The Lyman Briggs College is a residential college that bridges the science and humanities through interdisciplinary teaching and research. It provides students with a fundamental core science education in mathematics, chemistry, biology, and physics. Additionally, the core program addresses historical, philosophical, and societal concerns and consequences of modern science, technology, the environment, and medicine. Advanced undergraduate courses in the student’s major are taken in the respective departmental units of the College of Natural Science, College of Engineering, College of Agriculture and Natural Resources, and the University at large. The majority of Lyman Briggs students pursue programs leading to advanced graduate study in the natural sciences, or professional programs related to medicine, dentistry, veterinary medicine, allied health, education or law. Many other students plan to enter careers in teaching at the secondary level, science writing, product representation, industry, or government service upon completion of their Bachelor of Science degree.

As a residential college, Lyman Briggs College has classrooms, laboratories, faculty offices, academic advisor offices, and administrative offices located in Holmes Hall, where all first year and many upper-level Lyman Briggs students live and learn. Because of this residential organization, students are able to develop a strong living-learning community identity by integrating academic and personal development, with faculty, staff and their peers in residence. Students are encouraged to balance their academic lives with social, cultural, athletic, service-learning, and leadership opportunities on campus and in the greater East Lansing community.

Students admitted to Michigan State University are admissible to Lyman Briggs College based initially on application date. There are no additional academic or program requirements for freshman admissions. Enrollment in the college is limited; therefore students are encouraged to apply early. Applicants should indicate their intention to become a part of the Lyman Briggs College on the Michigan State University Application for Admissions. If a student has already submitted an application and would like to apply to Lyman Briggs College, she/he should contact the Office of Admissions directly as early as possible.

Students work closely with their academic advisors and faculty in developing an individualized academic plan. All students enter the program as ‘no major’ status and may declare a major as early as summer orientation or by the time they have earned 56 credit hours.

Students who are enrolled in the environmental biology/microbiology and microbiology coordinate majors in Lyman Briggs College may elect the Specialization in Food Processing and Technology. For additional information, refer to the Specialization in Food Processing and Technology statement in the Department of Food Science and Human Nutrition statement in the College of Agriculture and Natural Resources section of this catalog.

Admission as a Freshman to Lyman Briggs College

Any student who meets the general requirements for admission to the university as shown in the Undergraduate Education section of this catalog may enroll in Lyman Briggs College, pending available space.

Transfer Students

All students in good academic standing in Lyman Briggs College may transfer at any time to other programs at Michigan State University for which they are eligible, in order to accommodate changing academic needs and interests.

Students who wish to transfer into Lyman Briggs College should contact the Academic and Student Affairs Office to make an appointment to consult with the Admissions Coordinator. Space in Lyman Briggs College is limited.
UNDERGRADUATE PROGRAM

The Lyman Briggs College program leads to the Bachelor of Science Degree.

Requirements for the Bachelor of Science Degree in Lyman Briggs College

1. The University requirements for bachelor’s degrees as described in the Undergraduate Education section of this University catalog. 120 credits, including general elective credits, are required for the Bachelor of Science degree in Lyman Briggs College.

 Students who are enrolled in the College of Natural Science may complete the alternative track to Integrative Studies in Biological and Physical Sciences that is described in item 1. under the heading Graduation Requirements in the College statement. Certain courses referenced in requirement 3. below are equivalent to courses in the alternative track and, therefore, may be used to satisfy the alternative track.

 The completion of the Lyman Briggs College mathematics and statistics requirement [referenced in item 3.c.(4) below] may also satisfy the University mathematics requirement.

 The completion of Lyman Briggs 133 or one of the approved alternatives [referenced in requirement 3.a.(5)(a) below] may also be counted toward the University Tier I writing requirement.

 The University’s Tier II writing requirement for the Major and Coordinate Majors in Lyman Briggs College is met by completing Lyman Briggs College 492 and one of the following courses: English 473A; History 425; Lyman Briggs College 332, 333, 334, 335, 336, 355. Those courses are referenced in Items 3.a. (5) and 3.a. (6) below.

2. The requirements of Lyman Briggs College for the Bachelor of Science degree, referenced in item 3. a. below.

 The credits earned in certain courses referenced in requirement 3. below may be counted toward College requirements as appropriate.

3. The following requirements of Lyman Briggs College for the Bachelor of Science degree:

 a. CORE PROGRAM .. 46 to 58

 (1) Biology: One of the following groups of courses (8 to 10 credits):

 (a) Lyman Briggs 144, 145.
 (b) Lyman Briggs 148H, 149H, 158H, 159H.
 (c) Biological Science 110, 111, 111L.

 (2) Chemistry: One of the following groups of courses (8 to 10 credits):

 (a) Lyman Briggs 171, 171L, 172, 172L.
 (b) Lyman Briggs 171, 171L; Chemistry 143.
 (c) Lyman Briggs 171, 171L; Chemistry 251.
 (d) Chemistry 141, 142, 161.
 (e) Chemistry 141, 143, 161.
 (f) Chemistry 141, 161, 251.
 (g) Chemistry 151, 152, 161.
 (h) Chemistry 181H, 182H, 185H.

 (3) Mathematics and Statistics: One of the following groups of courses (6 to 11 credits):

 (a) Lyman Briggs 118, 119.
 (b) Lyman Briggs 118, 118L; Statistics and Probability 231.
 (c) Mathematics 122, 123, 234.
 (d) Mathematics 132, 133, Statistics and Probability 231.
 (e) Mathematics 152H, 153H.

 (4) Physics: One of the following groups of courses (6 to 8 credits):

 (a) Lyman Briggs 271, 271L, 272, 272L.
 (b) Physics 231, 231L, 232B, 251.
 (c) Physics 183, 184.
 (d) Physics 183B, 182B, 251, 252.
 (e) Physics 183B, 232B, 251, 252.
 (f) Physics 183B, 184B.
 (g) Physics 193H, 294H.

 (5) History, Philosophy and Sociology of Science: A total of 11 or 12 credits from the courses in groups (a), (b), and (c) below. In addition to completing one course from each of the three groups, the student must complete one of the following courses from group (b) or group (c): English 448; History 425; Lyman Briggs 332, 333, 334, 335, 336, 355.

 (a) One of the following courses: Lyman Briggs 133; Writing, Rhetoric and American Cultures 110, 119, 120, 125, 130, 135, 140, 145, 150, 195H.
 (b) One of the following courses: Lyman Briggs 331, 332, 333, 334, 335, 336, 355.
 (c) One of the following courses: Lyman Briggs 330, 331, 332, 333, 334, 335, 336, 355, 490E; English 473A; History 425.

 Each of the following courses may be used to meet either requirement 3.a.(5)(b) or requirement 3.a.(5)(c), but not both of those requirements: Lyman Briggs 331, 332, 333, 334, 335, 355.

 (6) Senior Seminar: Lyman Briggs 492 (4 credits).

b. MAJOR or COORDINATE MAJOR.

 Each student must complete the requirements of a Major or a Coordinate Major. The Major or Coordinate Major must be chosen from the lists of options below. Both the Major or Coordinate Major and the related courses must be approved by the student’s academic advisor. With the approval of the appropriate Lyman Briggs College Curriculum Coordinator or Undergraduate Director, courses other than those that are listed as requirements for a Major or Coordinate Major may be used to satisfy degree requirements.

 Majors:
 Biology
 Computer Science
 Earth Science
 Environmental Science and Management
 Physical Science
 History, Philosophy and Sociology of Science

 Coordinate Majors:
 (1) College of Agriculture and Natural Resources:
 Animal Science
 Fisheries and Wildlife

 (2) College of Engineering:
 Computer Science

 Students are admitted to this Coordinate Major after they have reached junior standing and have met certain other requirements specified by Lyman Briggs College.

 (3) College of Natural Science:
 Astrophysics
 Biochemistry and Molecular Biology
 Biochemistry/Biotechnology
 Biological Science—Interdepartmental
 Biomedical Laboratory Science
 Chemical Physics
 Chemistry
 Computational Chemistry
 Computational Mathematics
 Diagnostic Molecular Science
 Earth Science—Interdepartmental
 Environmental Biology/Microbiology
 Environmental Biology/Plant Biology
 Environmental Biology/Zoology
 Environmental Geosciences
 Genomics and Molecular Genetics
 Geological Sciences
 Human Biology
 Mathematics
 Microbiology
 Nutritional Sciences
 Physical Science—Interdepartmental
 Physics
 Physiology
 Plant Biology
 Statistics
 Zoology

Majors

1. Biology .. CREDITS 30

 a. A minimum of 30 credits from the courses listed below including:

 (a) All of the following courses (18 credits):

 BMB 461 Biochemistry I 3
 BMB 462 Biochemistry II 3
 MMG 301 Introductory Microbiology 3
 MMG 302 Introductory Microbiology Laboratory 1
 ZOL 341 Fundamental Genetics 4
 ZOL 355 Ecology ... 3
 ZOL 355L Ecology Laboratory 1

 (b) One of the following groups of courses (6 credits):

 (a) PLB 414 Plant Physiology: Metabolism 3
 PLB 415 Plant Physiology 3
 (b) PSL 431 Human Physiology I 3
 PSL 432 Human Physiology II 3

 (c) One course from group (a) and one course from group (b) below (6 to 8 credits):

 (a) Organismal and Population Biology

 (i) Students who complete Physiology 431 and 432 to satisfy requirement 1.a.(2) above must complete one of the following courses:

 ENT 404 Fundamentals of Entomology 3
 PLB 418 Plant Systematics 3
 PLB 434 Plant Structure and Function 4
 PLB 441 Plant Ecology 3

 (ii) Students who complete Botany 414 and 415 to satisfy requirement 1.a.(2) above must complete one of the following courses:

 ZOL 306 Invertebrate Biology 4
 ZOL 328 Comparative Anatomy and Biology Of Vertebrates (W) 4
 ZOL 353 Marine Biology (W) 4
 ZOL 445 Evolution .. 3

 (b) Cellular, Molecular, and Developmental Biology

 LB 347 Advances in Applied Biology 3
 MMG 409 Eukaryotic Cell Biology 3
 MMG 413 Virology ... 3
2. Computer Science
 a. A minimum of 30 credits from the courses listed below including:
 (1) All of the following courses (24 credits):
 CSE 231 Introduction to Programming I4
 CSE 260 Discrete Structures in Computer Science4
 CSE 320 Computer Organization and Architecture3
 CSE 330 Algorithms and Data Structures3
 CSE 410 Operating Systems3
 CSE 460 Computability and Formal Language Theory3
 LB 220 Calculus III ...4
 (2) At least two of the following courses (6 credits):
 CSE 420 Computer Architecture3
 CSE 435 Software Engineering3
 CSE 440 Introduction to Artificial Intelligence3
 CSE 450 Translation of Programming Languages3
 CSE 452 Organization of Programming Languages3
 CSE 472 Computer Graphics3
 CSE 480 Database Systems3

3. Earth Science
 a. A minimum of 27 credits from the courses listed below including:
 (1) At least 14 credits in courses at the 300–400 level.
 (2) At least 8 credits in earth science courses outside the Department of Geological Sciences.
 (3) At least one course in each of the following 5 earth science areas (15 to 22 credits).
 (a) Astronomy and Astrophysics
 AST 207 The Science of Astronomy3
 (b) Geology of the Solid Earth
 GLG 201 The Dynamic Earth4
 GLG 321 Mineralogy and Geochemistry4
 GLG 351 Structural Geology and Tectonics4
 GLG 361 Petrology (W)4
 GLG 401 Plate Tectonics (W)4
 GLG 481 Reservoirs and Aquifers3
 GLG 491 Field Geology – Summer Camp (W)6
 (c) Paleobiology
 GLG 431 Sedimentology and Stratigraphy (W)4
 GLG 433 Vertebrate Paleontology4
 GLG 434 Evolutionary Paleobiology4
 PLB 335 Plants Through Time3
 (d) Environmental Geosciences and Meteorology
 GEO 203 Introduction to Meteorology3
 GEO 401 Geography of Plants of North America3
 GEO 402 Agricultural Climatology3
 GEO 405 Weather Analysis and Forecasting4
 GEO 421 Environmental Geochemistry4
 (e) Geomorphology
 CSS 470 Soil Resources3
 GEO 407 Regional Geomorphology of the United States3
 GEO 408 Soil Geomorphology Field Study4

4. Environmental Sciences and Management
 a. A minimum of 41 credits from the courses listed below including:
 (1) One of the following groups of courses (6 or 10 credits):
 (a) LB 118 Calculus I4
 STT 231 Statistics for Scientists3
 (b) MTH 132 Calculus I3
 MTH 133 Calculus II4
 STT 231 Statistics for Scientists3
 (2) One course from each of the following 7 areas
 (24 to 28 credits):
 (a) Ecology:
 ZOL 355 Ecology3
 ZOL 355L Ecology Laboratory1
 (b) Geology:
 GLG 201 The Dynamic Earth4
 (c) Taxonomy or Phylogenetic Biology:
 ENT 404 Fundamentals of Entomology4
 PLB 418 Plant Systematics3
 ZOL 306 Invertebrate Biology4
 (d) Biochemistry:
 BMB 401 Basic Biochemistry4
 (e) Aquatic Systems:
 FW 420 Stream Ecology3
 (f) Microbiology:
 MMG 301 Introductory Microbiology3
 (g) Economics:
 EC 201 Introduction to Microeconomics3
 (3) One course from each of the following three groups
 (9 to 11 credits):
 (a) FOR 464 Forest Resource Economics (W)3
 SOE 452 Environment and Society3
 (b) FW 424 Population Analysis and Management4
 FW 444 Conservation Biology3
 (c) FW 410 Upland Ecosystem Management3
 FW 417 Wetland Ecology and Management3
 Students who elect Sociology 452 must also complete Sociology 452L, to meet requirement 4. a. (3) (a).

5. Physical Science
 a. A minimum of 31 credits from the courses listed below including:
 (1) The following course:
 LB 220 Calculus III ..4
 (2) At least 27 credits in chemistry courses, in physics courses,
 or in chemistry and physics courses approved by the student’s academic advisor. At least 20 of the 27 credits must be
 in courses at the 300 level or above, and at least 14 of the 27 credits
 must be in either chemistry courses or physics courses and must meet the conditions specified below:
 For students who elect to complete at least 14 credits in chemistry courses, at least 4 of the 14 credits must
 be laboratory credits at the 300–400 level.
 For students who elect to complete at least 14 credits in physics courses, at least 6 of the 14 credits must be
 in modern physics, and at least 3 of the 14 credits must be laboratory credits.

6. History, Philosophy and Sociology of Science
 a. A minimum of 24 credits in 300–400 level science and technology studies courses approved by the student's academic advisor.
 Courses in the Lyman Briggs College CORE PROGRAM and Lyman Briggs 482 may not be used to satisfy this requirement.
 Courses outside Lyman Briggs College may be used to satisfy this requirement.