - The course used to satisfy the major requirements may not be used to satisfy this requirement.
 2. One of the following courses: 3 CREDITS
 - ACR 415 Program Planning and Evaluation
 - ESA 440 Environmental and Natural Resource Policy in Michigan

 Department of Community, Agriculture, Recreation and Resource Studies
Requirements for the Bachelor of Science Degree in Natural Resource Recreation and Tourism

1. The University requirements for bachelor’s degrees as described in the Undergraduate Education section of this catalog; 120 credits, including general elective credits, are required for the Bachelor of Science degree in Natural Resource Recreation and Tourism.

2. The University’s Tier II writing requirement for the Natural Resource Recreation and Tourism major is met by completing Park, Recreation and Tourism Resources 370. That course is referenced in item 3. a. below.

3. The completion of the College of Agriculture and Natural Resources mathematics requirement may also satisfy the University mathematics requirement.

4. The requirements of the College of Agriculture and Natural Resources for the Bachelor of Science degree.

Certain courses referenced in requirement 3. below may be counted toward College requirements as appropriate.

3. The following requirements for the major:

a. All of the following courses: ... 25 to 28

 ACR 202 Problem Solving in Community, Agriculture and Environmental Systems 3
 ACR 205 Agriculture and Natural Resources Communication Theory and Practice 3
 ACR 415 Program Planning and Evaluation 3
 ACR 492 Senior Seminar 1
 GEO 221 Introduction to Geographic Information 3
 PRR 211 Introduction to Natural Resource Recreation Management 3
 PRR 214 Introduction to Travel and Tourism 3
 PRR 370 Administration and Operation of Park and Recreation Systems (W) 3
 PRR 493 Professional Internship in Natural Resource Recreation and Tourism 3 to 6

 Students must maintain a minimum 2.0 grade-point average in all ACR and PRR courses referenced in item 3. a.

 b. One of the following courses: .. 3 or 4

 FW 419 Applications of Geographic Information Systems to Natural Resources Management 4
 GEO 325 Geographic Information Systems 3
 PSY 295 Data Analysis in Psychological Research 3
 STT 200 Statistical Methods 3
 STT 201 Statistical Methods 4
 STT 224 Introduction to Probability and Statistics for Ecologists 3

 c. One of the following courses: ... 3 or 4

 ACR 415 Program Planning and Evaluation 3
 GEO 221 Introduction to Geographic Information 3
 PRR 211 Introduction to Natural Resource Recreation Management 3
 PRR 493 Professional Internship in Natural Resource Recreation and Tourism 3 to 6

 Students must maintain a minimum 2.0 grade-point average in all ACR and PRR courses referenced in item 3. a.

 d. One of the following concentrations: 30 or 35

 Natural Resource Recreation Management (31 credits): Federal, state and local governments and non-profit and for-profit entities offer a variety of career opportunities in natural resource recreation management. These opportunities include careers in park and land management, recreation and conservation law enforcement, and nature and cultural interpretation. They involve management of resources including facilities such as campgrounds, trails and water resources for people who use the outdoors. Natural resource recreation professionals often work in teams with wildlife biologists, foresters, landscape architects, archeologists, and historians in resource planning, land development, and visitor management. A key characteristic of their efforts is to optimize recreational experiences while providing sustainable opportunities.

 (1) One of the following courses (3 credits):

 - ESA 200 Introduction to Environmental Studies and Agriscience 3
 - FOR 202 Introduction to Forestry 3
 - FW 101 Fundamentals of Fisheries and Wildlife Ecology and Management 3

 (2) All of the following courses (22 credits):

 - BS 162 Organismal and Population Biology 3
 - BS 172 Organismal and Population Biology 3
 - CSS 210 Fundamentals of Soil Science 3
 - ESA 324 Water Resource Management 3
 - FOR 412 Wildland Fire 2
 - PRR 448 Foundations of Natural Resource Based Recreation Management 3
 - PRR 449 Natural Resource Based Recreation Management Applications 3

 (3) One of the following courses (3 credits):

 - ESA 440 Environmental and Natural Resources Policy in Michigan 3
 - FOR 466 Natural Resource Policy 3

 (4) One of the following courses (3 credits):

 - ESA 401 Communication Campaigns for Agricultural and Environmental Issues (W) 3
 - PRR 410 International Studies in Tourism, Parks and Recreation 3
 - PRR 451 Interpretation and Visitor Information Systems 3
AGRICULTURE AND NATURAL RESOURCES
Department of Community, Agriculture, Recreation and Resource Studies

Commercial Recreation and Tourism (35 credits):
Commercial recreation enterprises and the entire tourism system are increasingly important aspects of our state, regional, national and world economies. Sustainability in this growing economic sector is a crucial factor as the industry seeks graduates who provide short-term and long-term perspectives on efficient, responsible use of resources that are the foundation of a customer’s willingness to pay for outdoor recreation experiences. Marinas, ski resorts, commercial campgrounds, charter boats, canoe or kayak liverys, and other direct providers as well as support businesses such as motels, recreation equipment retailers and manufacturers and travel providers, depend on a healthy, productive natural resource recreation and tourism industry. Government entities such as visitor and convention bureaus, state travel bureaus and private sector tourism associations are increasingly active in marketing natural resource recreation and tourism opportunities to sustain and diversify local economies. Careers include marketing, enterprise development and management, guiding and outfitting, and association management, which provides a bridge between public and private sectors such as concessionaires providing commercial recreation services on public lands.

(1) One of the following courses (6 credits):

- GEO 259 Geography of Recreation and Tourism ..3
- GEO 459 Tourism in Regional Development ..3
- PRR 272 Recreational Boating Systems and the Boating Industry3
- PRR 410 International Studies in Tourism, Parks and Recreation3

(2) All of the following courses (32 credits):

- ACC 230 Survey of Accounting Concepts ...3
- FI 320 Introduction to Finance ...3
- GBL 325 Introduction to Business Law ..3
- HB 100 Introduction to Hospitality Business ..2
- HB 237 Management of Lodging Systems ...3
- HB 287 Management of Food and Beverage Systems3
- MGT 325 Management Skills and Processes3
- MKT 327 Introduction to Marketing ..3
- PRR 360 Marketing Communications in Recreation and Tourism3
- PRR 473 Commercial Recreation and Tourism Businesses and Organizations3
- PRR 474 The Tourism System ...3

SPECIALIZATION IN NATURAL RESOURCE RECREATION

The Specialization in Natural Resource Recreation is available as an elective to students who are enrolled in bachelor’s degree programs at Michigan State University. It includes the management of land, water, forests, fisheries and wildlife and agriculture and is targeted toward students considering careers in public park and recreation, commercial recreation enterprise management, forestry, fisheries, wildlife, criminal justice (conservation or recreation law enforcement), environmental policy, environmental management, landscape architecture, and agriculture. This specialization offers an opportunity for students to integrate study of social, biological and physical sciences, natural resources and ecosystems for the management of outdoor recreation.

Requirements for the Specialization in Natural Resource Recreation

With the approval of the department that administers the student’s degree program, courses that are used to satisfy the requirements for the specialization may also be used to satisfy the requirements for the bachelor’s degree. The student must meet the requirements specified below:

1. One of the following courses (3 credits):
 - PRR 210 Our National Parks and Recreation Lands3
 - PRR 302 Environmental Attitudes and Concepts3

2. One of the following courses outside the student’s courses requirements for the major (3 or 4 credits):
 - ANS 110 Introductory Animal Agriculture ..4
 - CSS 101 Introduction to Crop Science ...3
 - ESA 200 Introduction to Environmental Studies and Agriscience3
 - FOR 202 Introduction to Forestry ..3
 - FW 101 Fundamentals of Fisheries and Wildlife Ecology and Management3
 - PRR 211 Introduction to Natural Resource Recreation3

3. Two of the following courses, one of which is outside the student’s course requirements for the major (3 to 7 credits):
 - CSS 210 Fundamentals of Soil Science ...3
 - ESA 324 Water Resource Management ...3
 - ESA 430 Environmental and Natural Resource Law3
 - FOR 404 Forest and Agricultural Ecology ..3
 - FOR 412 Wildland Fire ...2
 - FOR 466 Natural Resource Policy ..3
 - FW 419 Applications of Geographic Information Systems to Natural Resources Management ..4
 - FW 443 Restoration Ecology ..3
 - GEO 221 Introduction to Geographic Information3
 - PRR 451 Interpretation and Visitor Information Systems3
 - PRR 474 The Tourism System ...3
 - ZOL 355 Ecology ..3

4. Both of the following courses (6 credits):
 - PRR 448 Foundations of Natural Resource Based Recreation Management ..3
 - PRR 449 Natural Resource Based Recreation Management Applications3

SPECIALIZATION IN SUSTAINABILITY

The Specialization in Sustainability enables students to gain holistic and integrated competencies around four broad core content areas: aesthetic appreciation, ecological integrity, social equity, and economic vitality through the domains of civic engagement, systems thinking, critical thinking, and personal development. The specialization provides the opportunity to apply this knowledge and competencies in a wide variety of environments including business, government, and non-governmental organizations which work to cultivate sustainable communities.

The specialization is available as an elective to students who are enrolled in bachelor’s degree programs at Michigan State University in the Colleges of Agriculture and Natural Resources; Arts and Letters; Business; Natural Science; and Social Science and James Madison College. With the approval of the department and college that administers the student’s degree program, the courses that are used to satisfy the specialization may also be used to satisfy the requirements for the bachelor’s degree. The student’s program of study must be approved in advance and in writing by the director of the specialization.

Students must work with the director of the specialization and specialization advisors to prepare a written plan detailing the experiences and courses that will help them complete a portfolio demonstrating competency in the content areas and domains of the specialization. Students begin with enrollment in ACR 187, complete other courses and extracurricular activities and then enroll in ACR 387 to develop an integrative project which plays an essential role in the development of the portfolio. Each semester, students are required to provide evidence in their portfolios of progress toward competencies. Completion and defense of the portfolio is embedded in ACR 487.

Students desiring knowledge and expertise in sustainability as it pertains to agriculture and food systems should consider the Specialization in Sustainable Agriculture and Food Systems in the Department of Crop and Soil Sciences.

Requirements for the Specialization in Sustainability

The student must complete 18 credits from the following:

1. All of the following courses (7 credits):
 - ACR 187 Introduction to Sustainability ..3
 - ACR 387 Sustainability Practicum ..2
 - ACR 487 Sustainability Portfolio Capstone ..2

2. Eleven additional credits of course work selected from a list of approved courses maintained by the director of the specialization. All courses used to fulfill this requirement should be approved by the director of the specialization prior to enrollment.
TEACHER CERTIFICATION OPTIONS

The environmental studies and agriscience disciplinary major leading to the Bachelor of Science degree is available for teacher certification. Students who complete the requirements for the environmental studies and agriscience disciplinary major with a concentration in Teacher Education in Agriscience and Natural Resources, the requirements for teacher certification, and a minimum of 4000 hours of recent and relevant work experience are recommended for a career and technical endorsement in agricultural education.

An agriscience disciplinary minor is available for teacher certification.

Students who elect the environmental studies and agriscience disciplinary major or the agriscience disciplinary minor, must contact the Department of Community, Agriculture, Recreation and Resource Studies.

For additional information, refer to the statement on TEACHER CERTIFICATION in the Department of Teacher Education section of this catalog.

GRADUATE STUDY

The Department of Community, Agriculture, Recreation and Resource Studies offers Master of Science and Doctor of Philosophy degree programs in Community, Agriculture, Recreation and Resource Studies and Sustainable Tourism and Protected Area Management.

Graduate programs in Community, Agriculture, Recreation and Resource Studies provide students the opportunity to create individualized programs that draw from several complementary areas of scholarship. These areas include: community, food and agriculture; natural resources and the environment; recreation and tourism; and, communication and leadership. Today's communities face complex problems due to ongoing changes to our environmental, social and agricultural food systems. To aid in meeting these challenges, students' programs are designed to provide a thorough grounding in integrative, applied research based on multiple paradigms, disciplines and methods.

Students must select either the Master of Science in Community, Agriculture, Recreation and Resource Studies or the Master of Science in Sustainable Tourism and Protected Area Management. A student may not earn a master's degree in both programs. A student may earn a Ph.D. in only one of the two program areas: community, agriculture, recreation and resource studies or sustainable tourism and protected area management.

Students who are enrolled in Master of Science and Doctor of Philosophy degree programs in the Department of Community, Agriculture, Recreation and Resource Studies may select specializations in resource economics. For additional information, refer to the statement on Interdepartmental Graduate Specializations in Resource Economics.

Students who are enrolled in Master of Science degree programs in the Department of Community, Agriculture, Recreation and Resource Studies may elect a Specialization in Environmental Toxicology. For additional information, refer to the Graduate Specialization in Environmental Toxicology statement.

COMMUNITY, AGRICULTURE, RECREATION AND RESOURCE STUDIES

Master of Science

The Master of Science in Community, Agriculture, Recreation and Resource Studies provides students with opportunities to engage in integrated and applied research and acquire professional skills.

In addition to meeting the requirements of the university and of the College of Agriculture and Natural Resources, students must meet the requirements specified below. Students may not be admitted to both the Master of Science degree in Community, Agriculture, Recreation and Resource Studies and the Master of Science degree in Sustainable Tourism and Protected Area Management.

Admission

Applicants must have completed a bachelor's degree or comparable degree requirements from an educational institution. Relevant experience and strong academic backgrounds in the natural, physical, or social sciences are encouraged for applicants to the Master of Science in Community, Agriculture, Recreation and Resource Studies. All applicants for admission are required to submit scores from the General Test of the Graduate Record Examination. Collateral courses may be required to overcome deficiencies in addition to the requirements for the master's degree. Collateral course work will not count towards the master's degree.

Requirements for the Master of Science Degree in Community, Agriculture, Recreation and Resource Studies

The student may elect either Plan A (with thesis) or Plan B (without thesis). Plan A emphasizes integrated and applied research and is designed as the foundation for doctoral study. Plan B focuses on the acquisition of well-defined professional skills, appropriate for a terminal degree and for professional employment.

A minimum of 30 credits is required for the degree under Plan A and Plan B. The student's program of study must be developed in cooperation with and approved by the student's guidance committee and must include the requirements specified below.

Requirements for Plan A and Plan B

1. Both of the following courses (6 credits):
 - ACR 800 Foundations of Community, Agriculture, Recreation and Resource Studies
 - ACR 802 Survey of Research Methods
 - ACR 895 Case Studies in Community, Agriculture, Recreation and Resource Studies

2. A minimum of 15 credits in coursework in a focus area selected in consultation with the student's guidance committee. At least 6 credits of this focus area must be in Community, Agriculture, Recreation and Resource Studies courses.

Additional Requirements for Plan A

1. A minimum of 3 credits of quantitative or qualitative methods to be selected in consultation with the student's guidance committee.

2. A minimum of 6 credits of Community Agriculture, Recreation and Resource Studies 899.

3. Completion and defense of the master's thesis.

Additional Requirements for Plan B

1. A minimum of 3 credits of a techniques or skill-building course relevant to the student's academic and career goals, to be selected in consultation with the student's guidance committee.

2. Both of the following courses:
 - ACR 895 Case Studies in Community, Agriculture, Recreation and Resource Studies
 - ACR 898 Master's Professional Project

3. Completion and defense of a paper based on the master's professional project.

Doctor of Philosophy

The Doctor of Philosophy in Community, Agriculture, Recreation and Resource Studies is designed to enable students to generate new knowledge in complementary fields responsive to rapidly changing conditions in our natural environment and agricultural systems.

In addition to meeting the requirements of the university and of the College of Agriculture and Natural Resources, students must meet the requirements specified below.
Admission
To be admitted to the Doctor of Philosophy degree program in Community, Agriculture, Recreation and Resource Studies, a student must have completed a master’s degree. Relevant experience and strong academic backgrounds in the natural, physical, or social sciences, including independent research experience, are strongly encouraged. All applicants are required to submit scores from the General Test of the Graduate Record Examination.

Requirements for the Doctor of Philosophy Degree in Sustainable Tourism and Protected Area Management

The Doctor of Philosophy degree in Sustainable Tourism and Protected Area Management is designed to enable students to generate new knowledge in the complementary fields of tourism and protected area management under the overarching concept of community sustainability.

In addition to meeting the requirements of the university and of the College of Agriculture and Natural Resources, students must meet the requirements specified below. Students may not be admitted to both the Master of Science degree in Community, Agriculture, Recreation and Resource Studies and the Master of Science degree in Sustainable Tourism and Protected Area Management.

Admission
Applicants must have completed a bachelor’s degree or comparable degree requirements from an educational institution. Relevant experience and strong academic background in the natural, physical, or social sciences are encouraged. Applicants are required to submit scores from the General Test of the Graduate Record Examination. Collateral courses may be required to overcome deficiencies in addition to the requirements for the master’s degree. Collateral course work will not count towards the master’s degree.
2. Complete 9 credits of course work in advanced research methods, to be selected in consultation with the student’s guidance committee, including at least 3 credits respectively in quantitative and qualitative methods.
3. Complete a minimum of 18 credits in course work grouped in two focus areas. At least 9 credits in total and at least one course in each focus area must be selected from Agriculture, Community, Recreation and Resource Studies (ACRS) courses unless the student has previously completed a Master of Science degree in Sustainable Tourism and Protected Area Management.
4. Prepare a comprehensive examination program statement that presents the student’s learning and professional background and goals, and provides a rationale for the student’s declared focus areas. This statement is prepared in consultation with the student’s guidance committee and is presented to the full faculty for review.
5. Pass a comprehensive examination based on the student’s comprehensive examination program statement.
6. Complete 24 credits in advanced research methods, dissertation research and successfully defend the dissertation. Present the results of the research in a public seminar during the final oral examination.

All students are encouraged to prepare at least one paper from the dissertation research suitable for submission to a professional and/or refereed academic journal.

DEPARTMENT of ENTOMOLOGY

Douglas Landis, Acting Chairperson

Entomology is the field of biological science concerned with the study of insects and their relatives in relation to other animals, plants, and the environment. Since insects and their relatives impact many human activities, and must be studied and managed in a variety of environments, an entomologist needs a broad, basic education.

UNDERGRADUATE PROGRAM

The undergraduate program in Entomology leads to the Bachelor of Science degree. Courses are designed to give the student an understanding of the structure, classification, identification, function, biology, ecology, and management of beneficial and harmful arthropods, and the communities and ecosystems where insects occur.

There are opportunities for undergraduate Entomology students to carry out research projects in department laboratories. Students may also gain work experience in the diverse areas of entomology through employment. Internships and study abroad opportunities are also available, and are strongly encouraged.

Requirements for the Bachelor of Science Degree in Entomology

1. The University requirements for bachelor’s degrees as described in the Undergraduate Education section of this catalog; 120 credits, including general elective credits, are required for the Bachelor of Science degree in Entomology.

 The University’s Tier II writing requirement for the Entomology major is met by completing Entomology 470 or 478 or 479. Those courses are referenced in item 3. b. below.

 Students who are enrolled in the Entomology major concentrations may complete an alternative track to Integrative Studies in Biological and Physical Sciences by completing Entomology’s mathematics and chemistry requirements and Biological Science 161. These courses meet the laboratory requirement.

2. The requirements of the College of Agriculture and Natural Resources for the Bachelor of Science degree.

 The credits earned in certain courses referenced in requirement 3. below may be counted toward College requirements as appropriate.

3. The following major requirements:

 a. All of the following courses (46 credits):

Course Number	Course Title	Credits
BS 161	Cell and Molecular Biology	3
BS 162	Organismal and Population Biology	3
BS 172	General Chemistry	4
CEM 141	Survey of Organic Chemistry	4

 b. One of the following courses (3 credits):

Course Number	Course Title	Credits
ENT 470	General Nematology (W)	3
ENT 478	Pest Management II: Biological Components of Management Systems (W)	3

 c. A minimum of 18 credits of course work in entomology as approved by the student’s academic advisor.

MINOR IN ENTOMOLOGY

The Minor in Entomology, which is administered by the Department of Entomology, is designed to serve students in other fields who desire additional training in the insect sciences. It provides an introduction to a range of entomological knowledge, including insect identification, ecology, and management.

The minor is available as an elective to students who are enrolled in bachelor’s degree programs at Michigan State University other than the Bachelor of Science Degree in Entomology. With the approval of the department and college that administers the student’s degree program, the courses that are used to satisfy the minor may also be used to satisfy the requirements for the bachelor’s degree. At least 12 unique credits counted towards the requirements for a student’s minor must not be used to fulfill the requirements for that student’s major.

Students who plan to complete the requirements for the minor should consult an undergraduate advisor in Entomology.

Requirements for the Minor in Entomology

Complete 15 credits from the following:

1. The following course (3 credits): ENT 404 Fundamentals of Entomology

2. Complete 12 credits from the following:

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENT 205</td>
<td>Pests, Society and Environment</td>
<td>3</td>
</tr>
<tr>
<td>ENT 364</td>
<td>Turfgrass Entomology</td>
<td>3</td>
</tr>
</tbody>
</table>
 | ENT 407 | Diseases and Insects of Forest and Shade Trees | 4 |}
 | ENT 410 | Apiculture and Pollination | 2 |
 | ENT 422 | Aquatic Entomology | 3 |
 | ENT 460 | Medical Entomology | 3 |
 | ENT 469 | Biomonitoring of Streams and Rivers | 3 |}
 | ENT 470 | General Nematology (W) | 3 |
 | ENT 477 | Pesticides in Pest Management | 3 |
 | ENT 478 | Integrated Pest Management (W) | 3 |
 | ENT 479 | Organic Pest Management (W) | 3 |

 Other Entomology courses may be used in fulfillment of this requirement with approval from the Entomology undergraduate advisor.

GRADUATE STUDY

The Department of Entomology offers Master of Science and Doctor of Philosophy degree programs in entomology. Many of the courses offered by the department are of significance to other disciplines in the biological and agricultural sciences in the College of Natural Science and College of Agriculture and Natural Resources section of this catalog.

Students who are enrolled in Master of Science degree programs in the Department of Entomology may elect a Specialization in Food Safety. For additional information, refer to
the statement on the specialization in the College of Veterinary Medicine section of this catalog.

ENTOMOLOGY

Faculty and facilities are available for study in many subject areas, including apiculture and pollination, aquatic systems, behavior, insect biochemistry, biological control, bionomics, ecology, insect economics, forest entomology, medical entomology, morphology, nematology, population dynamics, insect physiology, pest management on many kinds of crops, plant disease vectors, systematics, systems science, environmental and analytical toxicology, and urban and ornamental entomology. Combinations of many of these specialized subject areas are necessary for all programs of study. Regardless of specialization, the student's education must provide broad training in related sciences.

Graduate students in entomology look forward chiefly to college teaching; research work in some of the many areas where insects affect our crops and our lives; professional employment with state, federal, or private agencies or companies; or employment as pest management consultants.

Master of Science

In addition to meeting the requirements of the university and of the College of Agriculture and Natural Resources, students must meet the requirements specified below.

Admission

A bachelor's degree with a 3.00 grade–point average for the last two years of study is required for admission to the master's program. Although the applicant need not have an undergraduate major in entomology for regular admission, training should have been received in the physical and biological sciences equivalent to that required of an undergraduate entomology major at Michigan State University. Graduate Record Examination General Test scores are required. Applicants with a good academic record but with deficiencies in physics, chemistry, mathematics, or the biological sciences may be accepted on a provisional basis until deficiencies have been rectified by collateral course work.

Requirements for the Master of Science Degree in Entomology

Both Plan A (with thesis) and Plan B (without thesis) are available, but students planning to earn a doctoral degree must follow Plan A. The student must complete a total of 30 credits for the degree under either Plan A or Plan B. Participation in the department's teaching program is also required.

Courses and thesis topic are planned on an individual basis by the student, the student's major professor, and the student's guidance committee. The following courses must be a part of the undergraduate or graduate program: a general entomology course, systematics of adults or immatures, insect physiology or molecular entomology, insect ecology, evolution and conservation, 3 credits of Entomology 812 Graduate Seminar, and one course selected from a list of courses approved by the Department.

A specified number of credits is not required, but early in the student's program the guidance committee, in consultation with the student, develops a list of proposed courses and a tentative dissertation subject. The student is expected to acquire a broad knowledge of entomology. The following courses must be a part of the undergraduate or graduate program: a general entomology course, systematics of adults or immatures, insect physiology or molecular entomology, insect ecology, evolution and conservation, 3 credits of Entomology 812 Graduate Seminar, and one course selected from a list of courses approved by the Department.

In addition to the program developed by the guidance committee for a research specialty, the student must acquire an area of knowledge separate and distinct from those research competencies. The acquisition of this knowledge means a minimum of 10 credits or its equivalent. The area selected must be agreed upon, unanimously, by the guidance committee and the student.

Doctor of Philosophy

The Department of Entomology aspires to develop not only capable entomologists but also capable scholars. Scholarly potential is sought in the prospective student, and course and research programs are designed to round out the student's knowledge and bring it to the stage of development where the student can work creatively in the field.

In addition to meeting the requirements of the university and of the College of Agriculture and Natural Resources, students must meet the requirements specified below.

Admission

A master's degree including a thesis in an appropriate field of study is required. Subject matter training should be in the same general areas as required for admission to the Master of Science degree program in entomology. The student's past record must indicate maturity, reliability, and scholarly potential of a high order.

Requirements for the Doctor of Philosophy Degree in Entomology

A specified number of credits is not required, but early in the student's program the guidance committee, in consultation with the student, develops a list of proposed courses and a tentative dissertation subject. The student is expected to acquire a broad knowledge of entomology. The following courses must be a part of the undergraduate or graduate program: a general entomology course, systematics of adults or immatures, insect physiology or molecular entomology, insect ecology, evolution and conservation, 3 credits of Entomology 812 Graduate Seminar, and one course selected from a list of courses approved by the Department.

The student must pass a doctoral qualification examination which primarily consists of the defense of a dissertation proposal. Written and oral doctoral comprehensive examinations are required on philosophical issues and in the three or more areas of study specified by the guidance committee. Participation in the department's teaching program is also required.

In addition to the program developed by the guidance committee for a research specialty, the student must acquire an area of knowledge separate and distinct from those research competencies. The acquisition of this knowledge means a minimum of 10 credits or its equivalent. The area selected must be agreed upon, unanimously, by the guidance committee and the student.

DEPARTMENT of
FISHERIES and WILDLIFE

Michael L. Jones, Chairperson

UNDERGRADUATE PROGRAMS

Fisheries and wildlife management involves the maintenance and management of wild populations of fish and wildlife species and the ecosystems in which they live. Wild populations cannot be managed without an understanding of how human, social, economic, political and behavioral considerations interact in the natural world. As a fisheries and wildlife major at Michigan State University, students will acquire basic knowledge in the application of these interactions between and among the natural and social sciences.

Majors in the Department of Fisheries and Wildlife prepare for rewarding careers as fisheries and wildlife technicians, biologists, managers, naturalists, and applied ecologists. Others may choose to pursue related careers as conservation officers, environmental consultants or natural resource administrators. Employment is generally found with state and federal natural
resource agencies such as the Michigan Department of Natural Resources, the U.S. Fish and Wildlife Service, and the National Park Service. There are also excellent job opportunities with private companies such as International Paper and non-profit organizations such as The Nature Conservancy or Trout Unlimited as well as many universities and colleges.

The undergraduate program in the Department of Fisheries and Wildlife at Michigan State University is nationally and internationally recognized. The program provides a strong base in the foundational and applied sciences of natural resource management. The program is designed to develop understanding of the cultural, recreational, and economic values of biological resources. The department offers a core of required courses including biology and physical sciences, math and statistics, communications, ethics and philosophy, and experiential learning in addition to a large selection of other fisheries and wildlife courses. The fisheries and wildlife undergraduate program also allows students to develop their individual interests through completion of one of six concentrations that are designed to provide additional breadth and depth, including: conservation biology, fisheries biology and management, wildlife biology and management, water sciences, fish and wildlife disease ecology and management, and preveterinary.

Conservation Biology focuses on the science of analyzing and protecting the earth’s biological diversity drawing from the biological, physical and social sciences, economics, and the practice of natural resource management.

Fisheries Biology and Management is designed for students interested in the research and management of fish, other freshwater and marine organisms, and the ecosystems that sustain them.

Wildlife Biology and Management is for students interested in understanding and managing terrestrial habitats and animals including game, non-game, and endangered species.

Water Sciences is designed for students interested in examining the biological, physical, chemical, geological and hydrological aspects of lakes and ponds, rivers and streams, wetlands and groundwaters including water quality. This concentration provides students with an understanding for protecting and restoring water resources around the Great Lakes and the world.

Fish and Wildlife Disease Ecology and Management is designed to provide students with an improved understanding of the emergence and spread of infectious diseases and the likely consequences that increased contact between fish and wildlife, and domestic animal and human populations have on these environmental problems.

Preveterinary is designed for students who are interested in careers in veterinary medicine and satisfies the course requirements for admission to Michigan State University’s College of Veterinary Medicine. Dual advising at the College of Veterinary Medicine is required.

Students who complete the requirements for the fisheries and wildlife major and choose elective courses appropriately can also satisfy requirements for certification by: the American Fisheries Society as an Associate Fisheries Scientist; by the Wildlife Society as an Associate Wildlife Biologist; or the Society of Wetland Scientists as a Wetland Professional-in-training.

Students who are enrolled in the Bachelor of Science degree program with a major in fisheries and wildlife may elect a specialization in agricultural and natural resources biotechnology, connected learning, conservation and environmental law enforcement, environmental studies, marine ecosystem management, or natural resource recreation.

For additional information on any of these specializations, visit http://www.reg.msu.edu/AcademicPrograms/Programs.asp?PType=SPCU.

Requirements for the Bachelor of Science Degree in Fisheries and Wildlife

1. The University requirements for bachelor's degrees as described in the Undergraduate Education section of this catalog: 120 credits, including general elective credits, are required for the Bachelor of Science degree in Fisheries and Wildlife.

The University’s Tier II writing requirement for the Fisheries and Wildlife major is met by completing Fisheries and Wildlife 434 referenced in item 3. below.

Students who are enrolled in the Fisheries and Wildlife major leading to the Bachelor of Science degree in the Department of Fisheries and Wildlife may complete an alternate track to Integrative Studies in Biological and Physical Sciences by completing items 3. a. and 3. b. below. The completion of Plant Biology 106 or Biological Sciences 111L or Lyman Briggs 144 and Chemistry 161 or Lyman Briggs 145 satisfies the laboratory requirement. Completion of items 3. a. and 3. b. below will be counted toward both the alternative track and the requirements for the major.

The completion of the College of Agriculture and Natural Resources mathematics requirement may also satisfy the University mathematics requirement.

2. The requirements of the College of Agriculture and Natural Resources for the Bachelor of Science degree.

Certain courses referenced in requirement 3. below may be counted toward College requirements as appropriate. The completion of item 3. d. below satisfies the College's mathematics requirement.

3. The following requirements for the major:

<table>
<thead>
<tr>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. One of the following groups of courses (8 or 9 credits):</td>
<td></td>
</tr>
<tr>
<td>(1) BS 110 Organisms and Populations</td>
<td>4</td>
</tr>
<tr>
<td>(2) PLB 105 Plant Biology</td>
<td>3</td>
</tr>
<tr>
<td>(2) PLB 106 Plant Biology Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>(3) BS 110 Organisms and Populations</td>
<td>4</td>
</tr>
<tr>
<td>(4) BS 111 Cells and Molecules</td>
<td>3</td>
</tr>
<tr>
<td>(5) BS 11U Cells and Molecular Biology</td>
<td>2</td>
</tr>
<tr>
<td>(3) LB 144 Biology I – Organismal Biology</td>
<td>4</td>
</tr>
<tr>
<td>(5) LB 145 Biology II: Cellular and Molecular Biology</td>
<td>5</td>
</tr>
<tr>
<td>Students pursuing the undergraduate concentration must complete either group (2) or group (3).</td>
<td></td>
</tr>
<tr>
<td>b. One of the following groups of courses (5 credits):</td>
<td></td>
</tr>
<tr>
<td>(1) CEM 141 General Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>(2) CEM 161 Chemistry Laboratory I</td>
<td>1</td>
</tr>
<tr>
<td>(2) CEM 151 General and Descriptive Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>(3) CEM 161 Chemistry Laboratory I</td>
<td>1</td>
</tr>
<tr>
<td>(3) LB 171 Principles of Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>(5) LB 171L Introductory Chemistry Laboratory I</td>
<td>1</td>
</tr>
<tr>
<td>c. One course from each group (6 to 8 credits):</td>
<td></td>
</tr>
<tr>
<td>(1) PHY 231 Introductory Physics I</td>
<td>3</td>
</tr>
<tr>
<td>(2) PHY 183 Physics for Scientists and Engineers I</td>
<td>4</td>
</tr>
<tr>
<td>(3) LB 273 Physics I</td>
<td>1</td>
</tr>
<tr>
<td>(2) CSS 210 Fundamentals of Soil Science</td>
<td>3</td>
</tr>
<tr>
<td>(4) CSS 470 Soil Resources</td>
<td>3</td>
</tr>
<tr>
<td>(5) GLG 201 The Dynamic Earth</td>
<td>4</td>
</tr>
<tr>
<td>(6) GEO 203 Introduction to Meteorology</td>
<td>3</td>
</tr>
<tr>
<td>(7) GEO 206 Physical Geography</td>
<td>3</td>
</tr>
<tr>
<td>(8) ENT 319 Introduction to Earth System Science</td>
<td>3</td>
</tr>
<tr>
<td>d. One course from each group (6 or 7 credits):</td>
<td></td>
</tr>
<tr>
<td>(1) MTH 124 Survey of Calculus</td>
<td>3</td>
</tr>
<tr>
<td>(2) MTH 132 Calculus</td>
<td>4</td>
</tr>
<tr>
<td>(2) LB 118 Calculus</td>
<td>1</td>
</tr>
<tr>
<td>(2) STT 231 Statistics for Scientists</td>
<td>3</td>
</tr>
<tr>
<td>(2) STT 224 Introduction to Probability for Ecologists</td>
<td>3</td>
</tr>
<tr>
<td>STT 421 Statistics</td>
<td>3</td>
</tr>
<tr>
<td>e. Two of the following courses (6 credits):</td>
<td></td>
</tr>
<tr>
<td>COM 100 Human Communication</td>
<td>3</td>
</tr>
<tr>
<td>ESA 401 Communications Campaigns for Agricultural and Environmental Issues (W)</td>
<td>3</td>
</tr>
<tr>
<td>FW 435 Integrated Communications for the Fisheries and Wildlife Professional</td>
<td>3</td>
</tr>
<tr>
<td>JRN 412 Environmental Reporting</td>
<td>3</td>
</tr>
<tr>
<td>WRA 320 Technical Writing (W)</td>
<td>3</td>
</tr>
<tr>
<td>WRA 331 Writing in the Public Interest (W)</td>
<td>3</td>
</tr>
<tr>
<td>WRA 341 Writing Nature and the Nature of Writing</td>
<td>3</td>
</tr>
<tr>
<td>WRA 453 Grant and Proposal Writing</td>
<td>3</td>
</tr>
<tr>
<td>f. One of the following courses (3 credits):</td>
<td></td>
</tr>
<tr>
<td>FW 438 Philosophy of Biology (W)</td>
<td>3</td>
</tr>
<tr>
<td>PHL 340 Ethics</td>
<td>3</td>
</tr>
<tr>
<td>PHL 484 Philosophy of Biological Science</td>
<td>3</td>
</tr>
<tr>
<td>GEO 432 Environmental Ethics (W)</td>
<td>3</td>
</tr>
<tr>
<td>g. One of the following courses (3 credits):</td>
<td></td>
</tr>
<tr>
<td>FW 400 Independent Study in Fisheries and Wildlife</td>
<td>3</td>
</tr>
<tr>
<td>FW 406 International Studies in Fisheries and Wildlife</td>
<td>3</td>
</tr>
<tr>
<td>499 Senior Thesis in Fisheries and Wildlife</td>
<td>3</td>
</tr>
<tr>
<td>h. All of the following courses (17 credits):</td>
<td></td>
</tr>
<tr>
<td>FW 101 Fundamentals of Fisheries and Wildlife Ecology and Management</td>
<td>3</td>
</tr>
<tr>
<td>FW 293 Undergraduate Seminar in Fisheries and Wildlife</td>
<td>3</td>
</tr>
<tr>
<td>FW 364 Ecological Problem Solving</td>
<td>3</td>
</tr>
<tr>
<td>424 Population Analysis and Management</td>
<td>3</td>
</tr>
<tr>
<td>FW 434 Human Dimension of Fisheries and Wildlife Management (W)</td>
<td>3</td>
</tr>
<tr>
<td>ZOL 355 Ecology</td>
<td>3</td>
</tr>
<tr>
<td>i. One of the following courses (2 or 3 credits):</td>
<td></td>
</tr>
</tbody>
</table>

27
AGRICULTURE AND NATURAL RESOURCES
Department of Fisheries and Wildlife

FW 101L Fundamentals of Fisheries and Wildlife Ecology and Management Laboratory 2
FW 238 Introductory Fisheries and Wildlife Experience 3

j. One of the following concentrations:

Conservation Biology (24 to 26 credits):
(1) All of the following courses (9 credits):
FW 444 Conservation Biology .. 3
FW 443 Restoration Ecology ... 3
ZOL 465 Ecology (W) ... 3
(2) One of the following courses (3 credits):
PLB 411 Plant Ecology .. 3
(3) One of the following courses (3 or 4 credits):
CSS 350 Introduction to Plant Genetics .. 4
(4) One of the following courses (3 credits):
FW 410 Upland Ecosystem Management ... 3
FW 414 Aquatic Ecosystem Management 3
FW 416 Marine Ecosystem Management 3
FW 417 Wetland Ecology and Management 3
FW 479 Fisheries Management .. 3
(5) One of the following courses (3 credits):
EEP 255 Ecological Economics .. 3
ESA 430 Environmental and Natural Resource Law 3
FOR 484 Forest Resource Economics (W) 3
FW 481 Global Issues in Fisheries and Wildlife 3
FOR 486 Natural Resource Policy ... 3
ZOL 446 Environmental Issues and Public Policy 3
(6) One of the following courses (3 or 4 credits):
ENT 422 Aquatic Entomology .. 3
ENT 204 Forest Vegetation ... 4
FW 471 Ichthyology ... 4
FW 479 Fisheries Management .. 4
FW 470 Fisheries Techniques .. 3
(3) One of the following courses (3 credits):
FW 414 Aquatic Ecosystem Management 3
FW 416 Marine Ecosystem Management 3
FW 417 Wetland Ecology and Management 3
(4) One of the following courses (3 or 4 credits):
ENT 422 Aquatic Entomology .. 3
ZOL 306 Invertebrate Biology ... 4
(5) One of the following courses (3 or 4 credits):
PLB 418 Plant Systems .. 3
PLB 424 Algal Biology .. 4
(6) One of the following courses (3 or 4 credits):
FW 473 Environmental Fish Physiology 3
FW 479 Fisheries Management .. 3
FW 423 Principles of Fish and Wildlife Disease Management 3
FW 413 Wildlife Research and Management Techniques 3
(2) One of the following courses (6 credits):
ZOL 360 Biology of Birds .. 4
ZOL 361 Michigan Birds .. 4
ZOL 365 Biology of Mammals .. 4
ZOL 384 Biology of Amphibians and Reptiles (W) 4
Wildlife Biology and Management (24 or 25 credits):
(1) All of the following courses (9 credits):
FW 410 Upland Ecosystem Management 3
FW 417 Wetland Ecology and Management 3
FW 413 Wildlife Research and Management Techniques 3
(2) Two of the following courses (6 credits):
ZOL 360 Biology of Birds .. 4
ZOL 361 Michigan Birds .. 4
ZOL 365 Biology of Mammals .. 4
ZOL 384 Biology of Amphibians and Reptiles (W) 4
(3) One of the following courses (3 or 4 credits):
FOR 204 Forest Vegetation ... 4
PLB 218 Plants of Michigan .. 3
PLB 418 Plant Systems .. 3
(4) One of the following courses (3 credits):
ZOL 328 Comparative Anatomy and Biology of Vertebrates (W) 4
ZOL 341 Fundamental Genetics ... 4
ZOL 483 Environmental Physiology (W) 4
Water Sciences (24 to 27 credits):
(1) Two of the following courses (6 credits):
FW 410 Upland Ecosystem Management 3
FW 420 Stream Ecology .. 3
FW 472 Limnology ... 3
(2) The following course (3 credits):
FW 474 Limnological Techniques ... 3
(3) One of the following courses (3 credits):
FW 414 Aquatic Ecosystem Management 3
FW 416 Marine Ecosystem Management 3
FW 479 Fisheries Management .. 3
(4) One of the following courses (3 or 4 credits):
ENT 422 Aquatic Entomology .. 3
FW 471 Ichthyology ... 4
ZOL 306 Invertebrate Biology ... 4
(5) One of the following courses (3 or 4 credits):
PLB 418 Plant Systems .. 3
PLB 424 Algal Biology .. 4
(6) Two of the following courses (6 to 8 credits):
FW 454 Environmental Hydrology for Watershed Management 3
FW 473 Environmental Fish Physiology 3
GLG 421 Environmental Geochemistry .. 3
MMG 425 Microbial Ecology .. 3
MMG 426 Biogeochemistry .. 3
ZOL 303 Oceanography .. 4
ZOL 341 Fundamental Genetics ... 4
ZOL 353 Marine Biology (W) ... 4
Fish and Wildlife Disease Ecology and Management
(27 or 28 credits):
(1) All of the following courses (17 credits):
EPI 390 Disease in Society: Introduction to Epidemiology and Public Health 4
FW 423 Principles of Fish and Wildlife Disease Management 3
FW 416 Marine Ecosystem Management 3
FW 417 Wetland Ecology and Management 3
FW 479 Fisheries Management .. 3
(4) One of the following courses (3 or 4 credits):
FW 471 Ichthyology ... 4
ZOL 306 Invertebrate Biology ... 4
ZOL 360 Biology of Birds .. 4
ZOL 361 Michigan Birds .. 4
ZOL 365 Biology of Mammals .. 4
ZOL 384 Biology of Amphibians and Reptiles (W) 4
Preventive Medicine (36 credits):
(1) All of the following courses (32 credits):
ANS 314 Genetic Improvement of Domestic Animals 4
(2) One of the following courses (3 credits):
ANS 313 Principles of Animal Feeding and Nutrition 4
BMB 401 Basic Biochemistry ... 4
CEM 251 Organic Chemistry I .. 3
CEM 252 Organic Chemistry II .. 3
CEM 255 Organic Chemistry Laboratory 2
FW 423 Principles of Fish and Wildlife Disease Management 3
FW 423L Principles of Fish and Wildlife Disease Laboratory 1
MMG 301 Introductory Microbiology ... 1
MMG 302 Introductory Microbiology Laboratory 1
MMG 409 Eukaryotic Cell Biology ... 3
PHY 251 Introductory Physics Laboratory I 1
PHY 252 Introductory Physics Laboratory II 1
(1) One of the following courses (4 credits):
ANS 314 Genetic Improvement of Domestic Animals 4
ZOL 341 Fundamental Genetics ... 4
SPECIALIZATION IN CONSERVATION AND ENVIRONMENTAL LAW ENFORCEMENT

The Specialization in Conservation and Environmental Law Enforcement is designed to combine the natural resource expertise of the fisheries and wildlife, forestry, parks, recreation and tourism resource development programs, with the law enforcement expertise of the criminal justice program to serve those students with career interests in conservation or environmental law enforcement. The specialization is available as an elective to students who are enrolled in bachelor’s degree programs in criminal justice, fisheries and wildlife, forestry, park, recreation and tourism resources, and resource development. The specialization is administered by the Department of Fisheries and Wildlife.

Students who are interested in enrolling should apply to the Department of Fisheries and Wildlife for acceptance.
With the approval of the department and college that administer the student’s degree program, courses that are used to satisfy the requirements for the specialization may also be used to satisfy the requirements for the bachelor’s degree.

Requirements for the Specialization in Conservation and Environmental Law Enforcement

The student must complete:

Natural Resources Conservation and Management ... 5 or 6

1. One of the following courses (3 credits):
 - FOR 202 Introduction to Forestry .. 3
 - FOR 220 Forests and the Global Environment 3
 - FW 100 Introduction to Fisheries and Wildlife Management 3
 - FW 284 Natural History and Conservation in Michigan 3
 - PRR 210 Our National Parks and Recreation Lands 3
 - PRR 213 Introduction to Parks, Recreation, and Leisure 3
 - RD 200 Issues and Applications in Resource Management 3
 - RD 201 Environmental and Natural Resources 3

2. One of the following courses (2 or 3 credits):
 - FW 444 Conservation Biology ... 3
 - FOR 310 Practices of Forest Conservation ... 3
 - PRR 449 Management of Natural Resource Based Recreation 3
 - RD 316 Land Use and Natural Resource Management 3
 - RD 320 Resource Management and Planning 3

Environmental Attitudes, Policy and Law .. 6 or 7

1. One of the following courses (3 or 4 credits):
 - FW 434 Human Dimensions of Fisheries and Wildlife Management 3
 - FOR 230 Communicating Forestry Issues 3
 - PRR 302 Environmental Attitudes and Concepts 3
 - PRR 320 Human Behavior in Park and Recreation Settings 3
 - RD 300 Environmental Communication and Conflict Management 3

2. One of the following courses (3 credits):
 - FOR 466 Natural Resources Planning and Policy 3
 - PHL 354 Philosophy of Law ... 3
 - PLS 305 Environmental Politics ... 3
 - RD 301 Federal and State Environmental Policy 3
 - RD 430 Law and Resources ... 3
 - RD 433 Law and Social Change ... 3
 - ZOL 446 Environmental Issues and Public Policy 3

Law Enforcement .. 10 to 12

1. The following courses (4 credits):
 - CJ 110 Introduction to Criminal Justice 4
 - CJ 210 Introduction to Forensic Science ... 4
 - CJ 220 Criminology ... 4
 - CJ 292 Methods of Criminal Justice Research 4
 - CJ 335 Police Process .. 4
 - CJ 375 Criminal Law Process ... 4
 - CJ 433 Law Enforcement Intelligence Operations 3
 - CJ 435 Forensic Science Procedures ... 3

SPECIALIZATION IN MARINE ECOSYSTEM MANAGEMENT

The specialization in Marine Ecosystem Management is designed to provide students with a fundamental background in ecosystem management of marine natural resources. Students gain insight and experience in marine management issues relative to estuarine, coastal, and open-water marine ecosystems from the perspective of habitat, biota and human resource users. Students are also exposed to the management skills necessary to recognize and use effective techniques to conserve, preserve and restore marine ecosystem integrity for the benefit of society. This unique management emphasis serves the career interests of students well as they pursue positions in the marine sciences.

The specialization in Marine Ecosystem Management is available as an elective to students who are enrolled in Bachelor of Science degree programs with majors in Fisheries and Wildlife, Lyman Briggs School, Resource Development, and Zoology. The specialization is administered by the Department of Fisheries and Wildlife. With the approval of the department and college that administer the student’s degree program, courses that are used to satisfy the requirements for the specialization may also be used to satisfy the requirements for the bachelor’s degree.

Students who plan to complete the requirements for the marine ecosystem management specialization should contact the undergraduate advisor for fisheries and wildlife in the Department of Fisheries and Wildlife.

Requirements for the Specialization in Marine Ecosystem Management

The student must complete:

Marine Ecosystem Management

All of the following courses: 14

- FW 110 Conservation and Management of Marine Resources 3
- FW 416 Marine Ecosystem Management 3
- GLG 303 Oceanography ... 4
- ZOL 353 Marine Biology ... 4

Biodiversity

One of the following courses: ... 4

- FW 462 Ecology and Management of Biodiversity 4
- FW 471 Ichthyology ... 4
- PFB 423 Wetland Plants and Algae .. 4
- PFB 424 Algal Biology ... 4
- ZOL 306 Invertebrate Biology ... 4

Experiential Learning in Marine Ecosystem Management

One of the following courses which must contain a marine emphasis: 2 or 3

- FW 480 International Studies in Fisheries and Wildlife 3
- FW 493 Professional Internships in Fisheries and Wildlife 2 or 3
- ZOL 453 Field Studies in Marine and Estuarine Biology 2 or 3
- ZOL 496 Internship in Zoology ... 2 or 3
- ZOL 498 Internship in Zoo and Aquarium Science 3

GRADUATE STUDY

The graduate program in the Department of Fisheries and Wildlife at Michigan State University is nationally and internationally recognized. Our faculty are among the top professionals in their fields, and our programs are at the forefront of teaching management policies, conservation biology, human dimensions of natural resource management, as well as fish and wildlife biology, ecology, and management.

Nationally and internationally recognized scientists visit the department, interacting with the faculty and students and presenting seminars. Graduate students are encouraged to attend regional, national, and international professional meetings such as the annual Midwest Fish and Wildlife Conference, the American Fisheries Society Conference, the Wildlife Society Conference, the North American Wildlife and Natural Resources Conference, the Society for Conservation Biology Conference, Ecological Society of America Conference, and the International Association of Landscape Ecology Conference in addition to meetings such as the Michigan Chapters of the American Fisheries Society and The Wildlife Society.

The Department of Fisheries and Wildlife brings together a diverse group of related basic and applied sciences. Faculty are actively engaged in teaching, research, and outreach. Major areas of interest include: wildlife ecology and management; fisheries science and management; limnology (including water quality and water pollution biology); conservation biology; environmental management; aquaculture; human dimensions of resource management; wetland ecology and management; stream ecology; wildlife disease ecology and conservation medicine; and ecosystem and population modeling.

In addition to the major areas of interest, fisheries and wildlife graduate students can develop their own program of study under the direction of major professors within the department and guidance committees. For students who wish to pursue programs in the social, economic, geographic, or education-related aspects of fisheries and wildlife management, interdisciplinary programs are offered. Interaction with many related departments and colleges at Michigan State University, as well as with state and fed-
eral agencies, allow for both depth and breadth in research and academic programs.

The Department of Fisheries and Wildlife offers Master of Science and Doctor of Philosophy degree programs in fisheries and wildlife, a Doctor of Philosophy degree program in fisheries and wildlife—environmental toxicology, and a Graduate Certificate in Conservation Law.

Students in the Master of Science degree program in fisheries and wildlife are eligible for the dual JD program with Michigan State University - College of Law.

Students who are enrolled in Master of Science and Doctor of Philosophy degree programs in the Department of Fisheries and Wildlife may elect specializations in environmental and resource economics, fish and wildlife disease ecology and conservation medicine, and gender, justice and environmental change. For additional information, refer to the statements on Interdepartmental Graduate Specializations in Environmental and Resource Economics, Graduate Specialization in Fish and Wildlife Disease Ecology and Conservation Medicine, and the Graduate Specialization in Gender, Justice, and Environmental Change in this catalog.

FISHERIES AND WILDLIFE

Programs of study are based on the academic preparation, interests, and career goals of individual students. Although individual students' programs vary, all graduate programs in fisheries and wildlife are designed to provide:

1. Broad fundamental preparation in the ecological sciences.
2. Preparation in one of the areas of specialization within the field of fisheries and wildlife.
3. A foundation for careers in administration, research, management, teaching, or extension.

The department offers the following areas of specialization within the field of fisheries and wildlife: conservation biology, restoration ecology, human dimensions, fisheries ecology and management, wildlife ecology and management, population dynamics and modeling, limnology, aquaculture, environmental management, environmental education, and environmental toxicology.

In cooperation with other colleges and departments, graduate students in the Department of Fisheries and Wildlife may be involved in research in the nutrition, pathology, and physiology of fish and wildlife.

Master of Science

In addition to meeting the requirements of the university and of College of Agriculture and Natural Resources, the student must meet the requirements specified below.

Admission

Admission to a master's program requires prior completion of an undergraduate major in a biological or other appropriate science with course work appropriate to support the graduate program. Students lacking sufficient courses may be admitted provisionally until such deficiencies are removed by completing collateral courses. Scores on the Graduate Record Examination General Test are required. The Subject Test in Biology is recommended.

Requirements for the Master of Science Degree in Fisheries and Wildlife

The student may elect either Plan A (with thesis) or Plan B (without thesis). A total of 30 credits is required for the degree under either Plan A or Plan B. The student and the major professor plan a program of study that includes courses related to one of the areas of specialization within the field of fisheries and wildlife referenced above and three credits of Fisheries and Wildlife 893. The program must be approved by the student's guidance committee.

Doctor of Philosophy

In addition to meeting the requirements of the university and of College of Agriculture and Natural Resources, the student must meet the requirements specified below.

Admission

Applicants for a doctoral program should have completed a Bachelor of Science degree and a Master of Science degree in a biological or other appropriate science. Additional background in mathematics, chemistry, botany, and zoology is desirable. Scores on the Graduate Record Examination General Test are required. The Subject Test in Biology is recommended.

Requirements for the Doctor of Philosophy Degree in Fisheries and Wildlife

The student and the major professor plan a program of study that includes courses related to one of the areas of specialization within the field of fisheries and wildlife referenced above and three credits of Fisheries and Wildlife 893. The program must be approved by the student's guidance committee.

FISHERIES AND WILDLIFE—ENVIRONMENTAL TOXICOLOGY

Doctor of Philosophy

For information about the Doctor of Philosophy degree program in fisheries and wildlife—environmental toxicology, refer to the statement on Doctoral Program in Environmental and Integrative Toxicological Sciences in the Graduate Education section of this catalog.

GRADUATE CERTIFICATE IN CONSERVATION LAW

The Graduate Certificate in Conservation Law provides students an opportunity to explore conservation law by gaining familiarity with the language, theory and practices of the law discipline to better integrate their core education with their respective environmental or conservation-related disciplinary field.

The graduate certificate is available as an elective to students who are enrolled in master's or doctoral degree programs at Michigan State University.

Requirements for the Graduate Certificate in Conservation Law

Students must complete both of the following courses (9 credits):

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAW 630M</td>
<td>Conservation Law Clinic I</td>
<td>6</td>
</tr>
<tr>
<td>LAW 630N</td>
<td>Conservation Law Clinic II</td>
<td>3</td>
</tr>
</tbody>
</table>

CREDITS
DEPARTMENT of
FOOD SCIENCE and
HUMAN NUTRITION

Frederik Derksen, Chairperson

The mission of the department of Food Science and Human Nutrition is to advance human health through excellent teaching, research, and outreach programs in the disciplines of food science and human nutrition. Our faculty address contemporary issues related to global food safety, quality, food product development, and production as well as nutrition in the context of human health, chronic disease prevention, and food security.

UNDERGRADUATE PROGRAMS

The department offers Bachelor of Science degree programs with majors in dietetics, food science, and nutritional sciences. A Minor in Nutritional Sciences, a Specialization in Beverage Science and Technology, and a Specialization in Food Processing and Technology are also available.

Students who are enrolled in the Bachelor of Science degree program with a major in food science may elect a Specialization in Agricultural and Natural Resources Biotechnology. For additional information, refer to the Specialization in Agricultural and Natural Resources Biotechnology statement.

DIETETICS

The undergraduate program in dietetics has been approved by the Academy of Nutrition and Dietetic's Accreditation Council for Education in Nutrition and Dietetics (ACEND) as a Didactic Program that meets the minimum academic requirements for professionally qualified dietitians.

The undergraduate program in dietetics is designed so that supporting disciplines provide a knowledge base prerequisite to the professional courses. Course offerings are sequenced to build upon previous knowledge and provide increasingly complex experiences. The student is expected to acquire approximately equal expertise in nutritional assessment and care and in foodservice management systems.

Verification of successful completion of the ACEND-approved minimum academic requirements is the responsibility of the Dietetic Program Director in the Department of Food Science and Human Nutrition.

Persons who wish to receive a final Verification Statement for the fulfillment of ACEND-approved minimum academic requirements from Michigan State University, but who have not completed a Bachelor of Science degree with a Dietetics major at Michigan State University, must complete a minimum of 10 credits in 300-400 level courses in dietetics at Michigan State University with a minimum grade of 2.0 or better in each course.

Eligibility for the Registration Examination for Dietitians is determined by verification of successful completion of an ACEND-approved Didactic Program in Dietetics and one of the following supervised practice experiences: ACEND-approved Dietetic Internship, or ACEND-approved Accredited Coordinated Program. Dietetic registration, as administered by the Commission on Dietetic Registration, is a requirement of most positions for professional dietitians.

Admission as a Junior

Enrollment in the dietetics major is limited. The Bachelor of Science Degree in Dietetics is a professional degree, which requires acceptance into a competitive internship in order to complete the requirements for eligibility to take the registered dietitian examination. A minimum cumulative grade-point average of 2.5 is necessary to be considered for admission.

Requirements for the Bachelor of Science Degree in Dietetics

1. The University requirements for bachelor’s degrees as described in the Undergraduate Education section of this catalog.

2. The University’s Tier II writing requirement for the Dietetics major is met by completing Human Nutrition and Foods 300, 471 and 472. Those courses are referenced in item 3. a. below.

3. a. All of the following courses in the Department of Food Science and Human Nutrition:

 - HNF 150 Introduction to Human Nutrition .. 3
 - HNF 300 Experimental Approaches to Foods .. 4
 - HNF 320 Professional Practice of Dietetics and Nutrition 3
 - HNF 377 Applied Community Nutrition ... 4
 - HNF 400 Art and Science of Food Preparation .. 2
 - HNF 406 Global Foods and Culture ... 3
 - HNF 440 Foodservice Operations .. 3
 - HNF 444 The Business of Nutrition Services ... 3
 - HNF 445 Foodservice Management Practicum ... 2
 - HNF 453 Nutrition and Human Development ... 3
 - HNF 461 Advanced Human Nutrition: Carbohydrates, Lipids and Proteins 3
 - HNF 462 Advanced Human Nutrition: Vitamins and Minerals 3
 - HNF 471 Medical Nutrition Therapy I .. 4
 - HNF 472 Medical Nutrition Therapy II .. 4

 b. The following courses outside the Department of Food Science and Human Nutrition:

 - ANTR 350 Human Gross Anatomy for Pre-Health Professionals 3
 - BMB 200 Introduction to Biochemistry .. 4
 - CEM 141 General Chemistry ... 4
 - CEM 143 Survey of Organic Chemistry ... 4
 - CEM 181 Chemistry Laboratory I ... 1
 - FSC 342 Food Safety and Hazard Analysis Critical Control Point Program 3
 - MGT 325 Management Skills and Processes ... 3
 - PBL 250 Introductory Physiology .. 4
 - PSY 101 Introductory Psychology .. 4

 (1) All of the following courses (30 credits):

 (2) One of the following courses (3 or 5 credits):

 - MTH 103 College Algebra .. 3
 - MTH 116 College Algebra and Trigonometry ... 5

 (3) One of the following courses (3 or 4 credits):

 - STT 200 Statistical Methods .. 3
 - STT 201 Statistical Methods .. 4

 (4) The following course (3 credits):

 - CSE 101 Computing Concepts and Competencies .. 3

 Students who pass a waiver examination will not be required to complete Computer Science and Engineering 101.

FOOD SCIENCE

Graduates with a Bachelor of Science degree in food science may be employed by food and allied industries, federal and state governments, and universities to work at the interface between the production and delivery of food. The program also prepares students for advanced study in graduate and professional schools.

The required courses stress the principles of food safety and preservation and the application of scientific principles to control and enhance the flavor, color, texture, and nutritious value.

In addition to the core program, students in food science must complete one of the following interdisciplinary concentrations that are designed to provide additional breadth and depth: basic food...
science, food business and industry, food packaging, or food technology.

Basic Food Science. This concentration is designed for students with an interest in integrating in-depth study of basic sciences with the core of their food science education. Advanced courses in chemistry, microbiology, food safety, toxicology and pharmacology are among the fields students may elect to strengthen their bachelor's degree. Students interested in professional post-graduate education such as medicine and dentistry may elect to take a series of courses that meets the admission standards for most professional colleges.

Food Business and Industry. This concentration is designed for students who are interested in working for food or food-related businesses, where a knowledge of both food science and of food business management, economics, and marketing is important. Students who complete this concentration may pursue careers in manufacturing management, technical sales, food product marketing, or similar areas or may pursue graduate study in business.

Food Packaging. This concentration is designed to prepare students for careers in the food industry with an emphasis in food packaging. The concentration focuses on the design, use, and evaluation of food packaging materials and the effect of packaging materials on the shelf life of food. Students who complete this concentration may pursue graduate study in packaging or food science.

Food Technology. This concentration focuses on food processing methods and their effect on food quality and process characteristics. Students who complete this concentration may pursue careers in production supervision, quality assurance, inspection, product development, and process development. They may also pursue graduate study to prepare for positions in research, production, and management in the food industry, government, or universities.

Requirements for the Bachelor of Science Degree in Food Science

1. The University requirements for bachelor's degrees as described in the Undergraduate Education section of this catalog. 120 credits, including general elective credits, are required for the Bachelor of Science degree in Food Science.

 The University's Tier II writing requirement for the Food Science major is met by completing all of the following courses: Food Science 325, 402, 440, 441, 455, 470. Those courses are referenced in item 3.a. below.

 Students who are enrolled in the Food Science major leading to the Bachelor of Science degree in the Department of Food Science and Human Nutrition may complete an alternative track to Integrative Studies in Biological and Physical Sciences that consists of the following courses: Biological Science 161, Chemistry 161 and 162, and Physics 231. The completion of Chemistry 161 and 162 satisfies the laboratory requirement. Biological Science 161, Chemistry 161 and 162 and Physics 231 may be counted toward both the alternative track and the requirements for the major referenced in item 3. below.

 The completion of the College of Agriculture and Natural Resources mathematics requirement may also satisfy the University mathematics requirement.

2. The requirements of the College of Agriculture and Natural Resources for the Bachelor of Science degree.

 Certain courses referenced in requirement 3. below may be counted toward College requirements as appropriate. The completion of Mathematics 124 satisfies the College's mathematics requirement.

3. The following requirements for the major:

 a. All of the following courses: 51

Course	Credits
BE 429 Fundamentals of Food Engineering	3
BS 161 Cell and Molecular Biology	4
CEM 141 General Chemistry	3
CEM 142 General and Inorganic Chemistry	3
CEM 161 Chemistry Laboratory I	4
CEM 162 Chemistry Laboratory II	3
FSC 211 Principles of Food Science	3
FSC 325 Food Processing: Unit Operations	3
FSC 401 Food Chemistry	3
FSC 402 Food Chemistry Laboratory	3
FSC 410 Food Microbiology	3
FSC 441 Food Microbiology Laboratory	2
FSC 455 Food and Nutrition Laboratory	3
FSC 470 Integrated Approaches to Food Product	3
HNF 260 Principles of Human Nutrition	3
MMG 301 Introductory Microbiology	3

 b. All of the following courses (6 credits):

Course	Credits
MTH 124 Survey of Calculus I	3
PHY 231 Introductory Physics I	3

 c. Nine credits from the following courses:

Course	Credits
BMB 401 Comprehensive Biochemistry	4
CEM 251 Organic Chemistry I	3
CEM 252 Organic Chemistry II	3
CEM 255 Organic Chemistry Laboratory	2
STT 201 Statistical Methods	4
ACR 205 Agriculture and Natural Resources Communication Theory and Practice	3
COM 100 Human Communication	3
AD 225 Introduction to Interpersonal Communication	3

 d. Each of the following concentrations: 23 to 26

Concentration	Credits
Basic Food Science (25 credits):	
(1) All of the following courses (16 credits):	
BMB 401 Comprehensive Biochemistry	4
CEM 251 Organic Chemistry I	3
CEM 252 Organic Chemistry II	3
CEM 255 Organic Chemistry Laboratory	2
STT 201 Statistical Methods	4
(2) Nine credits from the following courses:	
ANS 407 Food and Animal Toxicology	3
ANS 417 Topics in Toxicology	1
CEM 292 Quantitative Packaging	3
CEM 333 Instrumental Methods and Applications	3
CEM 383 Introductory Physical Chemistry I	3
FSC 342 Food Safety and Hazard Analysis	3
FSC 421 Food Laws and Regulations	3
MMG 409 Enzyme Biochemistry	3
MMG 425 Microbial Ecology	3
MMG 431 Microbial Genetics	3
MMG 445 Microbial Biotechnology (W)	3
MMG 451 Immunology	3
PHM 350 Introductory Human Pharmacology	3
PHM 450 Introduction to Chemical Toxicology	3
The Basic Food Science concentration fills many, but not all, of the minimum requirements for admission to professional schools. Students interested in preparing for post-graduate professional programs should consult with a preprofessional advisor in the College of Natural Science. Admission requirements of professional schools vary and the student is responsible for reviewing the requirements of each school of interest and consulting regularly with an advisor.	

 (1) Food Business and Industry (23 credits):

Course	Credits
ACC 230 Survey of Accounting Concepts	3
BMB 200 Introduction to Biochemistry	4
CEM 143 Survey of Organic Chemistry	4
MKT 327 Introduction to Marketing	3
STT 315 Introduction to Probability and Statistics for Business	3

 (2) Nine credits from the following courses:

Course	Credits
ABM 100 Decision-making in the Agri-Food System	3
CEM 435 Financial Management in the Agri-Food System	3
FIM 335 Food Marketing Management	3
MKT 320 Consumer and Organizational Buyer Behavior	3
Either Finance 311 or Agribusiness Management 435, but not both of those courses, may be used to satisfy requirement (2) for the Food Business and Industry concentration.	

 (1) Food Packaging (26 credits):

Course	Credits
ACC 230 Survey of Accounting Concepts	3
BMB 200 Introduction to Biochemistry	4
CEM 143 Survey of Organic Chemistry	4
PKG 221 Packaging with Glass and Metal	3
PKG 222 Packaging with Paper and Paperboard	4
PKG 223 Packaging with Plastics	4
STT 201 Statistical Methods	4

 (2) Nine credits from the following courses (9 credits):

Course	Credits
FSC 430 Food Processing: Fruits and Vegetables	3
FSC 431 Food Processing: Cereals	3
FSC 432 Food Processing: Dairy Foods	3
FSC 434 Food Processing: Muscle Foods	3
MMG 421 Food Laws and Regulations	3
MMG 433 Sensory Analysis	3
ABM 435 Agricultural Business and Food Industry Sales (W)	3
HB 100 Introduction to Hospitality Business	2
HB 165 Food Management: Safety and Nutrition	2
HB 267 Management of Food and Beverage Systems	3
HNF 300 Experimental Approaches to Food	4

Courses selected to meet this requirement may not be used to fulfill requirement 3. b. above.
NUTRITIONAL SCIENCES

The nutritional sciences major emphasizes intensive study in biological and physical sciences as a basis for understanding the science of nutrition and the relationships between nutrients and human health. Core course requirements emphasize human nutrition with areas of study in energy metabolism, proteins, vitamins, minerals, and nutrition in the prevention and treatment of disease. Issues and techniques involved in nutrition research, and a food and nutrition laboratory course are included in the core courses. Supporting discipline courses emphasize biochemistry, biology, chemistry, mathematics, microbiology, physics and physiology.

This major is designed to meet the admissions requirements of most colleges of medicine, dentistry and paramedical colleges while the student pursues a bachelor's degree in a clinically related area. The major also prepares students to enter graduate school programs in nutrition and other life sciences. Graduates in nutritional sciences qualify for positions in the food industry, corporate wellness and health promotion programs, public health programs, pharmaceutical sales and similar occupations.

Requirements for the Bachelor of Science Degree in Nutritional Sciences

1. The University requirements for bachelor's degrees as described in the Undergraduate Education section of this catalog.
 - The University's Tier II writing requirement for the Nutritional Sciences major is met by completing Food Science 455 and Human Nutrition and Foods 464. Those courses are referred in item 3.a. below.

 Students who are enrolled in the Nutritional Sciences major leading to the Bachelor of Science degree in the Department of Food Science and Human Nutrition may complete an alternative track in Integrative Studies in Biological and Physical Sciences that consists of the following courses: Chemistry 141, 161, 162; Physiology 310 or 431. The completion of Chemistry 161 and 162 satisfies the laboratory requirement.

2. The requirements of the College of Agriculture and Natural Resources for the Bachelor of Science degree.
 - The credits earned in certain courses referenced in item 3. below may be counted toward college requirements as appropriate.
 - The completion of Mathematics 124 or 132 or Lyman Briggs 118 satisfies the college mathematics requirement.

3. The following requirements for the major:

 a. The following courses in the Department of Food Science and Human Nutrition: 22 or 23

 (1) All of the following courses (19 credits):
 - FSC 211 Principles of Food Science ..3
 - FSC 455 Food and Nutrition Laboratory ..3
 - HNF 260 Principles of Human Nutrition ..3
 - HNF 461 Advanced Human Nutrition: Carbohydrates, Lipids and Proteins3
 - HNF 462 Advanced Human Nutrition: Vitamins and Minerals3
 - HNF 464 Nutrition in the Prevention and Treatment of Disease4

 (2) One of the following courses (2 to 4 credits): 53 to 63
 - HNF 375 Community Nutrition ...2
 - HNF 406 Global Foods and Culture ..3
 - HNF 471 Medical Nutrition Therapy I ..4

 b. The following courses outside the Department of Food Science and Human Nutrition: 53 to 63

 (1) One of the following, either (a) or (b) (4 or 6 credits):
 - (a) BMB 401 Comprehensive Biochemistry ..4
 - (b) BMB 461 Advanced Biochemistry ..3

 (2) One of the following, either (a) or (b) (5 credits):
 - (a) BS 161 Cell and Molecular Biology ..3
 - (b) BS 171 Cell and Molecular Biology Laboratory2

 - (a) LB 145 Biology II: Cellular and Molecular Biology5

 (3) One of the following, either (a) or (b) (8 credits):
 - (a) LB 273 Physics I ..4
 - (b) LB 274 Physics II ..4

 - (a) PHY 231 Introductory Physics I ...3
 - (b) PHY 232 Introductory Physics II ..3

 - (a) PHY 251 Introductory Physics I Laboratory ...1
 - (b) PHY 252 Introductory Physics II Laboratory ...1

 (4) All of the following courses (12 credits):
 - CEM 251 Organic Chemistry I ...3
 - CEM 252 Organic Chemistry II ...3
 - CEM 255 Organic Chemistry Laboratory ..2
 - MMG 301 Introductory Microbiology ...3

 MMG 302 Introductory Laboratory for General and Allied Health Microbiology1

 (5) One of the following, either (a) or (b) (6 to 8 credits):
 - (a) The following course:
 - MTH 124 Survey of Calculus I ...3

 - (b) One of the following courses:
 - MTH 126 Survey of Calculus II ..3
 - STT 201 Statistical Methods ..4
 - STT 231 Statistics for the Sciences ...3
 - STT 421 Statistics I ..3

 (6) One course from each of the following groups (9 to 12 credits):
 - (a) CEM 141 General Chemistry ..4
 - CEM 151 General and Descriptive Chemistry ...4
 - CEM 180H Honors Chemistry I ...4
 - LB 171 Principles of Chemistry I ..4
 - CEM 142 General and Inorganic Chemistry ..3
 - CEM 152 Principles of Chemistry ...3
 - CEM 182H Honors Chemistry II ...4
 - LB 172 Principles of Chemistry II ...4
 - CEM 161 Chemistry Laboratory I ..1
 - CEM 165H Honors Chemistry Laboratory I ..2
 - LB 171L Introductory Chemistry Laboratory I ..1
 - CEM 162 Chemistry Laboratory II ...1
 - CEM 186H Honors Chemistry Laboratory II ...2
 - LB 172L Principles of Chemistry in Research Laboratory1

 (7) One of the following, either (a) or (b) (9 to 12 credits):
 - (a) PSL 310 Physiology for Pre-Health Professionals4

 and

 - Two of the following courses:
 - ANTR 350 Human Gross Anatomy Pre-Health Professionals3
 - CEM 262 Quantitative Analysis ..3
 - MMG 409 Eukaryotic Cell Biology ..3
 - PHM 350 Introductory Human Pharmacology ...3
 - ZOL 341 Fundamental Genetics ..4
 - ZOL 408 Histology ..4
 - (b) PSL 431 Human Physiology I ...3
 - PSL 432 Human Physiology II ...3

 One of the following courses:
 - ANTR 350 Human Gross Anatomy Pre-Health Professionals3
 - CEM 262 Quantitative Analysis ..3
 - MMG 409 Eukaryotic Cell Biology ..3
 - PHM 350 Introductory Human Pharmacology ...3
 - ZOL 341 Fundamental Genetics ..4
 - ZOL 408 Histology ..4

MINOR IN NUTRITIONAL SCIENCES

The Minor in Nutritional Sciences, which is administered by the Department of Food Science and Human Nutrition, will broaden students’ understanding of the science of nutrition and the relationships between food and health.

The minor is available as an elective to students who are enrolled in bachelor’s degree programs at Michigan State University other than the Bachelor of Sciences Degree in Nutritional Sciences or the Bachelor of Science Degree in Dietetics. With the approval of the department and college that administers the student’s degree program, the courses that are used to satisfy the minor may also be used to satisfy the requirements for the bachelor’s degree.

Students who plan to complete the requirements for the minor should consult a Nutritional Sciences undergraduate advisor in Department of Food Science and Human Nutrition.

Requirements for the Minor in Nutritional Sciences

CREDITS

Complete a 16 credits from the following:

1. One of the following courses (3 credits):
 - HNF 150 Introduction to Human Nutrition ..3
 - HNF 260 Principles of Human Nutrition ..3

2. All of the following courses (13 credits):

AGRICULTURE AND NATURAL RESOURCES
Department of Food Science and Human Nutrition

Students must complete 15 credits from the following:

1. One of the following courses (3 credits):
 - FSC 342 Food Safety and Hazard Analysis Critical Control Point Program
 - MMG 201 Fundamentals of Microbiology
 - MMG 301 Introductory Microbiology

2. One of the following courses (3 credits):
 - HB 409 Introduction to Wine
 - HRT 430 Exploring Wines and Vines

3. Two of the following courses: (5 or 6 credits)
 - FSC 342 Food Safety and Hazard Analysis Critical Control Point Program
 - FSC 420 Quality Assurance
 - FSC 421 Food Laws and Regulations

4. One of the following courses: (3 credits)
 - ANS 320 Muscle Foods
 - FSC 430 Food Processing: Fruits and Vegetables
 - FSC 431 Food Processing: Cereals
 - FSC 432 Food Processing: Dairy Foods
 - FSC 433 Food Processing: Muscle Foods

SPECIALIZATION IN BEVERAGE SCIENCE AND TECHNOLOGY

The Specialization in Beverage Science and Technology is designed to provide students with fundamental knowledge of the production of fermented beverages. Certain courses in this specialization are only offered at off-campus wineries or breweries. The specialization is available as an elective to students who are enrolled in bachelor’s degree programs at Michigan State University. The specialization is administered by the Department of Food Science and Human Nutrition.

With the approval of the department and college that administer the student’s degree program, the courses that are used to satisfy the requirements for the specialization may also be used to satisfy the requirements for the bachelor’s degree.

Requirements for the Specialization in Beverage Science and Technology

Students must complete 15 credits from the following:

1. One of the following courses (3 credits):
 - FSC 342 Food Safety and Hazard Analysis Critical Control Point Program
 - MMG 201 Fundamentals of Microbiology
 - MMG 301 Introductory Microbiology

2. One of the following courses (3 credits):
 - HB 409 Introduction to Wine
 - HRT 430 Exploring Wines and Vines

3. Two of the following courses: (5 or 6 credits)
 - FSC 342 Food Safety and Hazard Analysis Critical Control Point Program
 - FSC 420 Quality Assurance
 - FSC 421 Food Laws and Regulations

4. One of the following courses: (3 credits)
 - ANS 320 Muscle Foods
 - FSC 430 Food Processing: Fruits and Vegetables
 - FSC 431 Food Processing: Cereals
 - FSC 432 Food Processing: Dairy Foods
 - FSC 433 Food Processing: Muscle Foods

SPECIALIZATION IN FOOD PROCESSING AND TECHNOLOGY

The Specialization in Food Processing and Technology is available as an elective to students who are enrolled in bachelor’s degree programs in the College of Agriculture and Natural Resources (other than the Bachelor of Science degree program with a major in food science), The School of Hospitality Business, the Department of Food Science and Human Nutrition in the College of Human Ecology, and the Department of Microbiology and Molecular Genetics and to students who are enrolled in the Environmental Biology/Microbiology and Microbiology coordinate majors in Lyman Briggs School. The Department of Food Science and Human Nutrition administers the specialization.

The primary educational objective of the specialization is to provide students with basic knowledge of food processing. The undergraduate coordinator for food science in the Department of Food Science and Human Nutrition is available to assist students in planning their programs of study for the specialization.

With the approval of the college and department that administer the student’s degree program, the courses that are used to satisfy the requirements for the specialization may also be used to satisfy the requirements for the bachelor’s degree.

Requirements for the Specialization in Food Processing and Technology

The student must complete:

1. One of the following courses: (3 or 4 credits)
 - ANS 210 Animal Products
 - FSC 211 Principles of Food Science
 - FSC 325 Food Processing: Unit Operations

2. The following course: (4 credits)
 - FSC 325 Food Processing: Unit Operations

3. Two of the following courses: (5 or 6 credits)
 - FSC 342 Food Safety and Hazard Analysis Critical Control Point Program
 - FSC 420 Quality Assurance
 - FSC 421 Food Laws and Regulations

4. One of the following courses: (3 credits)
 - ANS 320 Muscle Foods
 - FSC 430 Food Processing: Fruits and Vegetables
 - FSC 431 Food Processing: Cereals
 - FSC 432 Food Processing: Dairy Foods
 - FSC 433 Food Processing: Muscle Foods

GRADUATE STUDY

The department offers Master of Science and Doctor of Philosophy degree programs with majors in food science and a Doctor of Philosophy degree program with a major in food science—environmental toxicology. Those programs are described below. The department also offers Master of Science and Doctor of Philosophy degree programs with majors in human nutrition and a Doctor of Philosophy degree program with a major in human nutrition-environmental toxicology. Those programs are also described below. In addition, the department offers programs for postdoctoral research.

Each graduate program in the Department of Food Science and Human Nutrition is designed to prepare the student to become a specialist in food science or human nutrition. Programs of study and research are flexible and are designed to meet the needs and objectives of individual students. Emphasis is placed on a sound educational program to develop a high degree of professional competence in a specific program area. Attendance and participation at seminars and participation in the teaching programs where appropriate are designed to broaden the student’s background for future careers.

Students who are enrolled in Master of Science degree programs in the Department of Food Science and Human Nutrition may elect a Specialization in Environmental Toxicology. For additional information, refer to the Graduate Specialization in Environmental Toxicology statement.

Students who are enrolled in Master of Science degree programs in the Department of Food Science and Human Nutrition may elect a Specialization in Food Safety. For additional information, refer to the statement on the specialization in the College of Veterinary Medicine section of this catalog.

Students who are enrolled in Master of Science and Doctor of Philosophy degree programs in the Department of Food Science and Human Nutrition may elect specializations in Infancy and Early Childhood. For additional information, refer to the statement on Interdepartmental Graduate Specializations in Infancy and Early Childhood in the College of Social Science section of this catalog.

FOOD SCIENCE

In addition to meeting the requirements of the university and of the College of Agriculture and Natural Resources, students who are admitted to the master’s and doctoral degree programs in food science must meet the requirements specified below.

A student who is admitted to a graduate program in food science is expected to have general, quantitative, and organic chemistry and biochemistry. In addition, preparation for graduate work should include courses in the biological and agricultural sciences, mathematics, physics, nutrition, engineering, or economics. A student with insufficient academic background may be required to complete collateral courses in addition to the courses that are required for the degree.

For the master’s degree in food science, the student may elect either Plan A (with thesis) or Plan B (without thesis). A total of 30 credits is required for the degree under Plan A or Plan B.
FOOD SCIENCE—ENVIRONMENTAL TOXICOLOGY

Doctor of Philosophy

For information about the Doctor of Philosophy degree program in food science—environmental toxicology, refer to the statement on Doctoral Program in Environmental and Integrative Toxicological Sciences in the Graduate Education section of this catalog.

HUMAN NUTRITION

Master of Science

The Master of Science degree in Human Nutrition includes research, course work in advanced nutrition, statistics, seminars, and appropriate selections from one or more of the following areas: biochemistry, physiology, anthropology, immunology, epidemiology, psychology, or sociology. Students in this program must meet the requirements of the university and of the College of Agriculture and Natural Resources.

Admission

To be considered for admission to the Master of Science degree program in Human Nutrition an applicant must:

1. have completed a bachelor’s degree with courses in nutrition, including upper-level macro- and micronutrients, community or lifespan nutrition, general and organic chemistry, biology, physiology, biochemistry, and statistics;
2. be proficient in written and spoken English;
3. have a prior grade-point average of 3.0 or higher;
4. submit scores on the Graduate Record Examination General Test;
5. submit a personal letter of intent and letters of reference.

Collateral course work may be required to overcome deficiencies, but will not count towards the degree requirements.

Requirements for the Master of Science Degree in Human Nutrition

The program is available under either Plan A (with thesis) or Plan B (without thesis). The student must complete at 30 credits.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>HNF 820</td>
<td>Advanced Biochemical Nutrition</td>
<td>3</td>
</tr>
<tr>
<td>HNF 821</td>
<td>Advanced Vitamins and Minerals</td>
<td>2</td>
</tr>
<tr>
<td>HNF 823</td>
<td>Research Methods in Human Nutrition</td>
<td>1</td>
</tr>
<tr>
<td>HNF 824</td>
<td>Nutrition Policies and Programs</td>
<td>1</td>
</tr>
<tr>
<td>HNF 825</td>
<td>Nutritional Immunology</td>
<td>1</td>
</tr>
<tr>
<td>HNF 826</td>
<td>Obesity and Chronic Disease</td>
<td>1</td>
</tr>
<tr>
<td>HNF 899</td>
<td>Nutrition Seminar</td>
<td>1</td>
</tr>
</tbody>
</table>

2. A minimum of 10 credits (Plan A) or 20 credits (Plan B) in course work in one or more focus areas selected in consultation with the student’s guidance committee.

Additional Requirements for Plan A

1. The following course (6 credits):
 - HNF 899 Master’s Thesis Research

Additional Requirements for Plan B

1. Completion of a final examination or evaluation.

Doctor of Philosophy

The Doctor of Philosophy degree in Human Nutrition is designed to prepare graduates for advanced careers that require demonstrated research skills, comprehensive knowledge of the discipline, and skills essential to the dissemination of that knowledge. Through their research and course work in advanced nutrition and related areas, the student will plan, conduct, manage, and publish independent, original research based on the dissertation and peer-reviewed manuscripts. Students in the program must meet the requirements of the university and of the College of Agriculture and Natural Resources.

Admission

To be considered for admission to the Doctor of Philosophy degree program in Human Nutrition an applicant must:

1. have completed a bachelor’s degree or master’s degree with courses in nutrition, including upper-level macro- and micronutrients, community or lifespan nutrition, general and organic chemistry, biology, physiology, biochemistry, and statistics;
2. be proficient in written and spoken English;
3. have a prior grade-point average of 3.0 or higher;
4. submit scores on the Graduate Record Examination General Test;
5. submit a personal letter of intent, research experience, and letters of reference.

Collateral course work may be required to overcome deficiencies, but will not count towards the degree requirements.

Requirements for the Doctor of Philosophy Degree in Human Nutrition

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>HNF 820</td>
<td>Advanced Biochemical Nutrition</td>
<td>3</td>
</tr>
<tr>
<td>HNF 821</td>
<td>Advanced Vitamins and Minerals</td>
<td>2</td>
</tr>
<tr>
<td>HNF 823</td>
<td>Research Methods in Human Nutrition</td>
<td>1</td>
</tr>
<tr>
<td>HNF 824</td>
<td>Nutrition Policies and Programs</td>
<td>1</td>
</tr>
<tr>
<td>HNF 825</td>
<td>Nutritional Immunology</td>
<td>1</td>
</tr>
<tr>
<td>HNF 826</td>
<td>Obesity and Chronic Disease</td>
<td>1</td>
</tr>
<tr>
<td>HNF 892</td>
<td>Nutrition Seminar</td>
<td>2</td>
</tr>
</tbody>
</table>

2. Complete additional course work approved selected in consultation with the student’s guidance committee based on the student’s prior academic background in relation to the selected area of study and research.

HUMAN NUTRITION—ENVIRONMENTAL TOXICOLOGY

Doctor of Philosophy

For information about the Doctor of Philosophy degree program in human nutrition—environmental toxicology, refer to the statement on Doctoral Program in Environmental and Integrative Toxicological Sciences in the Graduate Education section of this catalog.
DEPARTMENT of FORESTRY

Richard K. Kobe, Chairperson

Forest ecosystems, from wilderness areas to forested cities, play a central role in regulating the earth's environmental quality and in providing for human well-being. Forests harbor two-thirds of the world's biodiversity and contain most of the Earth's terrestrial biomass. Forests contain more carbon than there is in the atmosphere, and thus play a major role in the global climate system. Forest ecosystems are a key player in the biosphere functioning as they modulate and link atmospheric, terrestrial and hydrological processes. Forests comprise about one-third of land area globally and in the United States. They provide a myriad of benefits to the earth's human population, including renewable wood products and energy, food, medicine, shelter, places for outdoor recreation, and inspiration for cultural and spiritual values. Forest ecosystems regulate air temperature and enhance the water cycle and precipitation to ensure productive agriculture and they stabilize stream flow to reduce soil erosion and flooding.

The Bachelor of Science degree program in Forestry is focused on educating forestry science professionals. It integrates ecology, biology, economics, and social science to help educate students to solve some of the world's most pressing natural resource, environmental, and energy issues. Our graduate programs include a Certificate Program in Forest Carbon Science, Policy and Management, as well as course and research-based master's programs, and a doctoral program. Departmental research encompasses both discovery in fundamental science and problem-oriented applied research.

UNDERGRADUATE PROGRAMS

Forestry is the interdisciplinary science that studies forested ecosystems and the myriad of services they provide. Forest science professionals apply this knowledge to promote forest protection and enhancement and to resolve forest-centered environmental and natural resource issues. Understanding forests requires an integrated interdisciplinary perspective because forests affect and are affected by numerous physical, biological, sociological and economic processes. Forestry professionals develop the knowledge and tools needed to restore and enhance the tremendous capacity of forests to sustain health and prosperity of humans and other organisms.

The Bachelor of Science degree in Forestry at MSU is the longest-standing and among the leading programs in the United States. This status is assured through thoughtful innovation, focused on developing fundamental and applied knowledge of forests' central role in human well-being and environmental quality. Through this program, forestry students will come to understand forest ecosystems from a global perspective, with numerous opportunities for hands-on learning in Michigan and throughout the world.

Students who are enrolled in the Bachelor of Science degree program with a major in Forestry may also elect a specialization in Agricultural and Natural Resources Biotechnology. For additional information, refer to the Specialization in Agricultural and Natural Resources Biotechnology statement.

FORESTRY

"How can forest ecosystems and all their recognized values be sustained in the modern world?" This is a fundamental question for the 21st century, as forest ecosystems are facing grave threats all over the world, including large-scale deforestation, forest degradation, invasive pests and pathogens, and global climate change. In the face of these threats, forestry professionals have a great responsibility and opportunity to maintain, restore and enhance the sustainability of forest ecosystems.

Students enrolled in the Bachelor of Science Degree in Forestry program develop an in-depth understanding of the natural and social sciences in order to manage forest ecosystems. Through hands-on laboratory experiences and field studies, students learn how to manage forests for a wide range of goals and acquire the skills to evaluate and ensure the ecological, economic, and social sustainability of forests. They place emphasis on development of analytical and communications skills necessary to create a positive exchange of ideas between forestry professionals and non-technical audiences. Students who graduate from this program will possess the professional training to enable them to contribute significantly to resolution of forest-centered environmental and resource problems.

Forest professionals are employed in a variety of settings. Many choose careers with public land management agencies, such as the United States Department of Agriculture Forest Service, the National Park Service, the Fish and Wildlife Service, the Soil Conservation Service, or state departments of natural resources. Conservation organizations, such as the Wilderness Society and the Nature Conservancy, also hire forestry professionals. Forestry professionals are in high demand in the forest products industry, including in sustainable production of environmentally responsible wood products and management of bio-energy plantations. Increasingly, forestry expertise is required to combat climate change through work on forest-based climate mitigation projects, often in international settings. Forest professionals work with the Peace Corps and other international development organizations in reforestation projects. There are also rewarding careers for forestry professionals in urban and suburban settings, with municipal forestry organizations or with private tree and shrub-care companies in promoting green, sustainable, and livable environments. The high quality education afforded by the bachelor's degree provides the knowledge and skills needed for the career opportunities listed above, and many others, as well as the rigorous background needed for graduate studies in forestry and related fields, including ecology, soil science, environmental science, geography, economics, social science, public policy, and law.

Requirements for the Bachelor of Science Degree in Forestry

1. The University requirements for bachelor's degrees as described in the Undergraduate Education section of this catalog; 120 credits, including general elective credits, are required for the Bachelor of Science degree in Forestry.

 - The University's Tier II writing requirement for the Forestry major is met by completing Forestry 330, 404L, 405, 406L, 414, and 462. Those courses are referenced in Item 3. a. below.

 - Students who are enrolled in the Forestry major leading to the Bachelor of Science degree in the Department of Forestry may complete an alternative track to Integrative Studies in Biological and Physical Sciences that consists of the following courses: Plant Biology 105 and 106 combined; and Chemistry 141 and 141.

 - The completion of Chemistry 161 and Plant Biology 106 satisfies the laboratory requirement. Plant Biology 105 and 106 combined, and Chemistry 141 and 161 may be counted toward both the alternative track and the requirements for the major referenced in item 3. below.

 - The completion of the College of Agriculture and Natural Resources mathematics requirement may also satisfy the University mathematics requirement.

2. The requirements of the College of Agriculture and Natural Resources for the Bachelor of Science degree.

 - Certain courses referenced in requirement 3. below may be counted toward College requirements as appropriate. The completion of Mathematics 124 or 132 satisfies the College's mathematics requirement.

3. The following requirements for the major:

 a. All of the following courses: CREDITS

 - CEM 141 General Chemistry .. 4
 - CEM 161 Chemistry Laboratory I 1
 - CSS 210 Fundamentals of Soil Science 3
The Master of Science degree may be earned either in a professional program in forest management or administration or in a forestry specialty program.

The professional program in forest management or administration is viewed as an extension of general forestry, and, therefore, requires a bachelor's degree with a major in forestry as a prerequisite or a collateral program of study in undergraduate forestry courses. There is, however, considerable flexibility in the program to meet individual student needs and objectives.

A forestry specialty program, on the other hand, is as readily open to nonforesters as to foresters. It includes some forestry courses but draws mainly from other departments in the university to provide courses appropriate to forestry specialties: forest biometrics, tree physiology, forest soils, forest recreation, forest management, forest business management, forest economics, forest influences, forest ecology, forest genetics, forest entomology, forest hydrology, and wood science and technology.

Qualified students with undergraduate degrees in forestry can usually complete the requirements for the Master of Science degree in forestry in one year. The student must meet the requirements of the university and of the College of Agriculture and Natural Resources. The student must also complete additional requirements for the program as specified by the student's academic advisor. The student may elect either Plan A (with thesis) or Plan B (without thesis). A total of 30 credits is required for the degree under Plan A or Plan B.

Doctor of Philosophy

The Doctor of Philosophy degree program with a major in forestry is open to nonforesters as well as foresters. Forestry specialties are studied in depth.

Qualified students with undergraduate degrees in forestry can usually complete the requirements for the Doctor of Philosophy degree in forestry in six semesters. The student must meet the requirements of the university and of the College of Agriculture and Natural Resources. The student must also complete additional requirements for the program as specified by the student's academic advisor.

Program requirements are highly variable, depending on the student's background of study and experience. In all cases, the student must complete an acceptable dissertation incorporating the results of original research.

FORESTRY—ENVIRONMENTAL TOXICOLOGY

Doctor of Philosophy

For information about the Doctor of Philosophy degree program in forestry—environmental toxicology, refer to the statement on Doctoral Program in Environmental and Integrative Toxicological Sciences in the Graduate Education section of this catalog.

PLANT BREEDING, GENETICS and BIOTECHNOLOGY—FORESTRY

The Department of Forestry offers Master of Science and Doctor of Philosophy degree programs in plant breeding, genetics and biotechnology—forestry. Students meet the requirements for admission and the requirements for the degree as specified in the statement on Interdepartmental Graduate Programs in Plant Breeding, Genetics and Biotechnology.

Additional information about graduate study may be obtained by writing to the Department of Forestry.

GRADUATE CERTIFICATE IN FOREST CARBON SCIENCE, POLICY AND MANAGEMENT

The Graduate Certificate in Forest Carbon Science, Policy and Management provides students with interdisciplinary training necessary to plan, manage, monitor and evaluate climate change mitigation projects that seek to retain or sequester carbon in forest ecosystems. Students will gain specific expertise needed internationally to participate in market-based, climate change mitigation activities such as the United Nations Collaborative Programme on Reducing Emissions from Deforestation and Forest Degradation (REDD+). The graduate certificate is available online only.
Requirements for the Graduate Certificate in Forest Carbon Science, Policy and Management

CREDITS

- FOR 837 Measurement and Monitoring of Forest Carbon 3
- FOR 835 Forest Carbon Policy, Economics and Finance 3
- FOR 833 Human Dimensions of Forest Carbon Management 3
- FOR 831 Forest Biogeochemistry and Global Climate Change 3

Our classrooms, computer access, and laboratory facilities are housed in the Plant and Soil Sciences Building and include the nationally recognized Horticultural Demonstration Gardens, 4-H Children's Gardens, and the Lewis Arboretum, in addition to the Horticulture Teaching and Research Center (HTRC). Our Student Organic Farm is located at the HTRC where students gain practical, non-credit experiences and produce food for a Community Supported Agriculture program and MSU's residential food services, as well as being trained as organic farmers through our intensive, non-credit 9-month program.

UNDERGRADUATE PROGRAM

Horticulture is the science and art concerned with the culture, marketing, and utilization of high-value intensively cultivated plants. Horticultural crops are diverse, including both annual and perennial species, both food and ornamental plants, and plants grown both outdoors and in controlled environments. Horticultural foods and food products, flowers, and landscapes sustain and enrich our lives. The primary horticulture discipline areas include floriculture, landscape horticulture, olericulture (vegetables), and pomology (fruits).

Graduates with a major in horticulture may enter a broad range of challenging and rewarding professional careers in production, management, marketing, education, consulting and service industries, or research. In addition, graduates frequently become entrepreneurs or obtain employment in horticultural business enterprises (e.g., commercial production operations, landscape design/build and maintenance companies, nurseries, retail flower shops, or fruit and vegetable markets). Graduates may also pursue careers in nontraditional areas that require a knowledge of horticulture such as secondary education, the publication industry, or international development.

The academic study of horticulture is by its nature highly integrative. The undergraduate program combines scientific knowledge, knowledge of technology, and problem-solving skills for application in various professions related to horticulture. Students in horticulture study such diverse fundamental disciplines as physical science (chemistry), biological sciences (botany, genetics, plant physiology, entomology, and plant pathology), environmental science (soil science), and business (economics, management, and marketing). Communication and computer skills are also cultivated within the horticulture curriculum. Students complete one of three concentrations: Horticultural Science, Sustainable and Organic Horticulture, or Horticulture Landscape Design, Construction, and Management. In all concentrations, students obtain hands-on experiences through laboratory exercises in the greenhouses, in the horticulture gardens, or at the Horticulture Teaching and Research Center. Field trips expose students to successful horticultural businesses, industries, and support services within Michigan. Students may gain professional work experience through internships, independent study, and part-time employment in research and extension programs within the Department of Horticulture.

Students who are enrolled in the Bachelor of Science degree program with a major in horticulture may elect a Specialization in Agricultural and Natural Resources Biotechnology. For additional information, refer to the **Specialization in Agricultural and Natural Resources Biotechnology** statement.
Requirements for the Bachelor of Science Degree in Horticulture

1. The University requirements for bachelor's degrees as described in the Undergraduate Education section of this catalog; 120 credits, including general elective credits, are required for the Bachelor of Science degree in Horticulture.

The University's Tier II writing requirement for the Horticulture major is met by completing Agriculture and Natural Resources mathematics requirement which also may satisfy the University mathematics requirement.

2. The requirements of the College of Agriculture and Natural Resources for the Bachelor of Science degree. Certain courses referenced in requirement 3. below may be counted toward College requirements as appropriate.

3. The following requirements for the major:

 a. All of the following courses: CREDITS

 CEM 141 General Chemistry 4
 CEM 143 Survey of Organic Chemistry 4
 CEM 161 Chemistry Laboratory I 1
 CSS 210 Fundamentals of Soil Science 3
 HRT 203 Principles of Horticulture 3
 HRT 204 Plant Propagation 2
 HRT 205 Plant Mineral Nutrition1
 HRT 206 Training and Pruning Plants 1
 HRT 207 Horticulture Career Development 1
 HRT 361 Applied Plant Physiology 3
 HRT 362 Applied Crop Improvement 1
 HRT 370 Orchard and Nursery Management 3
 HRT 439 Professional Internship in Horticulture 3
 PLB 105 Plant Biology 3
 PLB 106 Plant Biology Laboratory 1

 b. One of the following concentrations: CREDITS

 (1) All of the following courses (12 credits):

 CSS 350 Introduction to Plant Genetics 3
 ENT 430 Fundamentals of Entomology 3
 HRT 231 Greenhouse Structures and Management 3
 PLP 405 Plant Pathology 3

 (2) Complete 9 credits from the following:

 HRT 310 Nursery Management 1
 HRT 323 Floriculture Production: Herbaceous 3
 Perennials and Annuals 1
 HRT 323 Tree Fruit Production and Management 2
 HRT 335 Berry Crop Production and Management 1
 HRT 341 Vegetable Production and Management 3

 (3) Complete 3 credits from the following:

 CSS 302 Principles of Weed Management 3
 HRT 211 Landscape Plants I 3
 HRT 212 Landscape Plants II 3
 HRT 242 Passive Solar Greenhouses for Protected 1
 Cultivation 1
 HRT 243 Organic Transplant Production 1
 HRT 244 Culinary and Medicinal Herbs 1

 (4) One of the following courses (3 credits):

 HRT 401 Physiology and Management of Herbaceous 3
 Plants 1
 HRT 480 Woody Plant Physiology 3

 (5) Two of the following courses (6 credits):

 CSS 451 Biotechnology Applications for Plant 3
 Breeding and Genetics 3
 HRT 401 Physiology and Management of Herbaceous 3
 Plants 1
 HRT 403 Handling and Storage of Horticultural Crops. 3
 HRT 407 Horticulture Marketing 3
 HRT 480 Woody Plant Physiology 3
 HRT 486 Biotechnology in Agriculture: Applications 3
 and Ethical Issues 1

 Students may not use Horticulture 401 and 480 to fulfill both requirement (3) and (4) above.

Minor in Horticulture

The Minor in Horticulture, which is administered by the Department of Horticulture, is designed to provide an opportunity for students to gain a fundamental understanding of the science of horticulture and tailor their studies to food production, greenhouse and nursery crops, landscape design and management, or plant breeding and genetics.

The minor is available as an elective to students who are enrolled in bachelor’s degree programs at Michigan State University other than the Bachelor of Science Degree in Horticulture. With the approval of the department and college that administers the bachelor's degree program, the courses that are used to satisfy the minor may also be used to satisfy the requirements for the bachelor’s degree. At least 12 unique credits counted towards the requirements for a student’s minor must not be used to fulfill the requirements for that student's major.

Students who plan to complete the requirements for the minor should consult an undergraduate adviser in Horticulture.

Requirements for the Minor in Horticulture

Complete 17 credits from the following:

 1. Both of the following courses (5 credits):

 HRT 203 Principles of Horticulture 3
 HRT 204 Plant Propagation 2

 2. Complete 12 credits from the following:

 HRT 205 Plant Mineral Nutrition 1
 HRT 206 Training and Pruning Plants 1
 HRT 211 Landscape Plants I 3
 HRT 212 Landscape Plants II 3
 HRT 242 Passive Solar Greenhouses for Protected 3
 Cultivation 1
 HRT 243 Organic Transplant Production 1
 HRT 244 Culinary and Medicinal Herbs 1
 HRT 251 Organic Farming Principles and Practices . 3

MINOR IN HORTICULTURE

Agriculture and Natural Resources
Department of Horticulture

CREDITS

HRT 245 Specialty Cut Flowers 1
HRT 332 Tree Fruit Production and Management ... 2
HRT 335 Berry Crop Production and Management 3
HRT 341 Vegetable Production and Management 3
HRT 490 Independent Study 1 or 2
HRT 401 Physiology and Management of Herbaceous 3
 Plants 1
HRT 480 Woody Plant Physiology 3
HRT 407 Horticulture Marketing 3
HRT 417 Sustainable Site and Environmental 3
 Landscape Practice
HRT 451 Biotechnology Applications for Plant 3
 Breeding and Genetics
HRT 480 Woody Plant Physiology 3
HRT 486 Biotechnology in Agriculture: Applications 3
 and Ethical Issues 3

HRT 407 Horticulture Marketing 3
CSS 202 The World of Turf 2
CSS 203 Applied Turf Management 1
HRT 211 Landscape Plants I 3
HRT 212 Landscape Plants II 3
HRT 310 Nursery Management 3
HRT 311 Landscape Design and Management 3
 Specifications
HRT 411 Landscape Contract Management 3
HRT 480 Woody Plant Physiology 3
LA 220 Graphic Communication 4
LA 330 Site Construction: Materials and Methods 4
PLP 407 Diseases and Insects of Forest and 4
 Shade Trees
TSM 431 Irrigation, Drainage and Erosion Control 3
 Systems
GRADUATE STUDY

The Department of Horticulture offers graduate study leading to the Doctor of Philosophy and Master of Science degrees in horticulture, plant breeding, and genetics and biotechnology—horticulture. The diversity of faculty members in the Department of Horticulture possess an array of interdisciplinary plant science expertise ranging from breeding, genetics, genomics, molecular biology, bioinformatics, and developmental/environmental/reproductive physiology, sustainable and organic cropping systems, and marketing of horticultural/specialty crops. These integrated approaches foster new discoveries in the plant sciences and technological innovations in the efficient and sustainable production of food, floral, and landscape crops. Faculty and graduate students engage in scholarly research, teaching, and outreach programs that are recognized nationally and internationally by our peer institutions and horticultural industries.

Students who are enrolled in Master of Science degree programs in the Department of Horticulture may elect a Specialization in Food Safety. For additional information, refer to the statement on the specialization in the College of Veterinary Medicine section of this catalog.

HORTICULTURE

Master of Science

In addition to meeting the requirements of the university and of the College of Agriculture and Natural Resources, students must meet the requirements specified below.

Admission

Students must have completed a Bachelor of Science degree or its equivalent in a plant related field, a basic course in horticulture, 15 credits in plant or soil sciences including plant physiology, and one course each in trigonometry, physics, and organic chemistry. Exceptions must be approved by the departmental Graduate Affairs Committee. Applicants lacking the necessary undergraduate background will be required to complete either collateral courses in addition to the requirements for the master’s degree or a second Bachelor of Science degree with a major acceptable to the department.

Requirements for the Master of Science Degree in Horticulture

The student may elect either Plan A (with thesis) or Plan B (without thesis). A total of 30 credits is required for the degree under Plan A or Plan B.

The program of study for the Master of Science degree will include courses from departments other than the Department of Horticulture, but it should include at least 3 credits in the 800 series in horticulture in addition to research. For Plan A, at least 6 but not more than 10 credits of master's thesis research (Horticulture 899) is required. For Plan B, at least 2 but not more than 5 credits of research (Horticulture 898) is required. All programs of study are subject to departmental review.

A final oral examination on courses and research pursued during the program will be scheduled at the end of the student’s final semester of enrollment.

Doctor of Philosophy

In addition to meeting the requirements of the university and of the College of Agriculture and Natural Resources, students must meet the requirements specified below.

Requirements for the Doctor of Philosophy Degree in Horticulture

An oral qualifying examination may be conducted by the guidance committee shortly after the student begins advanced graduate study to determine his or her qualifications and to provide a basis for developing the program of study.

At least 6 credits in the 800 series in horticulture are recommended. Three of the six credits may have been completed as part of the master’s degree requirements.

PLANT BREEDING, GENETICS and BIOTECHNOLOGY—HORTICULTURE

The Department of Horticulture offers Master of Science and Doctor of Philosophy degree programs in plant breeding, genetics and biotechnology—horticulture. Students meet the requirements for admission and the requirements both for Horticulture, as specified above, and for Plant Breeding, Genetics and Biotechnology, as specified in the statement on Interdepartmental Graduate Programs in Plant Breeding, Genetics and Biotechnology.

SCHOOL of PACKAGING

Joseph H. Hotchkiss, Director

UNDERGRADUATE PROGRAMS

The School of Packaging offers a program of instruction leading to the Bachelor of Science degree. The program combines basic principles of physics, chemistry, mathematics, and materials science with a cognate in business to prepare students for rewarding careers in the manufactured products industries. Career opportunities are plentiful since some form of packaging is involved in the production and movement to market of nearly every item of consumption in today’s economy. In addition to careers in companies that use packaging, attractive opportunities are also available in the package supply industries. Package supplier industries include companies that print and convert paper and flexible plastic materials as well as manufacturers of such diverse items as bottles, cans, folding cartons, corrugated boxes, drums, wooden containers, pallets, pails, tubes, vials, and jars. Packaging impacts most functions in manufacturing firms so graduates may work in package development, production, quality
control, research, sales, purchasing, marketing, testing, distribution, or technical services.

In its flexibility, the program allows students to leverage their personal skills and interests and to make individualized choices. Elective courses provide for broad, general preparation or for focused study in food packaging, medical packaging, pharmaceutical packaging, automotive packaging, distribution, robotics, and other areas.

Admission as a Junior

Enrollments in the School of Packaging are limited. To be considered for admission to the major, the student must have:

1. Completed at least 56 credits.
2. Completed the following courses with a minimum grade of 2.0 in each course:
 a. Chemistry 141.
 b. Mathematics 124 or 132.
 c. Physics 231.

The student's cumulative grade-point average for all courses completed is considered in the admission decision. Factors such as work experience, personal experience, and diversity may also be considered.

For additional information about admissions criteria and procedures, students should contact the School of Packaging.

Requirements for the Bachelor of Science Degree in Packaging

1. The University requirements for bachelor's degrees as described in the Undergraduate Education section of this catalog; 120 credits, including general elective credits, are required for the Bachelor of Science degree in Packaging.

The University's Tier II writing requirement for the Packaging major is met by completing Packaging 315 and 485. Those courses are referenced in item 3. a. below.

Students who are enrolled in the Packaging major leading to the Bachelor of Science degree in the School of Packaging may complete an alternative track to Integrative Studies in Biological and Physical Sciences that consists of the following courses: Chemistry 141, 143 and 161; Biological Science 161; or Food Science 342 or Microbiology and Molecular Genetics 201. The completion of Chemistry 143 and 161 satisfies the laboratory requirement. Chemistry 141, 143 and 161; Biological Science 161; Food Science 342 or Microbiology and Molecular Genetics 201 may be counted toward both the alternative track and the requirements for the major referenced in item 3. below.

The completion of the College of Agriculture and Natural Resources mathematics requirement may also satisfy the University mathematics requirement.

2. The requirements of the College of Agriculture and Natural Resources for the Bachelor of Science degree:

 - Certain courses referenced in requirement 3. below may be counted toward College requirements as appropriate.

3. The following requirements for the major:

 a. All of the following courses: ... 50

 ACC 230 Survey of Accounting Concepts 3
 CEM 141 General Chemistry 4
 CEM 143 Survey of Organic Chemistry 4
 CEM 161 Chemistry Laboratory I 3
 PKG 101 Principles of Packaging 3
 PKG 221 Packaging with Glass and Metal 3
 PKG 315 Packaging Decision Systems (W) 3
 PKG 322 Packaging with Paper and Paperboard 4
 PKG 323 Packaging with Plastics 4
 PKG 410 Distribution Packaging Dynamics 4
 PKG 411 Package Development Technology 3
 PKG 432 Packaging Processes 4
 PKG 485 Packaging Development (W) 4
 PHY 231 Introductory Physics II 3
 PHY 232 Introductory Physics III 3
 BS 161 Cell and Molecular Biology 3
 FSC 342 Food Safety and Hazard Analysis Critical Control Point Program 3
 MMG 201 Fundamentals of Microbiology 3
 MTH 124 Survey of Calculus I 3
 MTH 132 Calculus I ... 3
 STT 200 Statistical Methods 3
 STT 201 Statistical Methods 3
 STT 315 Introduction to Probability and Statistics for Business 3
 ADV 205 Principles of Advertising 4
 FI 320 Introduction to Finance 3
 GBL 323 Introduction to Business Law 3
 MGT 325 Management Skills and Processes 3
 MKT 327 Introduction to Marketing 3
 SCM 303 Introduction to Supply Chain Management 3

 e. Three of the following courses: 9 or 10

GRADUATE STUDY

The School of Packaging offers graduate programs leading to the degrees of Master of Science and Doctor of Philosophy in packaging. Facilities and instrumentation are available for advanced study and research in the following areas: product and/or packaging damage in the physical distribution environment, barrier characteristics of packaging systems and materials, quality preservation and storage stability of packaged products, and mechanical properties of packaging materials and systems. Other areas of study include medical packaging, automatic identification, logistics, environmental impact and recycling of packaging materials, human factors in packaging, and packaging systems development and optimization. Programs of study and research are flexible and are designed to meet the needs of individual students.

Students who are enrolled in Master of Science degree programs in the School of Packaging may elect a Graduate Specialization in Food Safety. For additional information, refer to the statement on the specialization in the College of Veterinary Medicine section of this catalog.

Master of Science

Emphasis is placed upon a broad education in packaging that includes an area of study referenced above. Student participation in seminars and in the teaching program, where appropriate, is designed to broaden the student's background for future career activities.

In addition to meeting the requirements of the university and of the College of Agriculture and Natural Resources, students must meet the requirements specified below.

Admission

Entering graduate students are expected to have a bachelor's degree in packaging or a related undergraduate field. Students lacking the equivalent of a bachelor's degree in packaging may be admitted provisionally and be required to complete collateral courses to make up any deficiencies. These collateral courses will not count toward degree requirements.

Requirements for the Master of Science Degree in Packaging

The master's degree program in packaging is available under either Plan A (with thesis) or Plan B (without thesis). A total of 30 credits is required for the degree under Plan A or Plan B. The student's program of study must be approved by either the student's guidance committee (Plan A) or the student's major professor (Plan B).

Requirements for Both Plan A and Plan B

The student must:

1. Complete 15 credits in Packaging courses at the 400-level or above. More than half of the 30 credits required for the degree must be at the 800-level or above.
2. Demonstrate an understanding of basic statistics.
Additional Requirements for Plan A
1. Packaging 827.
2. Packaging 805 or 815.
3. An additional 3 credits in 800-900 level Packaging courses excluding Packaging 888, 890, and 899.
4. At least six, but not more than eight, credits of Packaging 899.

Additional Requirements for Plan B
1. Packaging 805, 815, and 827.
2. An additional 6 credits in 800-900 level Packaging courses excluding Packaging 888, 890, and 899.

Doctor of Philosophy
In addition to meeting the requirements of the university and of the College of Agriculture and Natural Resources, the student must meet the requirements specified below.

Admission
To be considered for admission to the Doctor of Philosophy degree program in packaging, an applicant must submit scores on the Graduate Record Examination (GRE) General Test.
To be admitted to the Doctor of Philosophy degree program in packaging on regular status, a student must have:
1. Completed a master's degree program in packaging, or in a related science or engineering area, for which a thesis was required.
2. A grade–point average of at least 3.40 for the master's degree program.
3. Acceptable scores on the GRE General Test.
 Provisional admission may be granted to an applicant who does not meet the above requirements but shows outstanding potential.

Guidance Committee
At least three members of the student's guidance committee must be faculty members in the School of Packaging, and at least one member must be a faculty member from outside the school.

Requirements for the Doctor of Philosophy Degree in Packaging
The student must:

1. Complete both of the following courses:
 - 3 credits
fundamental course in Packaging Design 985
 - 2 credits
 Seminar in Packaging 992

2. Complete additional 800–900 level courses related to the student's dissertation research as specified by the student's guidance committee.
3. Pass both a written and an oral comprehensive examination.
4. Complete a dissertation in one of the following areas of packaging: material science applications in packaging, food packaging, mass transport applications, or the dynamics and physical distribution aspects of packaging.

SCHOOL of PLANNING, DESIGN and CONSTRUCTION

Scott G. Witter, Director

The School of Planning, Design, and Construction is jointly administered by the College of Agriculture and Natural Resources and the College of Social Science. The College of Agriculture and Natural Resources is the primary administrative unit. The school includes the academic programs that affect the various components of the built environment—construction management, landscape architecture, interior design, and urban and regional planning. Its educational discovery and engagement programs enhance the quality of life in a sustainable manner. The school serves the needs of students, the public, and the built environment via its undergraduate and graduate programs, research, conferences, and workshops offered through various outreach programs.

The school and its programs advance the university's world-grant mission by creating, disseminating and applying knowledge to improve the quality of life in urban, regional and international communities. It accomplishes this mission, in part, by implementing, evaluating and disseminating innovative approaches developed through multidisciplinary research and collaborative community partnerships. The school provides a collaborative learning environment for faculty and students at Michigan State University to participate in a scholarship of engagement in generating and applying knowledge to address the contemporary challenges of communities.

The school also offers a dual degree program which provides an opportunity for students who are currently accepted into the Bachelor of Landscape Architecture program to enroll in graduate courses required in the Master of Arts Degree in Environmental Design while completing the last year and a half (three semesters) of their bachelor's degree program. Students interested in pursuing the dual degree of Bachelor of Landscape Architecture in Landscape Architecture and the Master of Arts in Environmental Design should contact the School of Planning, Design and Construction. Students are eligible to apply for admission to the dual degree program after completion of the first two years of curriculum requirements in the Bachelor of Landscape Architecture in Landscape Architecture.

UNDERGRADUATE PROGRAMS

The School of Planning, Design, and Construction exists to educate individuals for professional careers in areas impacting the built environment, spanning the life of a constructed edifice or entity, from planning, to design, and construction management. The school offers Bachelor of Science, Bachelor of Arts and Bachelor of Landscape Architecture degree programs. Individuals meeting the general University requirements for admission shown in the Undergraduate Education section of this catalog are enrolled in the Undergraduate University Division but may declare a major preference in the School of Planning, Design, and Construction. Refer to the specific degree program for further details regarding junior-level admission requirements and program curriculum.
The school offers programs leading to bachelor's degrees in the following fields:

- Construction Management
- Interior Design
- Landscape Architecture
- Urban and Regional Planning

The Bachelor of Science degree program with a major in urban and regional planning is offered through the College of Social Science. For information about this program, refer to the statement on the School of Planning, Design, and Construction in the College of Social Science section of this catalog.

CONSTRUCTION MANAGEMENT

The program is designed to provide a student with a background in managerial, technological, economic, social, political, and environmental aspects of residential and commercial construction. A systems approach is used and includes project management, construction science, land acquisition and development, real estate, finance, management, and marketing. Career opportunities include supervisory and managerial employment within commercial and residential contracting, land development, and real estate organizations; material distribution systems; financial institutions; and governmental agencies.

Admission as a Junior

Construction management builds upon a basic understanding of mathematics, physics, statistics, and economics to develop the skills necessary to manage construction projects. Prior to enrollment in the major, students must have demonstrated this basic understanding by a minimum performance in the courses listed and a minimum overall grade point average.

Enrollment in the construction management major is limited. Those seeking admission must at least meet the criteria listed below.

1. Completion of at least 56 credits with a cumulative University grade-point average of 2.3.
2. Completion of the following courses with a minimum grade-point average of 2.0:
 - **Mathematics:** MTH 124 Survey of Calculus I (3 credits)
 - **Physics:** PHY 231 Introductory Physics I (3 credits)
 - **Statistics:** STT 200 Statistical Methods (3 credits)
 - **Microeconomics:** EC 201 Introduction to Microeconomics (3 credits)

While a cumulative University grade-point average of 2.3 is necessary to be considered for admission to the school, it does not guarantee admission. Admission decisions are based primarily on cumulative University grade-point average and grades in the courses listed above. Other factors such as work experience, personal experience, performance in construction management courses, and diversity may also be considered.

For additional information about admissions criteria and procedures, students should contact the Construction Management Program in the School of Planning, Design, and Construction.

Requirements for the Bachelor of Science Degree in Construction Management

1. The University requirements for bachelor's degrees as described in the Undergraduate Catalog section of this catalog: 120 credits, including general elective credits, are required for the Bachelor of Science degree in Construction Management.
 - The University's Tier II writing requirement for the Construction Management major is met by completing Construction Management 385 or 435 or 436. Those courses are referenced in item 3, b. below.
 - Students who are enrolled in the Construction Management major leading to the Bachelor of Science degree may complete an alternative track to Integrative Studies in Biological and Physical Science that consists of Physics 231 and 251 and one of the following choices: Biological Science 161 and 171 or Biological Science 162 and 172 or Plant Biology 105 and 106 or Microbiology and Molecular Genetics 205 and 206. The completion of Physics 251 and Biological Science 171 or 172 or Plant Biology 106 or Microbiology and Molecular Genetics 206 satisfies the laboratory requirement. With advisor approval, for this laboratory requirement, Biological Science 171 or 172, Plant Biology 106 and Microbiology and Molecular Genetics 206 may be waived if the student completes another chemistry laboratory course or a physics laboratory course beyond Physics 251.
 - Prior to enrollment in the construction management major, students should contact the Construction Management Program in the School of Planning, Design, and Construction.

2. The requirements of the College of Agriculture and Natural Resources for the Bachelor of Science degree.
 - Certain courses referenced in requirement 3, b. below may be counted toward College requirements as appropriate. The completion of Mathematics 124 satisfies the College's mathematics requirement.

3. The following requirements for the major:
 - **a. All of the following courses:**
 - ACC 230 Survey of Accounting Concepts (3 credits)
 - CMP 101 Principles of Building Construction Management (3 credits)
 - CMP 124 Residential Construction Materials and Methods (3 credits)
 - CMP 210 Commercial Construction Methods (3 credits)
 - CMP 211 Building Codes (3 credits)
 - CMP 230 Utility Systems (4 credits)
 - CMP 305 Site Construction and Measurement (3 credits)
 - CMP 311 Construction Project Scheduling (3 credits)
 - CMP 315 Construction Quantity Surveying (3 credits)
 - CMP 322 Structural Systems (3 credits)
 - CMP 325 Real Estate Principles and Construction Finance (4 credits)
 - CMP 328 Construction Presentation Graphics and Building Information Modeling (2 credits)
 - CMP 385 Construction Documents and Contracts (W) (3 credits)
 - CMP 401 Construction Safety Management (3 credits)
 - CMP 415 Cost Estimating and Analysis (3 credits)
 - CMP 423 Construction Project Management (3 credits)
 - COM 100 Human Communication (3 credits)
 - CSE 101 Computing Concepts and Competencies (3 credits)
 - GBL 323 Introduction to Business Law (3 credits)
 - MTH 124 Survey of Calculus I (3 credits)
 - PHY 231 Introductory Physics I (3 credits)
 - PHY 232 Introductory Physics II (3 credits)
 - PHY 251 Introductory Physics Laboratory (1 credit)
 - **b. One of the following courses (3 credits):**
 - CE 221 Statics (3 credits)
 - CMP 222 Statics and Strengths of Materials (3 credits)
 - CE 471 Construction Engineering - Equipment, Methods and Planning (4 credits)
 - CMP 453 Land Development (3 credits)
 - CMP 491 Special Topics in Building Construction Management (3 credits)
 - IDES 240 Computer-Aided Design for Designers (3 credits)
 - LA 230 Site Construction Materials and Methods (3 credits)
 - PDC 491 Special Topics (3 credits)
 - UP 458 Housing and Real Estate Development (3 credits)
 - **c. One of the following courses (3 or 4 credits):**
 - CE 312 Soil Mechanics (4 credits)
 - CE 471 Construction Engineering - Equipment, Methods and Planning (4 credits)
 - CMP 453 Land Development (3 credits)
 - CMP 491 Special Topics in Building Construction Management (3 credits)
 - IDES 240 Computer-Aided Design for Designers (3 credits)
 - LA 230 Site Construction Materials and Methods (3 credits)
 - PDC 491 Special Topics (3 credits)
 - UP 458 Housing and Real Estate Development (3 credits)
 - **d. One of the following courses:**
 - CMP 335 Residential Building and Development Projects (W) (3 credits)
 - CMP 436 Commercial Building Projects (W) (3 credits)
 - CMP 493 Professional Internship in Building Construction Management (3 credits)
 - **e. Complete four credits from the following courses:**
 - CEM 141 General Chemistry (4 credits)
 - CEM 161 Chemistry Laboratory I (4 credits)
 - PHY 232 Introductory Physics II (3 credits)
 - PHY 252 Introductory Physics Laboratory II (1 credit)
 - **f. Complete one of the following courses:**
 - CMP 335 Residential Building and Development Projects (W) (3 credits)
 - CMP 436 Commercial Building Projects (W) (3 credits)
 - CMP 493 Professional Internship in Building Construction Management (3 credits)
INTRODUCTION

This major provides academic preparation designed to enable the graduate to enter the profession of interior design. The program has been accredited by the Foundation for Interior Design Education Research (F.I.D.E.R.). Emphasis is placed on learning the means of satisfying functional and aesthetic requirements appropriate for a variety of specific interior spatial uses. Consideration is given to the human being and the micro-environment in the total complex of environmental relationships. The combination of courses and experiences provides students an opportunity to develop knowledge, skills, and insights needed to solve design problems creatively and effectively.

Students meeting the university admissions requirements are enrolled as freshmen and sophomores in the Undergraduate University Division but may declare a major preference for Interior Design.

Admission as a Junior

The number of students admitted as juniors to the major in interior design is limited. To be considered for admission, a student must have:

1. An all-university grade–point average of 2.50 or better.
2. A grade–point average of 3.00 or better in selected interior design courses.

In addition, transfer students must have previous design work evaluated by the department prior to placements in required courses. Selective admissions are made at the end of spring semester for Michigan State University and transfer students from those students who have met the criteria referenced above and who have completed Interior Design 252. The final selection of students to be admitted to the major is based on the cumulative grade–point average of all courses taken and a grade–point average calculated for selected courses. In addition, factors such as diversity and residency may be considered.

Requirements for the Bachelor of Arts Degree in Interior Design

1. The University requirements for bachelor's degrees as described in the Undergraduate Education section of this catalog: 120 credits, including general elective credits, are required for the Bachelor of Arts degree in Interior Design.

 The University's Tier II writing requirement for the Interior Design major is met by completing Interior Design 340, 440, 442, and 452. Those courses are referenced in item 3. a. below.

 The completion of the College of Agriculture and Natural Resources mathematics requirement may also satisfy the University mathematics requirement.

2. The completion of the requirements of the College of Agriculture and Natural Resources for the Bachelor of Arts degree.

3. The following requirements for the major:

 a. All of the following courses in the School of Planning, Design and Construction: .. 62

HED 231 Textile Materials .. 4
IDES 140 Design for Living 3
IDES 142 Design Theory Studio 4
IDES 150 Interior Design Drafting 3
ides 152 Interior Environments 4
ides 240 Computer–Aided Design for Designers 3
ides 250 CAD and Structural Systems 3
ides 252 Interior Design Synthesis I 4
ides 340 Interior Design Specifications and Workroom Practices .. 3
ides 342 Interior Design: Human Dimensions 3
ides 343 Interior Design Presentation and Media 3
ides 344 History of Interior Design: Ancient Through Rococo .. 3
ides 350 Interior Design Lighting and Environmental Systems .. 3
ides 352 Interior Design Synthesis II 4
ides 354 History of Interior Design: Neo–Classical Through Modern .. 3
ides 393 Introduction to Professional Practice 1
ides 440 Contemporary Design Issues 2
ides 441 Interior Design Open Office Systems 1
ides 442 Interior Design Programming 3
ides 451 Interior Design Professional Practice 2
ides 452 Interior Design Synthesis III 4

CSE 101 Computing Concepts and Competencies 3
Students who pass a waiver examination will not be required to complete Computer Science and Engineering 101.

b. The following course: ... 3

 CSE 101 Computing Concepts and Competencies 3

 Students who pass a waiver examination will not be required to complete Computer Science and Engineering 101.

c. One of the following courses: 3

 MTH 110 Finite Mathematics and Elements of College Algebra .. 5

 MTH 116 College Algebra and Trigonometry 5

d. One of the following courses: 3

 EC 201 Introduction to Microeconomics 3

 EC 202 Introduction to Macroeconomics 3

 Any two of the following History of Art courses (6 to 8 credits): .. 4

 HA 120 Perspectives on World Art: What is Art? 4

 HA 209 Ancient Art .. 3

 HA 210 Medieval Art .. 3

 HA 220 Renaissance Art ... 3

 HA 232 Baroque and Rococo Art 3

 HA 250 American Art .. 3

LANDSCAPE ARCHITECTURE

The undergraduate Bachelor of Landscape Architecture program provides a diverse learning experience which strives for a balance among philosophy, theory, and application of concepts related to past, present, and future problem-solving in landscape architecture and allied environmental planning and design professions.

The program includes professional courses in design theory and graphic communications, environmental perception, history, and plant materials and their uses; technical aspects of site development, design applications for representative land uses; site planning for typical projects; community planning, housing and recreational development; and urban and regional design and planning.

The program offers meaningful design opportunities and challenges within the classroom and on community projects, which prepare the student to communicate through writing, speech and graphics. These objectives are met in group and in individual assignments where independent study and growth are encouraged.

The program in landscape architecture at Michigan State University has been accredited by the Landscape Architecture Accreditation Board (LAAB) since 1952.

Honors Study

Students interested in honors programs in landscape architecture should consult with an academic advisor.

Admission as a Junior

The number of students who can be admitted as juniors to the landscape architecture major is limited. To be considered for admission as a junior, a student must have completed the core
courses referenced in item 2. below. Students who have been ad-
mitted as juniors are entitled to enroll in upper-level landscape ar-
chitecture courses required for the Bachelor of Landscape Archi-
tecture degree.

To be admitted to the Bachelor of Landscape Architecture pro-
gram, the following factors will be taken into consideration: (1)
overall MSU grade-point average; (2) grade-point average in all
landscape architecture courses; (3) evidence of creative works
and service; and (4) a written essay.

Admissions are determined by the faculty on the basis of the
relative qualifications of applicants and the enrollment capacity in
the program. Admission is competitive.

Detailed information regarding admission requirements and
procedures is available from the School of Planning, Design and
Construction, Associate Director.

Requirements for the Bachelor of Landscape Architecture Degree in Landscape Architecture

1. The University requirements for bachelor’s degrees as described in the Undergradu-
ate Education section of this catalog: 130 credits, including general elective credits, are
required for the Bachelor of Landscape Architecture degree in Landscape Architec-
ture.

Students who are enrolled in the Landscape Architecture major leading to the Bach-
elor of Landscape Architecture degree in the School of Planning, Design and
Construction may complete an alternative track to Integrative Studies in Biological
and Physical Sciences that consists of the following courses: Plant Biology 105 and 106,
and Chemistry 141 and 161. The completion of Plant Biology 106 and Chemistry 161
satisfies the laboratory requirement. Plant Biology 105 and 106, and Chemistry 141
and 161 may be counted toward both the alternative track and the requirements for the
major referenced in item 2. below.

The completion of Mathematics 116 referenced in requirement 2. below may also
satisfy the University mathematics requirement.

The University’s Tier II writing requirement for the Landscape Architecture major is
met by completing Landscape Architecture 480. That course is referenced in item 2. c.
below.

2. The following requirements for the major:

a. A minimum grade–point average of 2.00 in the 42 credits required
in 300–400 level Landscape Architecture courses referenced in
requirement 2.c. below.

b. Collateral Courses:

 (1) All of the following courses (33 credits):

 CEM 141 General Chemistry ... 4
 CEM 161 Chemistry Laboratory I 1
 HRT 211 Landscape Plants I ... 3
 HRT 212 Landscape Plants II ... 3
 HRT 311 Landscape Design and Management Specifications ... 3
 ISS 310 People and the Environment (I) 4
 MTH 116 College Algebra and Trigonometry 1 5
 PDC 120 Planning and Design Digital Graphics 3
 PLB 105 Plant Biology .. 3
 PLB 106 Plant Biology Laboratory 3
 UP 424 Geographic Information Systems and Design Tools for Planning .. 3

 (2) Students must demonstrate AutoCAD proficiency through
 transfer credit, waiver or completion of the following course
 (0 to 3 credits) 1: IDES 240 Computer-Aided Design for Designers ... 3

 (3) Landscape Architecture Courses: All of the following courses:
 LA 140 Graphics and Two-Dimensional Design Studio 1 4
 LA 141 Graphics and Three-Dimensional Design Studio 2 4
 LA 200 Introduction to Landscape Architecture 4
 LA 230 Site Construction Materials and Methods 1 4
 LA 231 Landscape Site Engineering 5
 LA 242 Creating Space Studio 1 4
 LA 243 Place Making Studio 1 4
 LA 332 Advanced Landscape Site Engineering 4
 LA 344 Connections of Scale Studio 4
 LA 345 Design Development Studio 4
 LA 390 Landscape Architecture Field Studies 4
 LA 421 Drawing as Knowing 4
 LA 447 Juried Design Studio 4
 LA 448 Regional Environmental Design Studio 4
 LA 449 Landscape Architecture Design Studio 2
 LA 480 Professional Practice (W) 4

 d. One of the following courses:
 EC 201 Introduction to Microeconomics 3
 EC 202 Introduction to Macroeconomics 3

 e. Directed Electives:
 A minimum of 14 additional credits in courses approved by the stu-
 dent's academic advisor. Courses that are used to satisfy the
 University Integrative Studies and writing requirements may not be
 used to satisfy this requirement. Courses used to satisfy the

AutoCAD proficiency requirement referenced in item 2 b. (2)
above may not be used to satisfy this requirement.

1 Core course that must be completed in order for a student to be considered for admission to
 the major.

School of Planning, Design and Construction

Dual Degree Program: Bachelor of Landscape Architecture in Landscape Architecture
and Master of Arts in Environmental Design

The dual degree program provides an opportunity for students
who are currently accepted into the Bachelor of Landscape Archi-
tecture program to enroll in graduate courses required in the Mas-
ter of Arts degree in Environmental Design while completing the
last year and a half (three semesters) of their bachelor’s degree
program.

Students interested in pursuing the dual degree of Bachelor of
Landscape Architecture in Landscape Architecture and the Mas-
ter of Arts in Environmental Design should contact the School of
Planning, Design and Construction. Students are eligible to apply
for admission to the dual degree program after completion of the
first two years of curriculum requirements in the Bachelor of Land-
scape Architecture in Landscape Architecture. Admission to
Master of Arts in Environmental Design must be approved before
beginning graduate-level course work in the fourth year of the
bachelor’s degree program. Upon completion of the require-
ments for both the Bachelor of Landscape Architecture degree
and the Master of Arts degree, both degrees are awarded simul-
taneously. The Master of Arts degree will not be awarded until the
student has completed the requirements for the Bachelor of
Landscape Architecture degree.

To be admitted to the dual degree program, the following fac-
tors will be taken into consideration:

1. Overall MSU grade-point average.
2. Grade-point average in all landscape architecture courses.
3. Evidence of creative works and service.
4. A written essay.

Admission is competitive and enrollment is limited for each en-
tering class. Students who are not selected for admission into the
dual degree program will be advised of other degree options. Stu-
dents may reapply for admission during the following admissions
cycle.

A student who is admitted to the dual degree program must:

1. Satisfy all of the requirements for the Bachelor of Landscape Architecture degree program to which the student was origi-
nally admitted.
2. Satisfy all of the requirements for the Master of Arts degree in
 Environmental Design.

Students admitted to the dual degree program will apply 9 cred-
its of course work toward the master’s program for qualifying 400-level and above course work taken at the undergraduate
level at Michigan State University. The 9 credits are applied to-
ward the credit requirement of the master’s degree.

GRADUATE STUDY

Graduate study may lead to a Master of Arts, Master of Science,
Master of Urban and Regional Planning or Doctor of Philosophy
degree. The School has expertise and facilities available for ad-
dvanced study and research in the following areas: Construction
Management, Environmental Design, Interior Design, Planning,
Design and Construction, and Urban and Regional Planning. The
School offers programs leading to graduate degrees in the follow-
ing fields:
Master of Arts
Environmental Design

Master of Science
Construction Management

Master of International Planning Studies
International Planning Studies

Master of Urban and Regional Planning
Urban and Regional Planning

Doctor of Philosophy
Planning, Design and Construction

The Master of International Planning Studies degree program with a major in international planning studies and the Master of Urban and Regional Planning degree program with a major in urban and regional planning are offered through the College of Social Science. For information about those programs, refer to the statement on the School of Planning, Design, and Construction in the College of Social Science section of this catalog.

CONSTRUCTION MANAGEMENT

The Master of Science degree program with a major in construction management is designed to provide breadth in the managerial, technological, economic, and environmental aspects of construction. The program is also designed to provide depth through a systems approach encompassing project management, estimating, scheduling and project controls, land acquisition and development, architectural and engineering design, construction technology, real estate, finance, business management, and marketing.

The master’s program in construction management is available under either Plan A (with thesis) or Plan B (without thesis). Students who anticipate careers in teaching, consulting, or research, or who plan to pursue a doctoral program, are encouraged to select Plan A. After the student’s academic advisor has approved the student’s program of study under Plan A, the student may not pursue the program under Plan B without the approval of the school.

Students who are enrolled in the master’s program in construction management often take courses in business management, labor and industrial relations, civil engineering, human environment and design, resource development, urban planning, statistics, or education, in addition to courses in the major. Students may work directly with one or more faculty members on an independent basis to cover material that is not available through regular courses.

Master of Science

In addition to meeting the requirements of the university and of the College of Agriculture and Natural Resources, students must meet the requirements specified below.

Admission

To be considered for admission to the master’s degree program in construction management, an applicant must take the Graduate Record Examination General Test and have the scores submitted to the department.

To be admitted to the program on regular status, an applicant must:

1. Have a Bachelor of Science degree in construction management or in a related area such as architecture, business, design, engineering, management, or urban planning.
2. Have a cumulative grade–point average of at least 3.0 (on a 4.00 scale) for the undergraduate program.
3. Have experience in the construction industry acceptable to the department.
4. Have completed as part of the undergraduate program 3 semester credits of introductory calculus (MTH 124 Survey of Calculus I or its equivalent); 3 semester credits of introductory physics (PHY 231 Introductory Physics I or its equivalent).

Applicants who have not completed the credits referenced in item 4. above may be admitted on provisional status. In addition, students may be required to complete specified collateral courses, from the following list, with a grade-point average of at least 3.00. These courses will not count toward the degree. The guidance committee will determine which courses are required as collateral courses for each applicant:

One of the following courses:

- CMP 124 Residential Construction Materials and Methods
- CMP 210 Commercial Construction Methods

One or more of the following courses:

- CMP 305 Site Construction and Measurements
- CMP 315 Construction Quantity Surveying
- CMP 222 Statics and Strengths of Materials
- CMP 322 Structural Systems
- CSE 101 Computing Concepts and Competencies

Business, management or economics course

Requirements for the Master of Science Degree in Construction Management

The student must complete a total of 30 credits for the degree under Plan A (with thesis) or 33 credits for the degree under Plan B (without thesis). For students who elect independent study courses, including Construction Management 890, no more than 6 credits under Plan A and 9 credits under Plan B may be counted toward the requirements for the degree. The student’s program of study must be approved by the student’s academic advisor and must meet the requirements specified below:

Requirements for Plan A

1. A minimum of 18 credits in 800–900 level courses.
2. All of the following courses:
 - CMP 817 Construction Management Information Systems 3
 - CMP 822 Legal Issues in Construction 3
 - CMP 892 Construction Management Research Seminar 2
3. One additional 800-level Construction Management courses, excluding Construction Management 890, 896, and 899. Students without a background in construction project scheduling and estimating must complete Construction Management 811 and 815 in partial fulfillment of this requirement.
4. One graduate course in research methods.
5. One 400-level course or above in statistics.

Additional Requirements for Plan A

1. Complete 6 credits of Construction Management 899. No more than 6 credits may be counted toward the requirements for the degree under Plan A.
2. Complete and defend a master’s thesis acceptable to the student’s guidance committee.

Requirements for Plan B

1. A minimum of 24 credits in 800-900 level courses.
2. All of the following courses:
 - CMP 817 Construction Management Information Systems 3
 - CMP 822 Legal Issues in Construction 3
 - CMP 892 Construction Management Research Seminar 2
3. One additional 800-level Construction Management course, excluding Construction Management 890, 896, and 899. Students without a background in construction project scheduling and estimating must complete Construction Management 811 and 815 in partial fulfillment of this requirement.
4. One 400-level course or above in statistics.

Additional Requirements for Plan B

1. Successful completion of a final examination given by the guidance committee.
Transfer Credits

No more than 9 semester credits of graduate course work (excluding research and thesis credits) may be transferred from other recognized educational institutions.

ENVIRONMENTAL DESIGN

Master of Arts

The College of Agriculture and Natural Resources in cooperation with the Landscape Architecture program and the Interior Design program in the School of Planning, Design and Construction and the Departments of Horticulture and Community, Agriculture, Recreation and Resource Studies participate in the Master of Arts degree in Environmental Design. The College of Agriculture and Natural Resources is the primary administrative unit.

The purpose of this master’s degree is to train prospective or practicing professionals to address the complex interdisciplinary nature of environmental design. Students will develop a highly individualized plan of study with a focus in a relevant design area such as golf course architecture, landscape reclamation, visual quality modeling, landscape restoration, interior spaces, wellness/therapeutic garden design, landscape development systems, plant management systems, adaptive reuse of facilities for tourism and recreation, park safety design and development, and park and tourism development and design within ecological systems.

The Master of Arts Degree in Environmental Design addresses four areas of professional development. These include:
1. acquisition of in-depth knowledge in the area of environmental design theory;
2. development of problem-solving skills within an interdisciplinary professional context;
3. development of technological expertise and a knowledge base in a selected area of environmental design; and
4. a greater command of graphic, written, and oral communication skills.

All students will take a core of three courses in environmental design (theory, seminar, and studio), in addition to either a Plan A (with thesis) or Plan B (without thesis). Students will elect relevant courses in fields which pertain to their design area of interest.

The program is planned to provide an alternative to traditional professional degrees by addressing the needs of students with undergraduate design backgrounds who wish to work in an interdisciplinary setting while pursuing an area of individual interest.

Admission

To be considered for admission to the Master of Arts in Environmental Design, the applicant must have:
1. completed a bachelor’s degree in a design related field such as horticulture, park and recreation, interior design, landscape architecture, or architecture.
2. a cumulative grade-point average of at least 3.0 in design and technology courses with an academic background sufficient to indicate probable success in the program.
3. satisfactory scores on the Graduate Record Examination General Test (GRE) as judged by the environmental design faculty. No substantive area GRE examinations are required.
4. acceptance as an advisee by a participating environmental design faculty member.

In addition to meeting the requirements of the university and the College of Agriculture and Natural Resources, students must meet the requirements specified below.

Requirements for the Master of Arts Degree in Environmental Design

Students in the Master of Arts in Environmental Design must complete a total of 33 credits for the degree under either Plan A (with thesis) or Plan B (without thesis). A minimum of 17 of those credits must be at the 800-level or above, distributed as follows:

CREDITS
1. All of the following core courses (12 credits):
 IDES 891 Topics in Interior Design and Human Environment 3
 LA 816 Environmental Design Theory ... 3
 LA 817 Environmental Design Studio .. 3
 LA 883 Environmental Design Seminar ... 3
2. Guided elective courses related to the student’s area of design interest, chosen in consultation with the student’s academic advisor.

For Plan A, students must complete a minimum of 6 and a maximum of 9 credits of Master’s Thesis Research (898) in one of the following departments: Planning, Design and Construction; Horticulture; or Community, Agriculture, Recreation and Resource Studies. They must also prepare a written thesis and pass an oral examination.

For Plan B, students must complete 6 credits of Master’s Research (898) in one of the following departments: Planning, Design and Construction; Horticulture; or Community, Agriculture, Recreation and Resource Studies. They must also complete either a major planning or design project or pass a comprehensive examination.

INTERIOR DESIGN AND FACILITIES MANAGEMENT

Master of Arts

The program is designed to provide students with advanced knowledge in one of three major areas of specialization: facilities design and management, human shelter, and interior design preservation and conservation. Internships are available.

Admission

Students must have undergraduate preparation and competencies in the areas of interior design, architecture, business, history, housing, or other areas as appropriate to their chosen specialty within the M.A. degree program.

Requirements for the Degree

Students must complete required core courses, the requirements for one of the major areas of concentration referenced above, a required research component, and the requirements for a minor area.

PLANNING, DESIGN AND CONSTRUCTION

Doctor of Philosophy

The many aspects of our built and natural environment – buildings, facilities, interior spaces, infrastructure, neighborhoods, and communities – are an integral part of our society. Every new space and structure serves to define and shape a community’s personality. Poor planning design and/or construction can compromise a community’s appearance and drain its resources. Conversely, well-planned, designed and constructed environments sustain and enrich a community.

The Doctor of Philosophy in Planning, Design and Construction with a concentration in construction management, environmental design, or urban and regional planning will enable students to meet future challenges. Graduates of this program will possess the knowledge and skills necessary to understand the effects of plans, regulations, design, materials, project management techniques, and construction systems on the economic, environmental, and social concerns of stakeholders and society.
Admission

To be considered for regular admission to the Doctor of Philosophy degree program in Planning, Design and Construction, an applicant must have all of the following:

1. A master’s degree in a related field.
2. A cumulative grade-point average of 3.5 on a 4.0 scale.
3. GRE scores no lower than 301 in combined verbal and quantitative and at least 4.0 analytical.
4. TOEFL scores (for international applicants):
 a. Paper-based – no lower than 575 (with no sub scores below 52)
 b. Computer-based – no lower than 235 (with no sub scores below 19)
 c. Internet-based – no lower than 90 (with no sub scores below 22)

Additionally, students are encouraged to submit a sample of scholarly work or a portfolio of design work. Depending on the proposed area of concentration, the school may ask for additional background information.

Provisional admission may be granted to an applicant who does not meet the above requirements but demonstrates outstanding potential. Collateral course work will not count towards degree requirements.

In addition to meeting the requirements of the university and of the College of Agriculture and Natural Resources and the College of Social Science, the student must meet the requirements specified below.

Guidance Committee

The guidance committee should be comprised of at least four faculty members. The chairperson and one other committee member should be from the student’s area of concentration within the School, a third member can be from the student’s area of concentration or another area of concentration within the School, and a fourth member must be from outside the school.

Requirements for the Doctor of Philosophy Degree in Planning, Design and Construction

The student must:

1. Complete 9 credits in the following core courses:
 - PDC 901 Integrated Approach to Planning, Design and Construction 3
 - PDC 992 Advanced Research Methods in Planning, Design and Construction 3
 - An advanced statistics course or other related course 3

2. Complete a minimum of four additional courses related to the area of concentration as specified by the student’s guidance committee.
 Concentration areas include: construction management, environmental design, or urban and regional planning. .. 12

3. Pass both a written and oral comprehensive examination.

4. Complete 24 credits of Planning, Design and Construction 999. 24

5. Complete and successfully defend a dissertation in an area related to area of concentration.

DEPARTMENT of PLANT, SOIL and MICROBIAL SCIENCES

James J. Kells, Chairperson

UNDERGRADUATE PROGRAMS

The department offers three undergraduate majors: Crop and Soil Sciences, Environmental Soil Science, and Plant Pathology. The Crop and Soil Sciences major includes three concentrations: agronomic sciences, turfgrass management, and advanced study. Each program is built on a broad educational base with a core of professional courses and sufficient electives to allow students and advisors to tailor individualized programs.

The department also offers undergraduate specializations in international agriculture, and sustainable agriculture and food systems, and a minor in agronomy.

CROP and SOIL SCIENCES

The Crop and Soil Sciences major is based upon the continuously expanding knowledge base of the biological and physical sciences and the utilization of those sciences to produce food and fiber of high quality on a competitive basis to promote sustainability, and to obtain increased nutrient–use efficiency, proper land use, increased plant adaptation to environmental and other stresses, decreased soil erosion, and decreased environmental pollution. Crop and soil scientists utilize the principles of genetics, plant breeding, crop physiology, weed science, turfgrass science, soil physics, soil fertility, soil genesis and classification, and soil chemistry.

Majors complete a common core of courses and one concentration: Agronomic Sciences, Turfgrass Management or Advanced Study. Students enrolled in this degree program, based on the agreement of cooperation between Michigan State University and Beijing Forestry University, Northeast Agricultural University, Sichuan Agricultural University, and Suzhou Polytechnic Institute of Agriculture in China must complete the concentration in Turfgrass Management.

1. Agronomic Sciences is designed to prepare students to work as agronomists. These scientists have career opportunities in agricultural business and in government agencies such as departments of agriculture and/or natural resources, the Natural Resources Conservation Service and the Extension Service. They also work and consult pest management specialists and managers of grower organizations and with land appraisal firms, agencies involved with environmental issues, and in international agriculture.

2. Turfgrass Management is designed to prepare students for the rapidly expanding area of urban agriculture. Graduates have career opportunities in the industries involved with management of golf courses, athletic fields, lawns and park and grounds management.

3. Advanced Study is specifically designed for those students who plan to pursue graduate studies. Although students who complete the other concentrations may pursue graduate study, this concentration requires the completion of advanced levels of mathematics and advanced courses in the basic sciences.
Students may also complete a specialization in international agriculture, agribusiness management, agriculture and natural resources biotechnology, connecting learning, environmental economics, food industry management, or environmental studies. Students may qualify to teach agriscience in high school under a plan of study cooperatively developed by the student's faculty advisor and the Department of Community, Agriculture, Recreation and Resource Studies. For additional information on any of the specializations, refer to the General Index section in this publication or visit http://www.reg.msu.edu/UCC/specializations.asp.

Requirements for the Bachelor of Science Degree in Crop and Soil Sciences

1. The University requirements for bachelor's degrees as described in the Undergraduate Education section of this catalog; 120 credits, including general elective credits, are required for the Bachelor of Science degree in Crop and Soil Sciences. The University's Tier II writing requirement for the Crop and Soil Sciences major is met by completing two courses as specified below:

 Agronomic Sciences: Both of the following courses: Crop and Soil Sciences 488 and 492. Those courses are referenced in items 3. a. and 3. b. below.

 Turfgrass Management: Both of the following courses: Crop and Soil Sciences 382 and 492. Those courses are referenced in items 3. a. and 3. b. below.

 Advanced Study: Both of the following courses: Crop and Soil Sciences 488 and 492. Those courses are referenced in items 3. a. and 3. b. below.

 Students who are enrolled in the Agronomic Sciences or Turfgrass Management concentrations of the Crop and Soil Sciences major leading to the Bachelor of Science degree in the Department of Plant, Soil and Microbial Sciences, may complete an alternative track in Integrative Studies in Biological and Physical Sciences that consists of the following courses: Plant Biology 105 and 106 and Chemistry 141, 143, and 161. The completion of Plant Biology 106 and Chemistry 161 satisfies the laboratory requirement. Plant Biology 105 and 106 and Chemistry 141, 143, and 161 may be counted toward both the alternative track and the requirements for the major referenced in item 3. below. Students who are enrolled in the Advanced Study concentration of the Crop and Soil Sciences major leading to the Bachelor of Science degree in the Department of Plant, Soil and Microbial Sciences, may complete an alternative track in Integrative Studies in Biological and Physical Sciences that consists of the following courses: Plant Biology 106 and Chemistry 161 satisfies the laboratory requirement. Plant Biology 105 and 106 and Chemistry 141, 143, and 161 may be counted toward both the alternative track and the requirements for the major referenced in item 3. below. The completion of the College of Agriculture and Natural Resources mathematics requirement may also satisfy the University mathematics requirement.

2. The requirements of the College of Agriculture and Natural Resources for the Bachelor of Science degree.

 Certain courses referenced in requirement 3. below may be counted toward College requirements as appropriate. For students who select the Advanced Study Option, the completion of Mathematics 124 and 126 satisfies the College's mathematics requirement.

3. The following requirements for the major:

 a. All of the following courses: 7 CREDITS
 - CEM 161 Chemistry Laboratory I 1
 - CSS 110 Computer Applications in Agronomy 2
 - CSS 210 Fundamentals of Soil Science 3
 - CSS 492 Professional Development Seminar II 1

 Agronomic Sciences (57 or 58 credits):
 - (1) All of the following courses (52 credits):
 - CEM 141 General Chemistry 4
 - CEM 143 Survey of Organic Chemistry 4
 - CSS 101 Introduction to Crop Science 3
 - CSS 192 Professional Development Seminar 2
 - CSS 302 Principles of Weed Management 3
 - CSS 330 Soil Chemistry 2
 - CSS 340 Applied Soil Physics 3
 - CSS 350 Introduction to Plant Genetics 3
 - CSS 360 Soil Biology 2
 - CSS 470 Soil Resources 3
 - CSS 480 Soil Fertility and Management 3
 - CSS 488 Agricultural Cropping Systems: Integration and Problem Solving ... 3
 - CSS 493 Professional Internship in Crop and Soil Sciences ... 3

 Turfgrass Management (67 credits):
 - (1) All of the following courses (64 credits):
 - CEM 141 General Chemistry 4
 - CEM 143 Survey of Organic Chemistry 4
 - CSS 178 Golf Turf Irrigation 3
 - CSS 181 Pesticide and Fertilizer Application Technology .. 3
 - CSS 232 Turfgrass Management 4
 - CSS 262 Turfgrass Management Seminar 1
 - CSS 267 Turfgrass Practices 2
 - CSS 269 Turfgrass Strategies 2
 - CSS 272 Turfgrass Soil Fertility 2
 - CSS 292 Management of Turfgrass Weeds 3
 - CSS 330 Soil Chemistry 2
 - CSS 340 Applied Soil Physics 2
 - CSS 350 Introduction to Plant Genetics 3
 - CSS 360 Soil Biology 3
 - CSS 382 Turfgrass Physiology 2
 - CSS 470 Soil Resources 3
 - CSS 493 Professional Internship in Crop and Soil Sciences ... 3
 - EC 201 Introduction to Microeconomics 3
 - ENT 364 Turfgrass Entomology 3
 - MTH 116 College Algebra and Trigonometry 5
 - PLB 105 Plant Biology 2
 - PLB 106 Plant Biology Laboratory 1
 - PLP 366 Turfgrass Pathology 3
 - (2) One of the following courses (3 credits):
 - CSS 492 Professional Development Seminar II 1
 - CSS 302 Principles of Weed Management 3
 - CSS 330 Soil Chemistry 2
 - CSS 340 Applied Soil Physics 2
 - CSS 350 Introduction to Plant Genetics 3
 - CSS 360 Soil Biology 3
 - CSS 470 Soil Resources 3
 - CSS 480 Soil Fertility and Management 3
 - CSS 488 Agricultural Cropping Systems: Integration and Problem Solving ... 3
 - CSS 499 Undergraduate Research 3
 - ENT 404 Fundamentals of Entomology 3
 - MTH 132 Calculus I 3
 - PLB 105 Plant Biology 3
 - PLB 106 Plant Biology Laboratory 1
 - PLP 405 Plant Pathology 3
 - (2) One of the following courses (3 credits):
 - CSS 441 Plant Breeding and Biotechnology 3
 - CSS 451 Biotechnology Applications for Plant Breeding and Genetics ... 3
 - CSS 492 Professional Internship in Crop and Soil Sciences ... 3
 - STT 421 Statistics I 3

ENVIRONMENTAL SOIL SCIENCE

Requirements for the Bachelor of Science Degree in Environmental Soil Science

1. The University requirements for bachelor's degrees as described in the Undergraduate Education section of this catalog; 120 credits, including general elective credits, are required for the Bachelor of Science degree in Environmental Soil Science. The University's Tier II writing requirement for the Environmental Soil Science major is met by completing all of the following courses: Crop and Soil Sciences 455 and 492. These courses are referenced in item 3. below.

 Students who are enrolled in the Environmental Soil Science major may complete an alternative track in Integrative Studies in Biological and Physical Sciences that consists of the following courses: Biological Science 111 and Chemistry 141, 142, 161, and 162. The completion of Chemistry 161 and 162 satisfies the laboratory requirement. Biological Science 111 and Chemistry 141, 142, 161, and 162 may be counted toward both the alternative track and the requirements for the major referenced in item 3. below. The completion of the College of Agriculture and Natural Resources mathematics requirement also satisfies the University mathematics requirement.
AGRICULTURE AND NATURAL RESOURCES
Department of Plant, Soil and Microbial Sciences

2. The requirements of the College of Agriculture and Natural Resources for the Bachelor of Science degree. Certain courses referenced in requirement 3. may be counted toward College requirements as appropriate. The completion of Mathematics 132 satisfies the College's mathematics requirement.

3. The following requirements for the major:

a. All of the following courses (60 credits):

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMB 200</td>
<td>Introduction to Biochemistry</td>
<td>4</td>
</tr>
<tr>
<td>BBS 111</td>
<td>Cells and Molecules</td>
<td>3</td>
</tr>
<tr>
<td>CE 280</td>
<td>Principles of Environmental Engineering and Science</td>
<td>3</td>
</tr>
<tr>
<td>CEM 141</td>
<td>General Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>CEM 142</td>
<td>General and Inorganic Chemistry</td>
<td></td>
</tr>
<tr>
<td>CEM 143</td>
<td>Survey of Organic Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>CEM 161</td>
<td>Chemistry Laboratory I</td>
<td></td>
</tr>
<tr>
<td>CEM 162</td>
<td>Chemistry Laboratory II</td>
<td></td>
</tr>
<tr>
<td>CEM 262</td>
<td>Quantitative Analysis</td>
<td>3</td>
</tr>
<tr>
<td>CSS 192</td>
<td>Professional Development Seminar II</td>
<td>1</td>
</tr>
<tr>
<td>CSS 210</td>
<td>Fundamentals of Soil Science</td>
<td>3</td>
</tr>
<tr>
<td>CSS 330</td>
<td>Soil Chemistry</td>
<td>2</td>
</tr>
<tr>
<td>CSS 340</td>
<td>Applied Soil Physics</td>
<td></td>
</tr>
<tr>
<td>CSS 455</td>
<td>Pollutants in the Soil Environment</td>
<td>3</td>
</tr>
<tr>
<td>CSS 470</td>
<td>Soil Resources</td>
<td></td>
</tr>
<tr>
<td>CSS 492</td>
<td>Professional Development Seminar II</td>
<td>1</td>
</tr>
<tr>
<td>EC 201</td>
<td>Introduction to Microeconomics</td>
<td>3</td>
</tr>
<tr>
<td>GLG 201</td>
<td>The Dynamic Earth</td>
<td>4</td>
</tr>
<tr>
<td>GLG 411</td>
<td>Hydrogeology</td>
<td>3</td>
</tr>
<tr>
<td>MMG 301</td>
<td>Introductory Microbiology</td>
<td>3</td>
</tr>
<tr>
<td>MMG 425</td>
<td>Microrgan Ecology</td>
<td>3</td>
</tr>
<tr>
<td>MTH 132</td>
<td>Calculus I</td>
<td>3</td>
</tr>
</tbody>
</table>

b. One course from each of the following five groups (14 to 16 credits):

(1) CE 485 Landfill Design | 3 |
| CE 491 Civil Engineering Design Project | 3 |

(2) STT 200 Statistical Methods | 3 |
STT 201 Statical Methods	3
STT 231 Statistics for Scientists	3
STT 421 Statistics I	3

(3) ANS 427 Environmental Toxicology and Society | 3 |
| PHM 450 Introduction to Chemical Toxicology | 3 |

(4) NSC 448 Ecology, Law and Economics | 3 |
RD 430 Law and Resources	3
CSS 110 Computer Applications in Agronomy	2
CSE 101 Computing Concepts and Competencies	3

Students who pass a waiver examination for Computer Science and Engineering 101 will not be required to complete Computer Science and Engineering 101 or Crop and Soil Sciences 110.

PLANT PATHOLOGY

Earning a Bachelor of Science degree in Plant Pathology will prepare graduates for careers in agricultural industries, government programs (state, national and international), as well as for graduate study in plant pathology and numerous other fields in agriculture and natural science. The Bachelor of Science in Plant Pathology major enables students to take a substantial number of fundamental sciences courses as well as a large number of more applied courses related to plant diseases and agriculture. Course work in this vigorous curriculum offers a balance between fundamental and applied study. Those students who take a large number of fundamental courses may choose to attend graduate school. The actual numbers of fundamental versus applied courses that qualify a student for career or graduate opportunities vary greatly.

Requirements for the Bachelor of Science Degree in Plant Pathology

1. The University requirements for bachelor’s degrees as described in the Undergraduate Education section of this catalog; 120 credits, including general elective credits, are required for the Bachelor of Science degree in Plant Pathology.

 The University’s Tier II writing requirement for the Plant Pathology major is met by completing Plant Pathology 405 and 498.

 Students who are enrolled in the Plant Pathology major leading to Bachelor of Science degree may complete the alternative track to Integrative Studies in Biological and Physical Sciences that consists of the following courses: Chemistry 141, 143, and 161 and Plant Biology 105 and 106. The completion of Chemistry 141, 143, 161 and Plant Biology 105 and 106 may be counted toward both the alternative track and the requirements for the major referenced in item 3. below.

 The completion of the College of Agriculture and Natural Resources mathematics requirements may also satisfy the University mathematics requirement.

2. The requirements of the College of Agriculture and Natural Resources for the Bachelor of Science degree.

3. The following requirements for the major:

a. All of the following courses: 48 or 50 credits

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEM 141</td>
<td>General Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>CEM 143</td>
<td>Survey of Organic Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>CEM 251</td>
<td>Organic Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CEM 161</td>
<td>Chemistry Laboratory I</td>
<td></td>
</tr>
<tr>
<td>CEM 252</td>
<td>Organic Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CSS 350</td>
<td>Introduction to Plant Genetics</td>
<td>3</td>
</tr>
<tr>
<td>MMG 301</td>
<td>Introductory Microbiology</td>
<td>3</td>
</tr>
<tr>
<td>MTH 124</td>
<td>Survey of Calculus I</td>
<td>3</td>
</tr>
<tr>
<td>STT 201</td>
<td>Statistical Methods</td>
<td>3</td>
</tr>
<tr>
<td>PHY 231</td>
<td>Introductory Physics I</td>
<td>3</td>
</tr>
<tr>
<td>PLB 105</td>
<td>Plant Biology</td>
<td>3</td>
</tr>
<tr>
<td>PLB 106</td>
<td>Plant Biology Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>PLB 301</td>
<td>Introductory Plant Physiology</td>
<td>3</td>
</tr>
<tr>
<td>PLB 402</td>
<td>Biology Fungi</td>
<td>3</td>
</tr>
<tr>
<td>PLP 101</td>
<td>Current Issues and Frontiers in Plant Pathology</td>
<td>1</td>
</tr>
<tr>
<td>PLP 405</td>
<td>Introductory Plant Pathology</td>
<td>3</td>
</tr>
<tr>
<td>PLP 407</td>
<td>Diseases and Insects of Forest and Shade Trees</td>
<td>3</td>
</tr>
<tr>
<td>PLP 492</td>
<td>Seminar</td>
<td>2</td>
</tr>
<tr>
<td>PLP 493</td>
<td>Plant Pathology Internship</td>
<td>3</td>
</tr>
<tr>
<td>PLP 498</td>
<td>Undergraduate Research</td>
<td>3</td>
</tr>
</tbody>
</table>

b. One of the following courses or pair of courses (3 credits):

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSS 101</td>
<td>Introduction to Crop Science</td>
<td>3</td>
</tr>
<tr>
<td>FOR 202</td>
<td>Introduction to Forestry</td>
<td>3</td>
</tr>
<tr>
<td>HRT 203</td>
<td>Principles of Horticulture I</td>
<td>2</td>
</tr>
<tr>
<td>HRT 203L</td>
<td>Principles of Horticulture Laboratory</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSS 210</td>
<td>Fundamentals of Soil and Landscape Science</td>
<td>3</td>
</tr>
<tr>
<td>CSS 402</td>
<td>Principles of Weed Science</td>
<td>3</td>
</tr>
<tr>
<td>ENT 404</td>
<td>Insects: Success in Biodiversity</td>
<td>4</td>
</tr>
<tr>
<td>ZOL 355</td>
<td>Ecology</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSS 451</td>
<td>Cellular and Molecular Principles and Techniques</td>
<td>4</td>
</tr>
<tr>
<td>PLB 416</td>
<td>Experiments in Plant Physiology and Molecular</td>
<td>4</td>
</tr>
<tr>
<td>Biotechnology</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ENT 470</td>
<td>General Nematology</td>
<td>3</td>
</tr>
<tr>
<td>ENT 478</td>
<td>Pest Management II: Biological Components of</td>
<td>3</td>
</tr>
<tr>
<td>Management Systems (W)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PLP 362</td>
<td>Management of Turfgrass Pests</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMB 401</td>
<td>Basic Biochemistry</td>
<td>4</td>
</tr>
<tr>
<td>BMB 461</td>
<td>Biochemistry I</td>
<td>3</td>
</tr>
<tr>
<td>BMB 462</td>
<td>Biochemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CEM 142</td>
<td>General and Inorganic Chemistry</td>
<td>3</td>
</tr>
</tbody>
</table>

Students desiring to study plant pathology may also emphasize fundamental science, biotechnology, plant protection, or agricultural business management, and modify their programs accordingly with approval of their academic advisor and the department chairperson.

It is required that a grade point average of 2.0 be obtained in major courses (Plant Pathology 101, 405, 407, 492, 493, and 498) in order for a B.S. Degree in Plant Pathology to be awarded.

Students who take Biochemistry and Molecular Biology 401, 461, and 462, and Crop and Soil Sciences 451 in addition to Plant Pathology major requirements, may also take Horticulture 486 to complete the College of Agriculture and Natural Resources requirements for the Specialization in Agricultural and Natural Resources Biotechnology.

MINOR IN AGRONOMY

The Minor in Agronomy, which is administered by the Department of Plant, Soil and Microbial Sciences, is designed to serve students with majors in fields other than Crop and Soil Sciences who are interested in agronomy and who plan to pursue careers in agriculture for which a basic familiarity with the science of cropping systems is important. The minor will provide an opportunity for students to gain a fundamental understanding of the science of food production, including crop management, soil management, and plant breeding and biotechnology.

This minor is available as an elective to students who are enrolled in bachelor’s degree programs at Michigan State University other than the Bachelor of Science Degree in Crop and Soil Sci-

50
ences or the Bachelor of Science Degree in Environmental Soil Science. With the approval of the department and college that administer the student's degree program, the courses that are used to satisfy the minor may also be used to satisfy the requirements for the bachelor's degree. At least 12 unique credits counted towards the requirements for a student's minor must not be used to fulfill the requirements for that student's major.

Students who plan to complete the requirements of the minor should consult the Department of Plant, Soil and Microbial Sciences and have their program of study approved in advance and in writing.

Requirements for the Minor in Agronomy
Complete 15 to 18 credits from the following:

1. All of the following courses (9 credits):
 - CSS 101 Introduction to Crop Science ..3
 - CSS 210 Fundamentals of Soil Science ..3
 - CSS 488 Agricultural Cropping Systems: Integration and Problem Solving3

2. One of the following courses (2 or 3 credits):
 - CSS 222 New Horizons in Biotechnology ..2
 - CSS 350 Introduction to Plant Genetics ..3
 - CSS 441 Plant Breeding and Biotechnology3

3. One of the following courses (2 or 3 credits):
 - CSS 135 Crop Scouting and Investigation2
 - CSS 151 Seed and Grain Quality ..2
 - CSS 201 Forage Crops ..2
 - CSS 212 Biotech Crop Production ..2
 - CSS 251 Organic Farming Principles and Practices3
 - CSS 302 Principles of Weed Management ..3
 - CSS 424 Sustainable Agriculture and Food Systems: Integration and Synthesis3
 - CSS 431 International Agricultural Systems3
 - CSS 467 Bioenergy Feedstock Production ..3

4. One of the following courses (2 or 3 credits):
 - CSS 330 Soil Chemistry ..2
 - CSS 340 Applied Soil Physics ..2
 - CSS 360 Soil Biology ..3
 - CSS 470 Soil Resources ..3

SPECIALIZATION IN INTERNATIONAL AGRICULTURE

This specialization is available as an elective to students who are enrolled in bachelor's degree programs and is designed for students who have an interest in international agriculture. It seeks to increase student understanding of global agriculture, particular agriculture-related problems and issues in developing and developed nations, and issues related to sustainability and stewardship of the Earth. Students who complete this specialization will be prepared for effective employment in the arena of international agriculture and/or multinational firms.

The College of Agriculture and Natural Resources in cooperation with the Departments of Agricultural, Food, and Resource Economics, Animal Science, Plant, Soil and Microbial Sciences, and Forestry, and the College of Social Science in cooperation with the Department of Anthropology participate in the Specialization in International Agriculture. The Department of Plant, Soil and Microbial Sciences is the primary administrative unit.

Requirements for the Specialization in International Agriculture
The student's program of study for the specialization must be approved by the Department of Plant, Soil and Microbial Sciences in advance and in writing. With the approval of the department that administers the student's degree program, courses that are used to satisfy the requirements for the specialization may also be used to satisfy the requirements for the bachelor's degree. The student must meet the requirements specified below:

1. Foreign Language ...0 to 8
 - Complete the equivalent of one year of a foreign language. The requirement may be met by completing two semesters of a foreign language at MSU or by obtaining a sufficient score on the appropriate foreign language placement test to place into a 200-level course in that language.

2. Study Abroad Experience ..6 to 12
 - Complete at least one study abroad experience that has a minimum duration of six weeks or two experiences of shorter duration.

3. Both of the following courses: ..4
 - CSS 294 Issues in International Agriculture1
 - CSS 431 International Agricultural Systems3

4. One of the following courses: ...3
 - ABM 427 Global Agri-Food Industries and Markets3
 - ANP 470 Food, Hunger, and Society ...3
 - ANR 250 Global Issues in Agriculture and Natural Resources3
 - ANS 480 Animal Systems in International Development3
 - EEP 260 World Food, Population and Poverty3
 - FOR 450 Forestry in International Development3

SPECIALIZATION IN SUSTAINABLE AGRICULTURE AND FOOD SYSTEMS

The Specialization in Sustainable Agriculture and Food Systems is designed to foster active learning about agriculture and food systems for undergraduate students from different disciplinary backgrounds. Contemporary agriculture and food systems issues will be considered in biological, ecological, social, and economic contexts.

The specialization is available as an elective to students who are enrolled in bachelor's degree programs at Michigan State University. With the approval of the department and college that administer the student's degree program, the courses that are used to satisfy the specialization may also be used to satisfy the requirements for the bachelor's degree. The student's program of study must be approved by the Department of Plant, Soil and Microbial Sciences in advance and in writing.

Requirements for the Specialization in Sustainable Agriculture and Food Systems
The student must complete 13 credits from the following:

1. Both of the following courses (4 credits):
 - CSS 124 Introduction Sustainable Agriculture and Food Systems1
 - CSS 424 Sustainable Agriculture and Food Systems: Integration and Synthesis3

2. Three of the following courses, including at least one course from the agricultural sciences and one course from the social sciences (9 credits):
 - CSS 101 Introduction to Crop Science ...3
 - CSS 360 Soil Biology ...3
 - CSS 431 International Agricultural Systems3
 - ENT 479 Organic Pest Management ..3
 - HRT 203 Principles of Horticulture ...3
 - HRT 251 Organic Farming Principles and Practices3
 - HRT 341 Vegetable Production and Management3

 - EEP 265 Ecological Economics ...3
 - EEP 260 World Food, Population and Poverty3
 - ESA 343 Community Food and Agricultural Systems3
 - ESA 444 Pesticides, People and Politics3
 - GEO 410 Geography of Food and Agriculture3
 - RCAH 292B Engagement and Reflection (D)3

GRADUATE STUDY

The Department of Plant, Soil and Microbial Sciences offers programs leading to Master of Science and Doctor of Philosophy degrees in crop and soil sciences, plant breeding, genetics and biotechnology—crop and soil sciences, and in plant pathology. The department also offers a Doctor of Philosophy degree program in crop and soil sciences—environmental toxicology.

Students enrolled in the Doctor of Philosophy degree program may elect a Specialization in Biotechnology. For additional information, refer to the statement on the specialization.

Students who are enrolled in Master of Science degree programs in the Department of Plant, Soil and Microbial Sciences may elect a Specialization in Food Safety. For additional information, refer to the statement on the specialization in the College of Veterinary Medicine section of this catalog.
CROP AND SOIL SCIENCES

The department offers the following areas of specialization within the field of crop and soil sciences: plant breeding and genetics; crop physiology, ecology, and management; weed science; turfgrass management; soil genesis and classification; soil microbiology and biochemistry; soil physics; soil chemistry; soil biophysics; soil fertility; and environmental and pollution aspects of soil science, including the study of waste disposal on land. Graduate programs of study are designed to reflect the individual needs and interests of students.

Master of Science

In addition to meeting the requirements of the university and of the College of Agriculture and Natural Resources, students must meet the requirements specified below.

Admission

Applicants for admission to the master’s degree program should have a bachelor's degree in crop and soil sciences or in a related field such as botany or chemistry. Applicants should also have substantial academic background in the physical sciences (including chemistry and physics), in the biological sciences (including botany), and in mathematics. The completion of an undergraduate crop and soil sciences major with an agricultural science specialization would be considered ideal. Students with deficiencies in their backgrounds will be required to complete collateral courses in addition to the courses that are required for the master's degree.

Requirements for the Master of Science Degree in Crop and Soil Sciences

The student may elect either Plan A (with thesis) or Plan B (without thesis). A total of 30 credits is required for the degree under either Plan A or Plan B. In addition to courses in the major, a minor or study in areas related to crop and soil sciences is required. Students are encouraged to select such courses as botany, biochemistry, chemistry, geology, plant pathology, and statistics. The student is required to complete satisfactorily one semester of teaching.

Doctor of Philosophy

In addition to meeting the requirements of the university and of the College of Agriculture and Natural Resources, students must meet the requirements specified below.

Requirements for the Doctor of Philosophy Degree in Crop and Soil Sciences

In addition to courses in the major, a minor or study in areas related to crop and soil sciences is required. Students are encouraged to select such courses as botany, biochemistry, chemistry, geology, plant pathology, and statistics. The student is required to complete satisfactorily one semester of teaching.

CROP AND SOIL SCIENCES—ENVIRONMENTAL TOXICOLOGY

Doctor of Philosophy

For information about the Doctor of Philosophy degree program in crop and soil sciences—environmental toxicology, refer to the statement on Doctoral Program in Environmental and Integrative Toxicological Sciences in the Graduate Education section of this catalog.

PLANT BREEDING, GENETICS and BIOTECHNOLOGY—CROP and SOIL SCIENCES

The Department of Plant, Soil and Microbial Sciences offers Master of Science and Doctor of Philosophy degree programs in plant breeding, genetics and biotechnology—crop and soil sciences. The requirements for admission and the requirements for the degree are specified in the statement on Interdepartmental Graduate Programs in Plant Breeding, Genetics and Biotechnology.

PLANT PATHOLOGY

Master of Science

Plant pathology graduate students may study in one or more emphasis areas, including phytobacteriology, mycology, virology, epidemiology, host parasite interactions, soil microbiology, disease management and molecular biology. Commodity-oriented strategic research areas in which the above emphasis areas may be studied include vegetable crops, fruit crops, nursery, landscape and ornamentals, field crops, turf crops, and forest and tree pathology. Students are urged to take courses which provide a broad background in biological and physical sciences in addition to training in specialized areas.

In addition to meeting the requirements of the university and the College of Agriculture and Natural Resources, students must meet the requirements specified below.

Admission

Regular admission may be granted to those students who have a bachelor’s degree or its equivalent, a 3.00 grade point average, and appropriate training in the biological and physical sciences and mathematics.

Provisional admission may be granted to those students who do not meet the requirements for regular admission.

Requirements for the Master of Science Degree in Plant Pathology

The master’s degree program in plant pathology is available under either Plan A (with thesis) or Plan B (without thesis). The student’s program of study is arranged by a guidance committee which includes the major professor.

For both Plan A and Plan B, students must:
1. Complete at least 30 credits including at least two graduate-level seminar courses in the biological sciences, one of which must be Plant Pathology 894.
2. Acquire teaching experience by assisting in at least one course.
3. Demonstrate a reading knowledge of a foreign language if required by the guidance committee.
Additional Requirement for Plan A:
Pass a final oral examination in defense of the thesis.

Additional Requirement for Plan B:
Pass a final examination or evaluation.

Doctor of Philosophy
The objective of this program is to provide a high quality plant pathology graduate experience to equip students with the skills necessary for research, teaching and extension, or other agriculture-related positions that require the Doctor of Philosophy degree.

In addition to meeting the requirements of the university and the College of Agriculture and Natural Resources, students must meet the requirements specified below.

Admission
Regular admission may be granted to those students having a master’s degree or its equivalent, a 3.00 grade point average, and appropriate training in the biological and physical sciences and mathematics. Outstanding students without a master’s degree may be accepted.

Provisional admission may be granted to those students who do not meet the requirements for regular admission.

Requirements for the Doctor of Philosophy Degree in Plant Pathology
All doctoral students in plant pathology must meet the requirements specified below:
1. Pass a preliminary examination.
2. Acquire teaching experience by assisting in two courses.
3. Complete:
 a. All of the following courses:
 - PLP 405 Introductory Plant Pathology
 - PLP 810 Current Concepts in Plant Pathology
 - PLP 884 Seminar in Plant Pathology
 b. One of the following courses:
 - PLP 812 Epidemiology of Plant Diseases
 - PLP 881 Molecular and Biochemical Plant Pathology
 - PLP 885 Plant Diseases in the Field
 c. Two of the following courses:
 - ENT 870 Nematode Management in Crop Systems
 - PLP 847 Advanced Mycology
 - PLP 880 Plant Virology
 - PLP 884 Prokaryotic Diseases of Plants
4. Additional requirements such as reading knowledge of a foreign language may be required by the guidance committee.
5. Pass a written comprehensive examination.

GRADUATE SPECIALIZATION IN ECOLOGICAL FOOD AND FARMING SYSTEMS
The Graduate Specialization in Ecological Food and Farming Systems is designed to foster an understanding of biogeochemical, socioeconomic, and policy concepts using examples of food and farming systems. The specialization is available as an elective to students who are enrolled in master's or doctoral degree programs at Michigan State University. With the approval of the department and college that administers the student’s degree program, the courses that are used to satisfy the specialization may also be used to satisfy the requirements for the master’s or doctoral degree. The students program of study must be approved by the advisor for the specialization in the Department of Plant, Soil and Microbial Sciences in advance and in writing.

Requirements for the Graduate Specialization in Ecological Food and Farming Systems

The student must complete 13 to 14 credits from the following:

1. All of the following courses (7 credits):
 - ACR 811 Community, Food and Agriculture: A Survey
 - ACR 842 Agricultural Ecology
 - CSS 892B Ecological Food and Farming Systems Seminar
2. One of the following courses (3 credits):
 - CSS 431 International Agricultural Systems
 - CSS 893 Special Topics
 - ENT 479 Organic Pest Management
 - ENT 846 Biological Control of Insects and Weeds
 - An international course approved by the student’s advisor for the specialization.
3. One of the following courses (3 or 4 credits):
 - ACR 823 Contemporary Issues in Animal-Human Relationships
 - ACR 853 The Industrialization of American Agriculture
 - ACR 854 Agriculture and Social Movements
 - ACR 891B Advanced Topics in Community, Food, and Agriculture
 - AEC 861 Agriculture in Economic Development
 - FW 858 Gender, Justice, and Environmental Change
 - GEO 410 Geography of Food and Agriculture
 - An international course approved by the student’s advisor for the specialization.

Students may enroll in the Department of Plant Pathology in any program with an interest in food and farming systems.

DEPARTMENT of PLANT BIOLOGY
Richard E. Triemer, Chairperson
The Department of Plant Biology is administered jointly by the College of Agriculture and Natural Resources and the College of Natural Science. Plant Biology is the branch of natural science that deals with all aspects of the biology of plants, encompassing all levels of biological organization from molecules to the ecosystem. Plant biology concerns itself with the study of the structure, function, evolution, physiology, molecular biology, biochemistry, genetics, and systematics of all taxonomic groups of plants and fungi. Plant biology is central to the wide divergence of disciplines that make up modern plant science at Michigan State University and deals with the relationships between plants and society. Students in this program can study all aspects of plant biology and they are trained to integrate information between different hierarchies of biological organization while at the same time developing a deep understanding of their area of specialization.

The department offers Master of Science and Doctor of Philosophy degree programs with majors in plant breeding, genetics and biotechnology—plant biology through the College of Agriculture and Natural Resources. Those programs are referenced below. The department also offers Master of Science and Doctor of Philosophy degree programs with majors in plant biology through the College of Natural Science. For information about those programs, refer to the statement on the Department of Plant Biology in the College of Natural Science section of this catalog.

PLANT BREEDING, GENETICS and BIOTECHNOLOGY—PLANT BIOLOGY
The Department of Plant Biology offers Master of Science and Doctor of Philosophy degree programs in plant breeding, genetics and biotechnology—plant biology. The requirements for admission and the requirements for the degree are specified in the statement on Interdepartmental Graduate Programs in Plant Breeding, Genetics and Biotechnology.
The Institute of Agricultural Technology (IAT) was founded in 1894 to provide education and training in agricultural sciences and technologies. It is affiliated with Michigan State University, located in East Lansing, Michigan. The institute offers a range of programs in various agricultural fields, including Agricultural Industries, Applied Plant Science, and Turfgrass Operations. Each program is designed to prepare students for careers in agriculture, environmental sciences, and related fields.

Agricultural Industries

This program offers a variety of concentrations, including Animal Science, Crop Science, Agribusiness, and Environmental Science. Students can tailor their coursework to align with their career goals. Key courses include Introduction to Animal Science, Crop Science, and Agribusiness practices.

Applied Plant Science

This program focuses on the scientific and technical aspects of plant science, preparing students for careers in crop science, horticulture, and environmental management. Courses cover topics such as plant biology, soil science, and plant pathology.

Turfgrass Operations

The Turfgrass Operations program is designed for students interested in the management of turfgrass and landscape plants. It includes courses in turfgrass management, irrigation systems, and landscape design.

Requirements for Agricultural Industries

The program requires a total of 48 credits, including a variety of courses in animal and crop sciences, business management, and technical skills.

Requirements for Applied Plant Science

The program requires a total of 36 credits, with a focus on plant science, horticulture, and environmental management.

Requirements for Turfgrass Operations

The program requires a total of 30 credits, with a focus on turfgrass management, irrigation systems, and landscape design.

Applied Plant Science

Employment and career opportunities continue to expand for those who have training and educational preparation in applied plant science. In response to this regional plant industry need, Northwestern Michigan College (NMC) and Lake Michigan College (LMC) partner with Michigan State University to offer a combined program, which enables students to complete an Associate of Applied Science degree through Northwestern Michigan College or Lake Michigan College as well as an MSU Institute of Agricultural Technology certificate - without leaving their local area.

Bringing together the world-acclaimed expertise of Michigan State University's College of Agriculture and Natural Resources and the "close to home" convenience of outstanding community colleges, the Applied Plant Science program prepares graduates for a wide range of employment and career choices. Each student works on a personal, one-on-one plan in selecting her/his program of study (including workplace internship). Students may earn their certificate in Applied Plant Science with concentrations in Commercial Horticulture Operations, Commercial Turfgrass Operations, or Landscape Horticulture.

Commercial Horticulture Operations

- Complete 9 credits from the following:
 - **CSS 202 The World of Turf**
 - **CSS 203 Applied Turf Management**
 - **CSS 290 Independent Study in Crop and Soil Science**
 - **CSS 292 Management of Turfgrass Weeds**

2. Complete a minimum of 2 credits from the following:

Commercial Turfgrass Operations

1. All of the following courses (21 credits):

2. Complete a minimum of 2 credits from the following:

Landscape Horticulture

1. All of the following courses:

3. One of the following:
 a. Complete 21 credits of course work from Lake Michigan College as approved by the student's academic advisor.
 b. Complete 22 credits of course work from Northwestern Michigan College as approved by the student's academic advisor.

Beef Cattle Management

This program allows specialization in the area of beef cattle management in a one-year intensified program. It provides knowledge and experience in the management of both cow/calf and feedlot enterprises. There is a demand for industrious young people with practical experience to fill positions of responsibility as herd managers, assistant herd managers, and other livestock-related jobs.

Agriculture, in this rapidly changing era, requires aggressive young people who have specialized training in modern scientific practices. While the demands for success are great, the opportunities for success are limited only by a person’s desires or imagination.

Requirements for Beef Cattle Management

The student must complete 35 credits from the following:

<table>
<thead>
<tr>
<th>CREDITS</th>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. All of the following courses:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANS 110</td>
<td>Introductory Animal Agriculture</td>
<td>4</td>
</tr>
<tr>
<td>ANS 122A</td>
<td>Feeding Clerkship</td>
<td>2</td>
</tr>
<tr>
<td>ANS 122B</td>
<td>Beef Cow Calf Clerkship</td>
<td>2</td>
</tr>
<tr>
<td>ANS 203</td>
<td>Principles of Livestock Feeding</td>
<td>3</td>
</tr>
<tr>
<td>ANS 205</td>
<td>Reproduction in Livestock</td>
<td>3</td>
</tr>
<tr>
<td>AT 045</td>
<td>Agricultural Communications</td>
<td>2</td>
</tr>
<tr>
<td>AT 071</td>
<td>Technical Mathematics</td>
<td>2</td>
</tr>
<tr>
<td>AT 293</td>
<td>Professional Internship in Agricultural Technology</td>
<td>6</td>
</tr>
<tr>
<td>2. Both of the following courses:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABM 100</td>
<td>Decision-making in the Agri-Food System</td>
<td>3</td>
</tr>
<tr>
<td>ABM 130</td>
<td>Farm Management I</td>
<td>3</td>
</tr>
<tr>
<td>3. Complete 7 credits of elective course work</td>
<td></td>
<td>7</td>
</tr>
</tbody>
</table>

Dairy Management

Because dairy farming is among the leading agricultural enterprises in Michigan, the dairy program has been developed to meet the specialized needs of the herd manager and commercial dairy farmer. Opportunities abound for persons with the combination of classroom training in the areas of dairy husbandry, nutrition, artificial insemination, crops, and farm management and the practical experience that may be obtained on any of the many cooperating dairy farms in Michigan and the surrounding states.

Programs of study tailored to meet the individual’s wants and needs are designed around the subject matter areas of agricultural economics, communications, crop and soil sciences, and agricultural mechanics. Additionally, students learn about the continuing changes in rural living, which have a great influence on agriculture.

Requirements for Dairy Management

The student must complete 48 credits from the following:

<table>
<thead>
<tr>
<th>CREDITS</th>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. All of the following courses (32 credits):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANS 132</td>
<td>Dairy Farm Management Seminar</td>
<td>1</td>
</tr>
<tr>
<td>ANS 203</td>
<td>Principles of Livestock Feeding</td>
<td>2</td>
</tr>
<tr>
<td>ANS 205</td>
<td>Reproduction in Livestock</td>
<td>2</td>
</tr>
<tr>
<td>ANS 206</td>
<td>Dairy Herd Management</td>
<td>3</td>
</tr>
<tr>
<td>ANS 230</td>
<td>Introductory Dairy Cattle Management</td>
<td>3</td>
</tr>
<tr>
<td>ANS 235</td>
<td>Dairy Herd Reproduction</td>
<td>3</td>
</tr>
<tr>
<td>ANS 238</td>
<td>Dairy Health Management</td>
<td>3</td>
</tr>
<tr>
<td>AT 045</td>
<td>Agricultural Communications</td>
<td>2</td>
</tr>
<tr>
<td>AT 071</td>
<td>Technical Mathematics</td>
<td>2</td>
</tr>
<tr>
<td>AT 291</td>
<td>Selected Topics in Agricultural Technology</td>
<td>2</td>
</tr>
<tr>
<td>CSS 110</td>
<td>Computer Applications in Agronomy</td>
<td>2</td>
</tr>
<tr>
<td>2. Complete 16 credits of elective course work from the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABM 100</td>
<td>Decision-making in the Agri-Food System</td>
<td>3</td>
</tr>
<tr>
<td>ABM 130</td>
<td>Farm Management I</td>
<td>3</td>
</tr>
<tr>
<td>ABM 225</td>
<td>Commodity Marketing I</td>
<td>3</td>
</tr>
<tr>
<td>ANS 110</td>
<td>Introductory Animal Agriculture</td>
<td>4</td>
</tr>
<tr>
<td>ANS 222</td>
<td>Introductory Beef Cattle Management</td>
<td>3</td>
</tr>
<tr>
<td>AT 055</td>
<td>Agricultural Finance</td>
<td>3</td>
</tr>
<tr>
<td>CSS 101</td>
<td>Introduction to Crop Science</td>
<td>3</td>
</tr>
<tr>
<td>CSS 201</td>
<td>Forage Crops</td>
<td>3</td>
</tr>
<tr>
<td>CSS 212</td>
<td>Advanced Crop Production</td>
<td>2</td>
</tr>
</tbody>
</table>

Electrical Technology

There is a need for highly trained electricians. Electrical contractors need electricians capable of planning complex wiring and solving difficult wiring problems. Wiring systems today are complex. In some cases, equipment breakdowns must be repaired promptly to avoid devastating losses.

The Electrical Technology program is a complete electrical apprenticeship program recognized by the State Electrical Administrative Board. Graduates of the program receive credit for two years of experience by completing only 15 months of training. Four years of experience are required for the State Journeyman Electrician License Exam.

The program covers residential, farm, commercial, and industrial wiring; single and three phase motors and generators; electrical control systems wiring, design and troubleshooting; lighting system design; electrical system design; heating; animal and human environment control; electrical estimating; and electrical business management.

Grounds Management

The Grounds Management certificate is delivered in partnership between Wayne County Community College District and the Michigan State University Institute of Agricultural Technology. It is designed for persons interested in careers managing commercial, private, school, or community athletic facilities and landscapes.

Graduates of the program will receive a certificate from the Michigan State University Institute of Agricultural Technology and will have the opportunity to complete a test to become a certified pesticide applicator with the Michigan Department of Agriculture. Additional course work may lead to a Certificate in Grounds Management from Michigan State University and a Certificate in Facilities Maintenance from Wayne County Community College District, making the graduate more qualified to manage both indoor and outdoor facilities. Students may continue their course work to obtain an Associate in Applied Science Degree from Wayne County Community College District in addition to the certificate from Michigan State University.

Requirements for Grounds Management

The student must complete 50 credits from the following:

<table>
<thead>
<tr>
<th>CREDITS</th>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. All of the following courses (25 credits):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT 291</td>
<td>Special Topics in Agricultural Technology</td>
<td>1</td>
</tr>
<tr>
<td>AT 293</td>
<td>Professional Internship in Agricultural Technology</td>
<td>3</td>
</tr>
<tr>
<td>CSS 202</td>
<td>The World of Turf</td>
<td>2</td>
</tr>
<tr>
<td>CSS 203</td>
<td>Applied Turf Management</td>
<td>1</td>
</tr>
<tr>
<td>CSS 210</td>
<td>Fundamentals of Soil Science</td>
<td>3</td>
</tr>
<tr>
<td>CSS 269</td>
<td>Turfgrass Strategies: Integration and Synthesis</td>
<td>2</td>
</tr>
<tr>
<td>CSS 292</td>
<td>Management of Turfgrass Weeds</td>
<td>3</td>
</tr>
<tr>
<td>ENT 111</td>
<td>Basics of Applied Entomology</td>
<td>2</td>
</tr>
<tr>
<td>HRT 214</td>
<td>Landscape and Turfgrass Business Operations</td>
<td>2</td>
</tr>
<tr>
<td>HRT 218</td>
<td>Landscape Irrigation</td>
<td>3</td>
</tr>
<tr>
<td>PLP 104</td>
<td>Applied Plant Pathology for Ornamentals and Turf</td>
<td>3</td>
</tr>
<tr>
<td>2. Complete 25 credits of course work from Wayne County Community College District as approved by the student's academic advisor.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Horse Management

The horse management program places emphasis on acquisition of equine husbandry skills that will prepare students for jobs in the ever-growing horse industry or for the management of their own farms and horses. Students are required to complete a one-semester placement training experience working with professionals in the horse industry. Study abroad opportunities may also be incorporated into the student’s program. The horse industry has exciting job opportunities for students who have a passion for horses and a strong work ethic. Students who complete this program will be prepared for positions ranging from assistant trainers to managers of small farms and from racetrack grooms to tack and equipment sales personnel.

Requirements for Horse Management

The student must complete 48 credits from the following:

1. All of the following courses (37 to 40 credits):
 - ABM 130 Farm Management I .. 3
 - ANS 140 Fundamentals of Horsemanship 2
 - ANS 145 Horse Behavior and Welfare 2
 - ANS 146 Fundamentals of Horse Training 3
 - ANS 147 Horse Management Placement Seminar 3
 - ANS 149 Horse Management Clerkship 3
 - ANS 200D Introductory Judging of Horses 2
 - ANS 203 Principles of Livestock Feeding 2
 - ANS 243 Horse Nutrition and Feeding 3
 - ANS 240 Horse Farm Management 3
 - ANS 242 Introductory Horse Management 3
 - ANS 243 Horse Nutrition and Feeding 3
 - ANS 245 Horse Exercise Physiology 3
 - AT 045 Agricultural Communications 2
 - AT 071 Technical Mathematics 2
 - AT 230 Professional Internship in Agricultural Technology ... 6
 - AT 293 Professional Internship in Agricultural Technology ... 6
 - CSS 110 Computer Applications in Agronomy 3

2. Complete 8 to 11 credits of elective course work from the following:
 - ANS 110 Introductory Animal Agriculture 4
 - ANS 141 Draft Horse Basics ... 2
 - ANS 142 Horse Training for Competition 2
 - ANS 148 Methods of Instructing Safe Horsemanship 2
 - ANS 290 Independent Study in Agricultural Technology 2
 - ANS 300D Advanced Horse Judging 2
 - AT 291 Selected Topics in Agricultural Technology 2
 - CSS 201 Forage Crops .. 3
 - KIN 125 First Aid and Personal Safety 3
 - Study abroad ... 6

Landscape and Nursery

The current demand for landscape horticulturists is due to the rapid expansion in industrial and home landscapes as well as city, state, and environmental improvement projects. Graduates of the landscape and nursery program work as owners, managers, buyers, or salespersons in retail firms, commercial landscape construction, and nursery production firms as well as for private enterprises.

The program combines the theories and principles of classroom instruction with the practical experience of placement training. Although the emphasis is on landscape and nursery, other important aspects of a college education are included. Students are required to take courses in fields such as communications, botany, biochemistry, soil science, plant diseases, and personnel practices.

The Landscape and Nursery Program is offered by the Department of Horticulture in cooperation with the Institute of Agricultural Technology.

Landscape and Lawn Management

The Landscape and Lawn Management program is a unique partnership between the Michigan State University College of Agriculture and Natural Resources’ Institute of Agricultural Technology and Grand Rapids Community College. This program provides students an opportunity to gain the necessary skills for a successful career in the billion-dollar landscape and nursery industry without leaving the Grand Rapids area. Graduates of the program work as owners, managers, buyers, or salespersons in retail firms, commercial landscape construction and maintenance operations, and as well as for private enterprises.

The program combines the theories and principles of classroom instruction with the practical experience of placement training. Although the emphasis is on landscape and lawn management, other important aspects of a college education are included. Students are required to take courses in fields such as written communications, botany, business management, computer science, soil science, plant pathology, entomology, ornamental plant identification, and much more.

Upon completion of the program requirements for the certificate, students also have the option of completing 18 additional credits at Grand Rapids Community College to obtain an Associate of Applied Arts and Sciences degree. The additional courses are in business, chemistry, written communications, humanities, and social science.

Organic Farming

Organic farming is one of the fastest growing and expanding areas of agriculture. There are viable business opportunities for small-scale producers to meet the consumer demand for fresh, local vegetables, fruits and herbs by marketing at the growing number of farmer’s markets, community supported agriculture (CSA) farms, as well as other direct and wholesale markets. This program is a 12-month (January to December) introduction to intensive and year-round organic farming. The organic farming program consists of course work, the operation of a diversified small-scale organic farm on the Michigan State University campus, and a 16-week placement training or apprenticeship on a working farm or with a community or urban garden project. Emphasis is on the production of vegetables, fruit, herbs, and cut flowers with CSA and farm stand marketing. Winter production occurs in unheated and heated greenhouses. The curriculum includes how to build and maintain soil quality and fertility primarily with on-farm resources and farming methods that cultivate a diverse, profitable and resilient farm. No previous farming experience is required. This program is especially suitable for applicants seeking a new direction and employment related to organic farming and gardening, community and urban garden projects, and other food system and environmental careers.

Requirements for Organic Farming

1. All of the following courses (26 credits):
 - AT 045 Agricultural Communications 2
 - AT 071 Technical Mathematics 2
 - HRT 243 Organic Transplant Production 1
 - HRT 250 Organic Farming Principles and Practices 3
 - HRT 252 Organic Certification and Farm Plans 1
 - HRT 253 Compost Production and Use 1
 - HRT 256 Organic Produce Direct Marketing 1
 - HRT 257 Organic Produce Wholesale Marketing 1
 - HRT 258 Study a Farm .. 3
 - HRT 259A Student Organic Farm Practicum I 3
 - HRT 259B Student Organic Farm Practicum II 4
 - HRT 259C Student Organic Farm Practicum III 3
 - PBS 105 Plant Biology .. 3

2. One of the following courses (2 or 3 credits):
 - HRT 109 Introduction to Applied Plant Science 2
 - HRT 201 Forage Crops .. 3
 - HRT 210 Fundamentals of Soil Science 2
 - HRT 292 Crop Production .. 2
 - CSS 360 Soil Biology .. 3

3. Complete a minimum of 10 credits from the following:
 - ANS 110 Introductory Animal Agriculture 4
 - AT 291 Selected Topics in Agricultural Technology 2
 - AT 293 Professional Internship in Agricultural Technology 3
 - CSS 101 Introduction to Crop Science 3
 - CSS 110 Computer Applications in Agronomy 2
 - CSS 201 Forage Crops .. 3
 - CSS 210 Fundamentals of Soil Science 3
 - CSS 212 Advanced Crop Production 2
 - CSS 220 Compost Production ... 2
 - CSS 360 Soil Biology .. 3
 - HRT 221 Greenhouse Structures and Management 3
Turfgrass Management

A rapidly expanding turfgrass industry offers many challenging job opportunities for trained personnel. The growing demand for recreational areas and rededication to the maintenance of beauty in America has created a shortage of turfgrass specialists.

Golf Course Emphasis

The golf course emphasis provides the fundamentals of turfgrass technology necessary primarily for the supervision and management of golf courses. Attractive starting salaries and many job opportunities are available with excellent potential for advancement. Previous work experience on a golf course maintenance crew is expected.

Requirements for the Golf Course Emphasis

All of the following courses (54 credits):

- AT 291 Selected Topics in Agricultural Technology 4
- AT 293 Professional Internship in Agricultural Technology 6
- CSS 110 Computer Applications in Agronomy 2
- CSS 171 Operations Budgeting for Golf Course Managers 2
- CSS 178 Turfgrass Irrigation 2
- CSS 181 Pesticide and Fertilizer Application Technology 2
- CSS 210 Fundamentals of Soil Science 2
- CSS 232 Turfgrass Management 2
- CSS 262 Turfgrass Management Seminar 2
- CSS 264 Golf Course Design and Construction Techniques 2
- CSS 267 Performance Turf Design and Construction 2
- CSS 269 Turfgrass Strategies: Integration and Synthesis 2
- CSS 272 Turfgrass Soil Fertility 2
- CSS 292 Management of Turfgrass Weeds 2
- CSS 332 Turfgrass Physiology 2
- ENT 346 Turfgrass Entomology 2
- HRT 213 Landscape Maintenance 2
- HRT 213L Landscape Maintenance Field Laboratory 1
- PLB 105 Plant Biology .. 2
- PLP 366 Turf Pathology ... 3

Elective .. 3

Students must enroll in two separate 2-credit sections of AT 291: Turf and Landscape Analytic Practices for 2 credits and Spanish for Turf and Landscape for 2 credits.

Students must enroll in two separate 1-credit sections of CSS 262.

Sports and Commercial Turf Management Emphasis

The sports and commercial turf management emphasis is designed for persons interested in careers in these areas. These are rapidly growing areas of turfgrass management and offer rewarding job opportunities.

Requirements for the Sports and Commercial Turf Management Emphasis

All of the following courses (54 credits):

- AT 291 Selected Topics in Agricultural Technology 4
- AT 293 Professional Internship in Agricultural Technology 6
- CSS 110 Computer Applications in Agronomy 2
- CSS 171 Operations Budgeting for Golf Course Managers 2
- CSS 178 Turfgrass Irrigation 2
- CSS 181 Pesticide and Fertilizer Application Technology 2
- CSS 210 Fundamentals of Soil Science 2
- CSS 232 Turfgrass Management 2
- CSS 262 Turfgrass Management Seminar 2
- CSS 264 Golf Course Design and Construction Techniques 2
- CSS 267 Performance Turf Design and Construction 2
- CSS 269 Turfgrass Strategies: Integration and Synthesis 2
- CSS 272 Turfgrass Soil Fertility 2
- CSS 292 Management of Turfgrass Weeds 2
- CSS 332 Turfgrass Physiology 2
- ENT 346 Turfgrass Entomology 2
- HRT 213 Landscape Maintenance 2
- HRT 213L Landscape Maintenance Field Laboratory 1

Students who do not demonstrate English proficiency through the IAT placement test or college-level transfer credit must complete AT 045 Agricultural Communications (2 credits) or an equivalent course.

Program offerings in both emphasis areas are integrated with other areas in turfgrass and landscape and nursery. Courses include technical, communication, mathematics, and business content. Placement training opportunities are offered at many leading industrial businesses.

Swine Management

Food production, including that of pork, is increasing along with the world's population due to the use of scientific technologies and skilled people. If we are to keep pace with the growing population, we will need more of these two vital inputs. The tasks of developing new technologies and new human resources are equally challenging.

The swine management program is designed to prepare people for careers in the modern pork production anywhere in the world. The one-year program judiciously balances "hands-on" training with classroom instruction in the areas of animal care, nutrition, housing maintenance, swine health, reproduction, records management, environmental management and personnel management. Students also gain practical experience through a summer-long internship on a commercial swine farm in Michigan or beyond. Swine management graduates will have numerous career opportunities including: farm owners/operators, managers or assistant managers (breeding herd, farrowing, nursery, grower-finisher, transportation, feeds, marketing), department supervisors or regional representatives.

Requirements for Swine Management

The student must complete 35 credits from the following:

1. All of the following courses (32 credits):
 - ABM 130 Farm Management 3
 - AEE 110 Foundations of ANR Communications: Learning and Leadership 2
 - ANS 110 Introductory Animal Agriculture 2
 - ANS 171 Swine Clerkship 2
 - ANS 203 Principles of Livestock Feeding 2
 - ANS 205 Reproduction in Livestock 2
 - ANS 272 Introductory Swine Management 2
 - AT 045 Agricultural Communications 2
 - AT 055 Agricultural Finance 3
 - AT 071 Technical Mathematics 2
 - AT 291 Selected Topics in Agricultural Technology 2
 - AT 293 Professional Internship in Agricultural Technology 6
 - CSS 110 Computer Applications in Agronomy 2

2. Complete 3 credits of elective course work 3

Viticulture

The Viticulture certificate is delivered in partnership between Northwestern Michigan College, Lake Michigan College, the Viticulture and Enology Science and Technology Alliance (VESTA), and the Michigan State University Institute of Agricultural Technology. The combination of online viticulture courses delivered by experts from throughout the United States, hands-on experience at local vineyards, fresh markets, juice processors, packing plants and wineries and fundamental plant science courses provide graduates with the specific expertise and skills needed for careers in the rapidly expanding grape industry – supplying grapes for table, juice and wine making.

Graduates of the program will receive a certificate from the Michigan State University Institute of Agricultural Technology. Students may continue their course work to obtain an Associate in Applied Science Degree from the community college partners in addition to the certificate from Michigan State University.
AGRICULTURE AND NATURAL RESOURCES
Institute of Agricultural Technology

Should students wish to continue their education, the appropriate pre-designated credits may be applied to a bachelor's degree program at Michigan State University if students meet the established transfer guidelines.

Requirements for Viticulture

1. All of the following courses (16 credits):
 - AT 293 Professional Internship in Agricultural Technology 3
 - ENT 110 Applied Entomology of Economic Plants 3
 - ESA 225 Land and Environmental Issues in Law and Policy 3
 - HRT 334 Current Issues in Viticulture and Enology 1
 - HRT 432 Principles and Practices of Grape Production 3
 - PLP 200 Plant Disease and their Pathogens 3
 - PLP 201 Plant Disease and their Pathogens 3

2. Complete additional course work through Northwestern Michigan College or Lake Michigan College as well as 16 credits through the Viticulture and Enology Science and Technology Alliance. All course work must be approved by the student's academic advisor.

Admission

Applicants for technical programs must be high school graduates. A strong background in communications, mathematics, and science will help prepare the student for successful completion of a technical training program.

The admission process includes a consideration of the student’s academic record, work experience, recommendations from employers, test scores, and other criteria. In some cases, students may be invited to Michigan State University for an interview.

Financial Aid

Institute of Agricultural Technology students are eligible for financial aid. Scholarships are provided by industry groups and individual business firms and are awarded to students who have demonstrated superior scholastic ability or an outstanding work record.

Veterans Education

The programs offered by the Institute of Agricultural Technology are approved by the Department of Veterans Affairs as Cooperative Veterans Training Programs. Under some Chapters of Title 38, U.S. Code, veterans may receive educational benefits. Veterans planning to enroll should contact the Veterans Certification Section of the Office of the Registrar to determine their eligibility.

Michigan Works

Students in the Institute of Agricultural Technology are eligible for sponsorship under the guidelines of the Michigan Works Program. Students must arrange sponsorship with the appropriate Michigan Works office.

Institute of Agricultural Technology Transfer Student Admission

Institute of Agricultural Technology students who have completed their respective Institute of Agricultural Technology programs will, upon completion of the applications process, be considered for transfer admission to Michigan State University. Acceptance is determined by the applicant's previous academic record and his or her proposed program.

To complete the application process, the student must:
1. Complete and submit a signed request (Student Intent to Transfer Form) to the Institute of Agricultural Technology, as soon as the student develops an interest in transferring, in order to inform the Institute of Agricultural Technology of the desire to transfer to a baccalaureate program. The request must be signed by the program coordinator and by the Institute of Agricultural Technology Director in order to facilitate proper student advising by the Institute of Agricultural Technology.
2. Have a minimum grade point average of 3.0 upon completion of the Institute of Agricultural Technology program and satisfy all other requirements for admission.
3. Earn a minimum grade of 2.0 in WRA 110 or its equivalent.
4. Earn a minimum grade of 2.0 in MTH 103 or its equivalent.
5. Apply to the baccalaureate program using the application form from the Office of Admissions and Scholarships. It is recommended that students apply at the beginning of the semester they are to graduate from the Institute of Agricultural Technology.
6. Additional requirements may apply for limited enrollment programs.
7. Complete all other undergraduate application requirements. For additional information regarding transfer admission, refer to the Transfer Student Admission statement in the Undergraduate Education section of this catalog.

MSU AgBioResearch

Douglas D. Buhler, Director

The Michigan State University research programs of AgBioResearch help keep Michigan agriculture competitive, foster stewardship of natural resources, keep the food system safe, build stronger, healthier families and communities, and spur economic development in the state’s cities, regions and industries. The mission of AgBioResearch, to engage in innovative, leading edge research that ensures the wise use of agricultural, natural and community resources and enhances the quality of life in Michigan, the nation and the world, is an integral part of Michigan State University’s responsibilities as a land-grant university.

Based in the College of Agriculture and Natural Resources, AgBioResearch is composed of a network of on-campus laboratories and research centers across the state. More than 300 faculty members from 29 academic departments, research institutes and laboratories receive support from AgBioResearch. Beyond the college, AgBioResearch is affiliated with the College of Communication Arts and Sciences, College of Engineering, College of Natural Science, College of Social Science, and the College of Veterinary Medicine. AgBioResearch helps Michigan agriculture compete nationally and globally by developing ways to increase production efficiency, improve product quality and meet market needs. Other research focuses on food safety and security, natural resource management and the emerging bioeconomy. Research also concentrates on economic development, recreation and tourism, climate change and water quality.

In East Lansing, AgBioResearch activities are conducted in laboratories, greenhouses and several south campus experimental plots. The 13 off-campus field stations range from a forest biomass innovation center in the Upper Peninsula to fruit and vegetable research centers in the southernmost counties of the state.

AgBioResearch, like the larger land-grant tradition of which it is a part, is about more than agriculture. It is an idea for higher education that combines practical information with traditional scientific studies to generate knowledge for a rapidly changing state and nation.

Organized under the Hatch Act of 1887, AgBioResearch has been part of Michigan State University for most of the university's
150-year history. Funding comes from the state and federal governments, commodity groups, industries, foundations and individuals.

MICHIGAN STATE UNIVERSITY EXTENSION

Thomas G. Coon, Director

Michigan State University (MSU) Extension helps people improve their lives by bringing MSU’s knowledge resources directly to individuals, communities and businesses. For more than 100 years, MSU Extension has helped grow Michigan’s economy by equipping residents with the information they need to do their jobs better, raise healthy and safe families, build their communities and empower children to realize a successful future.

With a focus on four statewide program areas and a presence in every Michigan county, locally based Extension faculty and staff members provide tools to help people enhance their quality of life. From guiding a community meeting to presenting an online webinar, MSU Extension educators work to provide the most current information when and where people need it to ensure success — in the workplace, at home and in their communities.

Campus-based faculty members in four MSU colleges share expertise derived from research and other scholarly activities to support local Extension programs.

Whether it is helping grow Michigan’s agriculture economy, capturing opportunities that use our natural resources in a sustainable way, controlling health care costs by giving individuals the information they need to manage chronic illness or preparing tomorrow’s leaders, MSU Extension is creating opportunities and building communities that make Michigan strong, prosperous and a great place to live.

MSU Extension was established in 1914 and is part of a national educational system based in the nation’s land-grant universities and funded jointly by the U.S. Department of Agriculture, state and local governments.

Extension programming is focused in four statewide programs: agriculture and agribusiness, health and nutrition, children and youth, and economic and community development.

Agriculture and Agribusiness

MSU Extension works to increase farmers’ success while protecting the environment, ensuring food safety, reaching new markets and advancing agriculture through applied research. Agriculture is one of the fastest-growing sectors of the Michigan economy. MSU Extension agriculture programs work to improve Michigan’s economic viability through increased food production internationally, nationally and locally; position Michigan as a leader across the country as a model for producing and delivering safe, affordable, and nutritious food; and provide training and counseling to develop entrepreneurship and marketing around new crops and value-added products.

Ultimately, the goal is to grow a better Michigan by increasing awareness that the state can continue to produce safe and nutritious food, bio-based materials and fuels, and improve people’s understanding of all scales of agricultural production.

Health and Nutrition

Michigan State University Extension’s strength is its community-based approach to meeting local needs and its unwavering efforts to serve the needs of children, families and communities, regardless of whether they are in urban, suburban or rural settings. In all of its programming, MSU Extension promotes healthy lifestyles and equips Michigan residents to take control of their personal health through research-based education and action-oriented tools. Our goal is to help people lead healthy lives and contribute to their communities.

Children and Youth

MSU Extension’s children and youth programs address needs and issues from birth through age 19. Early childhood education programs (birth to 5) provide parents and child care providers with educational resources related to child development, emerging literacy and school readiness. The 4-H program (ages 5-19) gives youth and adults opportunities to experience the benefits of working together around common interests while participating in hands-on learning activities that build leadership and teach practical life skills in hundreds of areas including science and technology, communications, health and civic engagement. Programs are designed to develop employability skills and encourage career exploration.

Programs help parents, care providers and other interested adults engage children and youth in age appropriate ways as they build skills, develop assets and explore their world.

Economic and Community Development: Greening Michigan

MSU Extension staff members help residents build stronger economies by developing strong community and government leaders to enrich communities through entrepreneurship, natural resource stewardship and community and economic development; and through education programs that train Michigan residents to be better consumers and help to secure and retain home ownership in the state.

MSU PRODUCT CENTER FOOD-AG-BIO

H. Christopher Peterson, Director

The MSU Product Center Food-Ag-Bio was established in 2003, by the Michigan Agricultural Experiment Station (now AgBioResearch) and Michigan State University Extension, to improve economic opportunities in the Michigan agriculture, food and natural resource sectors. The Center has three interrelated programs: the ANR Innovation Counselors Network, the Strategic Marketing Institute, and the Innovation Academy. They deliver coordinated responses to entrepreneurs and managers who are developing and commercializing high value, consumer responsive products and businesses with a natural resource or agricultural base.

The ANR Innovation Counselors Network, the outreach arm, is the local contact for entrepreneurial groups and existing businesses. Its counselors nurture new market and product development opportunities. At the Center level, project specialists assist counselors or firms directly by tapping into Michigan State University’s technical expertise. Project specialists also collaborate with external consultants, industry groups and governmental agencies.

The Strategic Marketing Institute, the marketing arm, develops the information base needed to support initial screening and evaluation of concepts, products and businesses. It produces
long-range studies for Michigan’s agricultural, food and natural resource sectors. Each study includes an assessment of: core competencies, competitive advantages, strategic resource bases, supply chain configuration, promising business or product areas, futuring scenarios, and key strategic issues for the particular sector such as the commercialization of new technologies arising from university research.

The Innovation Academy, the leadership arm, meets the needs of managers, board members and entrepreneurs of agricultural, food and natural resource systems while building capacity for potential new industry leaders.

INSTITUTE of INTERNATIONAL AGRICULTURE

Gretchen Neisler, Director

The Institute of International Agriculture is administered jointly by the College of Agriculture and Natural Resources and International Studies and Programs. This Institute is responsible for international activities in the fields of agriculture, natural resources, and related areas, both on campus and in other countries. Activities of the Institute include the broad areas of international training, research, overseas institution building, and rural development abroad.

The Institute of International Agriculture is linked with the Colleges of Natural Science, Human Ecology, and Veterinary Medicine. When appropriate, the Institute interacts with additional colleges such as The Eli Broad College of Business, Education, Human Medicine, Osteopathic Medicine, and Veterinary Medicine.

Agricultural and natural resources faculty and students are active throughout the world, in both developed and developing countries. Many are concerned with research projects dealing with specific agricultural areas, while the remainder are technical advisors to higher agricultural education and research institutions in the developing countries.

More than 24 courses involving international agriculture and natural resources are available through interdisciplinary and departmental offerings.

INSTITUTE of WATER RESEARCH

Jon Bartholic, Director

The Michigan State University Institute of Water Research was established in 1961 to promote and coordinate water research, education, and advisory services for the inland waters and Great Lakes of Michigan. Serving as a boundary organization, the Institute is able to work across disciplinary boundaries and develop partnerships with campus departments, local and state agencies, and other Universities and organizations in the broad water arena. The Institute is a focal point to which University and off-campus communities can turn for advice and assistance in support of water research issues. It is one of 54 state institutes designated by Congress to administer research funds authorized under the Water Research Resources Act of 1984. With this base and through private, state, and federal funds, the Institute supports integrated research projects for faculty and graduate students on campus and in other universities.

The Institute provides leadership in building partnerships and implementing programs at the state, regional, and international level, and in solving real-world water-related problems. It uses advanced data management, decision support systems, integrated social networking components, and cutting-edge technology to address land and water resources issues such as nonpoint source pollution, nutrient reduction and ecological processes. The Institute also coordinates online education and training programs, including a professional certificate program for surface and ground water protection and watershed management. Through its outreach programming and dissemination of information on water research, the Institute provides citizens throughout the state and region with science-based information and knowledge that enables them to make better informed decisions regarding water issues.