The College of Engineering prepares its students to solve technical, as well as social, economic, and global problems while instilling the essence of engineering – the iterative process of designing, predicting performance, building, and testing. Since engineering deals with the adaptation of nature’s forces, materials, and energies for the benefit of society, our engineering programs are planned to provide future engineers with firm knowledge and understanding of the fundamental engineering sciences and of engineering methods for the application of this knowledge. Programs require a strong base in mathematics, computing, and the sciences as the tools of the engineer. An engineering education provides a teams-based, systems approach to societal problems and therefore prepares students for a wide range of career options, including those outside engineering.

UNDERGRADUATE PROGRAMS

Programs With a Major in the Engineering Professional Fields

The Bachelor of Science degree may be earned in programs designed to prepare students for work in biosystems engineering, chemical engineering, civil engineering, computer engineering, electrical engineering, environmental engineering, materials science and engineering, and mechanical engineering.

Programs With a Major in the Engineering Sciences

The Bachelor of Science degree may also be earned in engineering sciences with a major in computer science or applied engineering sciences. A required cognate combines the Computer Science major with studies such as business management, the social and behavioral or physical sciences, or a foreign language. The Applied Engineering Sciences major is an interdisciplinary program that combines a broad foundation in core engineering disciplines with a required concentration area in supply chain management, technical sales, computer science or telecommunications.

Engineering Study Abroad

The field of engineering increasingly requires a global perspective. Opportunities exist for students to study in a variety of countries. Students often take major and university requirements during their semester abroad, so the international experience does not delay a student’s progress toward graduation. Students interested in studying abroad should contact the Engineering Study Abroad office as early as possible.

Specializations

Students who are enrolled in bachelor’s degree programs in The Eli Broad College of Business, the College of Communication Arts and Sciences, and the College of Engineering may elect a Specialization in Information Technology. For additional information, refer to the statement on Specialization in Information Technology in The Eli Broad College of Business section of this catalog or contact The Eli Broad College of Business.

Students who are enrolled in the Bachelor of Science degree in Computer Science in the College of Engineering may elect a Specialization in Game Design and Development. For additional information, refer to the statement on Specialization in Game Design and Development in the Department of Telecommunication, Information Studies and Media section of this catalog.
Undergraduate Programs

Experiential Education - The Center for Spartan Engineering

The College of Engineering offers a variety of opportunities for students to gain real-world experience in the field of engineering. These programs prepare students for work in industry or to enter graduate programs in engineering, medicine, law, or business. They include cooperative education, engineering internships and undergraduate research.

Cooperative Engineering Education is a program of alternating full-time employment in industry and full-time study on campus. Five years are usually required to complete requirements for the degree. Employment provides practical on-the-job experience by exposing students to types of work done by engineers. Locations of jobs are nationwide and students must be willing to relocate temporarily.

Students are selected to participate in the program on the basis of demonstrated academic ability and a firm commitment to pursuing careers in the technical sector. Certification in the Cooperative Engineering Education program requires a minimum of three semesters of full-time employment in a position in industry that has been approved by the College of Engineering.

Engineering Internships are one-time-only, industry-based experiences usually completed during the summer semester and may or may not be available for academic credit. Internships provide practical on-the-job experience in the field of engineering. Undergraduate research opportunities are available at Michigan State University or throughout the United States. Students who are considering graduate school are encouraged to participate in an undergraduate research program for exposure to research opportunities and protocol at the graduate level.

Students interested in any of these programs should contact The Center for Spartan Engineering in Room 1340 Engineering Building.

Honors Study

The College of Engineering encourages honors students to develop distinctive undergraduate programs in either the engineering sciences or in the fields offered by the several professional departments. A member of the faculty is selected to serve as advisor to Honors College students in each major field, and will help the student plan a rigorous and balanced program which will also reflect the student's special interests and competencies.

Accreditation

The following degree programs have been accredited by ABET, Inc.: Biosystems Engineering, Chemical Engineering, Civil Engineering, Computer Engineering, Electrical Engineering, Materials Science and Engineering, and Mechanical Engineering.

Registration as a Professional Engineer

In Michigan, the State Board of Registration for Professional Engineers provides an opportunity for students during their senior year to take the first half of a sixteen-hour, two-part examination as the first step toward registration, provided the degree is to be awarded within six months and the degree program is one that has been accredited by ABET or determined as equivalent by the State Board. After a minimum of four years of experience, the applicant may take the second half of the examination.

Freshmen

Students admitted to the university are enrolled as Undergraduate University Division students, but may declare a pre-engineering major preference in the College of Engineering. Such students are assigned a professional advisor from the college. Students become eligible for admission to the college upon completion of the requirements listed below in the Admission to the College section of this catalog.

Students interested in engineering but not yet sure of a major may be an Engineering No-Prefe...
4. Completion of Chemistry 141 or 151 or approved substitution or waiver. Computer Science majors are not required to fulfill this requirement.
5. Completion of Physics 183.
6. Completion of Engineering 102 or Computer Science and Engineering 231 or approved substitution or waiver.
7. Completion of Engineering 100.

Freshmen and sophomores who have declared specific engineering majors (excluding Engineering No-Preference) are automatically reviewed at the end of every semester, and are either admitted or informed of their progress. Others may apply for admission during each semester, and applications will be reviewed after the end of each semester. Students must be admitted to a degree-granting college at the time they have completed 56 credits.

Admission to a Second Bachelor's Degree Program

Students seeking admission to a second bachelor's degree program must meet the same requirements as for admission to the college.

Graduation Requirements for All Majors

1. The University requirements for bachelor's degrees as described in the Undergraduate Education section of the catalog; 120 credits, including general elective credits, are required for the Bachelor of Science degree in Computer Science and the Bachelor of Science degree in Applied Engineering Sciences; and 128 credits, including general elective credits, are required for the Bachelor of Science degree in the other Engineering majors.

Students who are enrolled in majors leading to the Bachelor of Science degree in the College of Engineering may complete an alternative track to Integrative Studies in Biological and Physical Sciences that consists of the following courses:

- a. One of the following courses: Biological Science 161; Plant Biology 105; Entomology 205; Microbiology and Molecular Genetics 201, 301; Physiology 250; Zoology 141.
- b. Two of the following courses: Chemistry 141, Chemistry 151, Physics 183 or 183B, Physics 184.
- c. One of the following laboratory courses: Plant Biology 106; Chemistry 161; Physics 191.

Credits earned in the alternative track may also be counted toward college and major requirements for the Bachelor of Science degree.

2. The requirements of the College of Engineering for the Bachelor of Science degree that are listed below:

- b. Chemistry 141 or 151. Computer Science majors are not required to complete Chemistry 141 or 151.
- c. Physics 183 or 183B and 184.
- d. Engineering 102. Computer Science, Computer Engineering, and Electrical and Computer Engineering majors are not required to complete Engineering 102.
- e. Engineering 100.

Students who are enrolled in bachelor's degree programs in the College of Engineering may elect a Specialization in Environmental Studies. For additional information, refer to the Specialization in Environmental Studies statement in the College of Natural Science section of this catalog.

Students who are enrolled in the Bachelor of Science Degree in Computer Science in the College of Engineering may elect a Specialization in Game Design and Development. For additional information, refer to the Specialization in Game Design and Development statement in the Department of Telecommunication, Information Studies and Media section of this catalog.

Students who are enrolled in bachelor's degree programs in the College of Engineering may elect a Specialization in Information Technology. For additional information, refer to the Specialization in Information Technology statement in The Eli Broad College of Business section of this catalog.

APPLIED ENGINEERING SCIENCES

The Applied Engineering Sciences major provides undergraduate opportunities leading to the Bachelor of Science degree. The core goal of applied engineering sciences is to prepare technically competent, broad-based engineering graduates who have acquired a systems perspective for problem-solving and business expertise. The program provides a broad foundation in science and mathematics, engineering, and business management and is designed to develop graduates who can apply the rigor of their technical education to diverse problems and settings. The program is structured to establish skills in areas such as effective management, contemporary technical issues, deployment of new technologies, resolving ethical dilemmas, effective communication across technical disciplines both in oral and written communication, and lifelong learning.

Students in this major must meet the requirements for one concentration by selecting an area such as computer science, supply chain management, technical sales, or telecommunications.

Requirements for the Bachelor of Science Degree in Applied Engineering Sciences

1. The University requirements for bachelor's degrees as described in the Undergraduate Education section of this catalog; 120 credits, including general elective credits, are required for the Bachelor of Science degree in Applied Engineering Sciences. The University's Tier II writing requirement for the Applied Engineering Sciences major is met by completing Engineering 410. That course is referenced in item 3. a. below.

Students who are enrolled in the College of Engineering may complete the alternative track to Integrative Studies in Biological and Physical Sciences that is described in item 1. under the heading Graduation Requirements for All Majors in the College statement. Certain courses referenced in requirement 3. below may be used to satisfy the alternative track.

2. The requirements of the College of Engineering for the Bachelor of Science degree.

The credits earned in certain courses referenced in requirement 3. below may be counted toward College requirements as appropriate.

3. The following requirements for the major:

a. All of the following courses:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACC 230 Survey of Accounting Concepts</td>
<td>3</td>
</tr>
<tr>
<td>CE 221 Statics</td>
<td>3</td>
</tr>
<tr>
<td>CEM 161 Chemistry Laboratory I</td>
<td>3</td>
</tr>
<tr>
<td>COM 225 Introduction to Interpersonal Communication</td>
<td>3</td>
</tr>
<tr>
<td>EC 201 Introduction to Microeconomics</td>
<td>3</td>
</tr>
<tr>
<td>EC 202 Introduction to Macroeconomics</td>
<td>3</td>
</tr>
<tr>
<td>ECE 201 Circuits and Systems I</td>
<td>3</td>
</tr>
<tr>
<td>EGR 210 Global Systems: Economics, Engineering, Environment</td>
<td>3</td>
</tr>
<tr>
<td>EGR 310 Sustainable Systems Analysis</td>
<td>3</td>
</tr>
<tr>
<td>EGR 410 System Methodology</td>
<td>3</td>
</tr>
<tr>
<td>ME 201 Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td>ME 280 Graphic Communications</td>
<td>2</td>
</tr>
<tr>
<td>MGT 325 Management Skills and Processes</td>
<td>3</td>
</tr>
<tr>
<td>MKT 317 Quantitative Business Research Methods</td>
<td>3</td>
</tr>
<tr>
<td>MSE 250 Materials Science and Engineering</td>
<td>3</td>
</tr>
<tr>
<td>PHY 191 Physics Laboratory for Scientists I</td>
<td>1</td>
</tr>
<tr>
<td>STT 315 Introduction to Probability and Statistics for Business</td>
<td>3</td>
</tr>
<tr>
<td>BE 230 Engineering Analysis of Biological Systems</td>
<td>3</td>
</tr>
<tr>
<td>CE 280 Principles of Environmental Engineering and Science</td>
<td>3</td>
</tr>
</tbody>
</table>

b. One of the following courses:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGR 310 Sustainable Systems Analysis</td>
<td>3</td>
</tr>
</tbody>
</table>

The following requirements for the major:

CREDITS

<table>
<thead>
<tr>
<th>Concentration</th>
<th>15 to 18</th>
</tr>
</thead>
</table>

In consultation with their academic advisor, students must select one of the following concentrations: computer science, supply chain management, technical sales, or telecommunications. For
TEACHER CERTIFICATION OPTION

A computer science disciplinary minor in the College of Engineering is available for teacher certification.

Students who elect the computer science disciplinary minor must contact the Department of Computer Science and Engineering.

For additional information, refer to the statement on TEACHER CERTIFICATION in the Department of Teacher Education section of this catalog.

GRADUATE STUDY

The College of Engineering offers programs leading to the Master of Science and Doctor of Philosophy degrees in the following fields:

- chemical engineering
- civil engineering
- computer science
- electrical engineering
- engineering mechanics
- environmental engineering
- materials science and engineering
- mechanical engineering

Programs leading to the Master of Science and Doctor of Philosophy degrees in biosystems engineering are offered through the College of Agriculture and Natural Resources.

All programs are designed to provide a fundamental approach to basic engineering principles with emphasis on scientific methods, and to lead to careers in engineering research and development or teaching. Advanced work in the major field of specialization is combined with supporting courses in one or more other fields to develop individuals capable of creative work in engineering science and areas of application.

Students who are enrolled in Master of Science degree programs in the Department of Biosystems and Agricultural Engineering may elect a Specialization in Food Safety. For additional information, refer to the statement on the specialization in the College of Veterinary Medicine section of this catalog.

Master of Science

In addition to meeting the requirements of the University as described in the Graduate Education section of this catalog, students must meet the requirements specified below.

Admission

Regular Status. Admission to a master's degree program with regular status may be granted by the department, subject to the availability of resources and to the approval of the dean, upon consideration of the likelihood that the applicant will be able to pursue a master's program successfully without taking collateral courses. As evidence of eligibility for admission, the student may offer any of the following:

a. The possession of a bachelor's degree in an accredited program in engineering with a grade–point average not lower than 3.00 for the final two years of the undergraduate program, or with standing in the upper quarter of the graduating class in the student's major.

b. The possession of a bachelor's degree in engineering or a related field where the applicant has shown very high academic achievement, as certified by the department.

c. Evidence of ability and resolution to complete a master's program, as attested by the department upon review of the applicant's academic record, test scores, experience, reference statements, professional qualifications, proposed studies, and other relevant information.

Provisional Status. Admission to a master's degree program with provisional status may be granted by the department, subject to the approval of the dean:

a. To an applicant qualified for regular admission except that collateral courses are deemed necessary, or

b. To an applicant whose record is incomplete.

If collateral courses are required, the minimum acceptable grades and the semesters by which those courses must be completed will be specified on the admission form. The provisional status will be changed to regular status when the conditions specified on the admission form have been met, as certified by the department and approved by the dean.

Program Filing

The student's program of study must be approved before the student completes 6 credits of graduate work in order for the student to continue to enroll in the master's degree program.

For any independent study or selected topics course that is included in the student's approved program of study, the subject matter and the instructor must be specified.

Modification of Program

With reference to the student's approved program of study, none of the following types of changes will be approved:
1. Adding or deleting a course for which a grade has already been assigned under any of the three grading systems (numerical, Pass--No Grade, or Credit--No Credit).
2. Adding or deleting a course for which grading was postponed by the use of the DF--Deferred marker.
3. Adding or deleting a course which the student dropped after the middle of the semester and for which "W" or "N" or "0.0" was designated.
4. Adding or deleting a course during the final semester of enrollment in the master's degree program.

Requirements for the Master of Science Degree

The student must:

1. Complete a minimum of 30 credits in 400--., 800--., and 900--level courses under either Plan A (with thesis) or Plan B (without thesis). Courses below the 400 level may not be counted toward the requirements for the degree.
 a. Requirements for Plan A: The student must:
 (1) Complete a minimum of 20 credits in courses at the 800--900 level.
 (2) Complete at least 4, but not more than 8, credits in Master's Thesis Research (course number 899 in the department of the student's major).
 (3) Provide to the major professor and to the department a hard--bound copy of the thesis made from the original unbound manuscript submitted to the Office of The Graduate School. Arrangements for delivery of the copies shall be made when the original manuscript is submitted to the Office of The Graduate School.
 b. Requirements for Plan B: The student must:
 (1) Complete a minimum of 18 credits in courses at the 800--900 level.
2. Pass the final certifying examination administered by the student's department. It is the student's responsibility to obtain detailed information about this examination from the department.

Academic Standards

1. Grades. The student must earn a grade of 2.0 or higher in each course in the approved program of study. The student must repeat any course for which the grade earned was below 2.0.
2. Cumulative Grade--Point Average. The student must maintain a cumulative grade--point average of at least 3.00 in the courses in the approved program of study.
3. Probational Status. A student is placed on probational status if the student's cumulative grade--point average for the courses in the approved program of study is below 3.00. A student in probational status is not allowed to carry more than 7 credits per semester or to enroll in any course the primary focus of which is independent study.
4. Retention In and Dismissal From the Program.
 a. Cumulative Grade--Point Average. Should a student's cumulative grade--point average fall below 3.00 after having completed 16 or more credits in courses in the approved program of study, the student may be enrolled in probationary status in the master's degree program for one additional semester. If at the end of the additional semester the student's cumulative grade--point average is 3.00 or higher, the student may continue to enroll in the master's degree program. If at the end of the additional semester the student's cumulative grade--point average is still below 3.00, the student will be dismissed from the program.
 b. Academic Progress and Professional Potential. Each student's academic progress and professional potential are evaluated by March 15 of each year. A student who in the judgment of the faculty is making satisfactory academic progress and has professional potential may continue to enroll in the master's degree program. A student who in the judgment of the faculty is not making satisfactory academic progress or lacks professional potential will be dismissed from the program.

Transfer Credits

As a member of the Michigan Coalition for Engineering Education (MCEE), Michigan State University will accept up to one less than half of the course credits required for the Master of Science degree program in the College of Engineering in transfer from other MCEE member institutions provided that (1) the student earned a grade of at least 3.0, or the equivalent, in the related courses; (2) the credits were not earned in research or thesis courses; and (3) the total number of credits accepted in transfer from MCEE member institutions and from other institutions does not exceed one less than half of the credits required.

Doctor of Philosophy

In addition to meeting the requirements of the university as described in the Graduate Education section of this catalog, students must meet the requirements specified below.

Admission

Regular Status. Admission to a doctoral degree program with regular status may be granted by the department, subject to the availability of resources and to the approval of the dean, upon consideration of the likelihood that the applicant will be able to pursue a doctoral program successfully without taking collateral courses. As evidence of eligibility for admission, the student may offer any of the following:
 a. The possession of a master's degree in engineering or a related field.
 b. The completion of the equivalent of a master's degree program in the major field.
 c. Evidence of ability and resolution to complete a doctoral program, as attested by the department upon review of the applicant's academic record, test scores, experience, reference statements, professional qualifications, proposed studies, and other relevant information.

Admission to the doctoral program without a master's degree, or the equivalent thereof, will require special consideration by the department and the dean.

Provisional Status. Admission to a doctoral degree program with provisional status may be granted by the department, subject to the approval of the dean:
 a. To an applicant qualified for regular admission except that collateral courses are deemed necessary, or
 b. To an applicant whose record is incomplete.

If collateral courses are required, the minimum acceptable grades and the semesters by which those courses must be completed will be specified on the admission form. The provisional status will be changed to regular status when the conditions specified on the admission form have been met, as determined by the department and approved by the dean.
Guidance Committee
The student's guidance committee is appointed by the department chairperson in consultation with the student and the appropriate faculty members, and with the approval of the dean. At least two members of the guidance committee shall be from the major department and at least one member shall be from a department outside of the major department. The chairperson of the guidance committee will be appointed by the department chairperson after consultation with the student and the person recommended to chair the committee.

Guidance Committee Report
The student's program of study shall be submitted for approval to the department and to the Dean by no later than the end of the student's second semester of enrollment in the doctoral program. For any independent study or selected topics course that is included in the student's program of study, the subject material and the instructor must be specified.

The student's program of study must be approved in order for the student to continue to enroll in the doctoral degree program beyond the second semester.

Modification of Program
With reference to the student's approved guidance committee report, none of the following types of changes will be approved:
1. Adding or deleting a course for which a grade has already been assigned under any of the three grading systems (numerical, Pass–No Grade, or Credit–No Credit).
2. Adding or deleting a course for which grading was postponed by the use of the DF–Deferred marker.
3. Adding or deleting a course which the student dropped after the middle of the semester and for which "W" or "N" or "0.0" was designated.
4. Adding or deleting a course during the final semester of enrollment in the doctoral degree program.

Requirements for the Doctor of Philosophy Degree
The student must:
1. Pass the qualifying examination administered by the student's department. It is the student's responsibility to obtain detailed information about this examination from the department.
2. Pass the doctoral comprehensive examination at least six months prior to the final oral examination in defense of the dissertation. The examination may be retaken no more than twice. It is the student's responsibility to obtain detailed information about this examination from the department.
3. Provide to the major professor and to the department a hard–bound copy of the dissertation made from the original unbound manuscript submitted to the Office of the Graduate School. Arrangements for delivery of the copies shall be made when the original manuscript is submitted to the Office of The Graduate School.

Academic Standards
1. Grades. The student must earn a grade of 2.0 or higher in each course in the approved guidance committee report, including collateral courses and courses accepted in transfer. The student must repeat any course for which the grade earned was below 2.0.
2. Cumulative Grade–Point Average. The student must maintain a cumulative grade–point average of at least 3.00 in courses in the approved guidance committee report, with the exception of collateral courses and courses accepted in transfer.
3. Deferred Grades. A student may accumulate no more than 3 deferred grades (identified by the DF–Deferred marker) in courses other than those courses the primary focus of which is independent study.
4. Probational Status. A student is placed on probational status if either or both of the following conditions apply:
 a. The student's cumulative grade–point average for the courses in the approved guidance committee report is below 3.00.
 b. The student has accumulated more than three deferred grades (identified by the DF–Deferred marker) in courses other than those courses the primary focus of which is independent study.

A student in probational status is not allowed to carry more than 7 credits per semester or to enroll in any course the primary focus of which is independent study.

5. Retention In and Dismissal From the Program.
 a. Cumulative Grade–point Average. Should a student's cumulative grade–point average fall below 3.00 after having completed half of the courses in the approved guidance committee report, the student may be enrolled in probational status in the doctoral degree program for one additional semester. If at the end of the additional semester the student's cumulative grade–point average is 3.00 or higher, the student may continue to enroll in the doctoral degree program. If at the end of the additional semester the student's cumulative grade–point average is still below 3.00, the student will be dismissed from the program.
 b. Deferred Grades. Should a student accumulate more than 3 deferred grades (identified by the DF–Deferred marker) in courses other than those courses the primary focus of which is independent study, the student may be enrolled on probational status in the doctoral degree program for one additional semester. If at the end of the additional semester the student has no more than 3 deferred grades, the student may continue to enroll in the doctoral degree program. If at the end of the additional semester the student still has more than 3 deferred grades, the student will be dismissed from the program.
 c. Academic Progress and Professional Potential. Each student's academic progress and professional potential are evaluated by March 15 of each year. A student who in the judgment of the faculty is making satisfactory academic progress and has professional potential may continue to enroll in the doctoral degree program. A student who in the judgment of the faculty is not making satisfactory academic progress or lacks professional potential will be dismissed from the program.

GRADUATE SPECIALIZATION IN ENVIRONMENTAL TOXICOLOGY

The College of Engineering, the College of Agriculture and Natural Resources, the College of Natural Science, and the College of Veterinary Medicine administer the Graduate Specialization in Environmental Toxicology. The College of Agriculture and Natural Resources is the primary administrative unit. For additional information, refer to the Graduate Specialization in Environmental Toxicology statement in the College of Agriculture and Natural Resources section of this catalog.
DEPARTMENT of BIOSYSTEMS and AGRICULTURAL ENGINEERING

Ajit Srivastava, Chairperson

The Department of Biosystems and Agricultural Engineering is administered jointly by the College of Engineering and the College of Agriculture and Natural Resources.

UNDERGRADUATE PROGRAM

The department offers a Bachelor of Science degree program with a major in biosystems engineering through the College of Engineering. That program is described below.

The department also offers a Bachelor of Science degree program with a major in technology systems management through the College of Agriculture and Natural Resources. For information about that program, refer to the Department of Biosystems and Agricultural Engineering in the College of Agriculture and Natural Resources section of this catalog.

Students who are enrolled in the Bachelor of Science degree program with a major in biosystems engineering may elect a Specialization in Agricultural and Natural Resources Biotechnology. For additional information, refer to the Specialization in Agricultural and Natural Resources Biotechnology statement in the College of Agriculture and Natural Resources section of this catalog.

BIOSYSTEMS ENGINEERING

Bachelor of Science

Biosystems engineers design solutions to technical problems that involve a critical biological component. They apply quantitative skills to create products, processes, and systems that improve human existence. Working at the interface of engineering and biology, biosystems engineers are engaged in the most important challenges of our time.

There are a wide variety of job functions and application areas for our graduates, including ecosystems protection, food safety, bioenergy, biotechnology, and human health. Biosystems engineers may, for example, design sterilization and pasteurization processes to eliminate microbial pathogens and maximize the nutritional value of our food. Other graduates may design constructed wetlands, which utilize biological systems to capture pollutants and protect our precious fresh water resources. Biosystems engineers are sought after by a wide variety of employers including food manufacturers, environmental consulting firms, health industries, and government agencies who need creative individuals to integrate principles of engineering and biology successfully.

The Bachelor of Science Degree program in Biosystems Engineering is accredited by the Engineering Accreditation Commission of ABET, 111 Market Place, Suite 1050, Baltimore, MD 21202-4012; telephone 1-410-347-7700.

Requirements for the Bachelor of Science Degree in Biosystems Engineering

1. The University requirements for bachelor’s degrees as described in the Undergraduate Education section of this catalog; 128 credits, including general elective credits, are required for the Bachelor of Science degree in Biosystems Engineering.

The University’s Tier II writing requirement for the Biosystems Engineering major is met by completing Biosystems Engineering 497. That course is referenced in item 3. below.

Students who are enrolled in the College of Engineering may complete the alternative track to Integrative Studies in Biological and Physical Sciences that is described in Item 1. under the heading Graduation Requirements for All Majors in the College statement. Certain courses referenced in requirement 3. below may be used to satisfy an alternative track.

2. The requirements of the College of Engineering for the Bachelor of Science degree. The credits earned in certain courses referenced in requirement 3. below may be counted toward College requirements as appropriate.

3. The following requirements for the major:

a. All of the following courses: 46 credits

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE 101</td>
<td>Introduction to Biosystems Engineering</td>
<td>1</td>
</tr>
<tr>
<td>BE 230</td>
<td>Engineering Analysis of Biological Systems</td>
<td>3</td>
</tr>
<tr>
<td>BE 332</td>
<td>Engineering Properties of Biological Materials</td>
<td>3</td>
</tr>
<tr>
<td>BE 334</td>
<td>Biosystems Engineering Laboratory Practice</td>
<td>3</td>
</tr>
<tr>
<td>BE 350</td>
<td>Heat and Mass Transfer in Biosystems</td>
<td>3</td>
</tr>
<tr>
<td>BE 351</td>
<td>Thermodynamics for Biological Engineering</td>
<td>3</td>
</tr>
<tr>
<td>BE 360</td>
<td>Microbial Systems Engineering</td>
<td>3</td>
</tr>
<tr>
<td>BE 385</td>
<td>Engineering Design and Optimization for Biological Systems</td>
<td>3</td>
</tr>
<tr>
<td>BE 485</td>
<td>Biosystems Design Techniques</td>
<td>3</td>
</tr>
<tr>
<td>BE 487</td>
<td>Biosystems Design Project (W)</td>
<td>3</td>
</tr>
<tr>
<td>BS 161</td>
<td>Cell and Molecular Biology</td>
<td>3</td>
</tr>
<tr>
<td>BS 162</td>
<td>Organismal and Population Biology</td>
<td>3</td>
</tr>
<tr>
<td>CE 221</td>
<td>Statics</td>
<td>3</td>
</tr>
<tr>
<td>CE 321</td>
<td>Introduction to Fluid Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>CEM 143</td>
<td>Survey of Organic Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>CEM 161</td>
<td>Chemistry Laboratory I</td>
<td>1</td>
</tr>
</tbody>
</table>

b. One of the following courses (2 credits):

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BS 171</td>
<td>Cell and Molecular Biology Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>BS 172</td>
<td>Organismal and Population Biology Laboratory</td>
<td>2</td>
</tr>
</tbody>
</table>

c. One of the following courses: 3 or 4 credits

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMG 301</td>
<td>Introductory Microbiology</td>
<td>3</td>
</tr>
<tr>
<td>PLB 301</td>
<td>Introductory Plant Physiology</td>
<td>3</td>
</tr>
<tr>
<td>PSL 250</td>
<td>Introductory Physiology</td>
<td>4</td>
</tr>
<tr>
<td>ZOL 341</td>
<td>Fundamental Genetics</td>
<td>3</td>
</tr>
<tr>
<td>ZOL 355</td>
<td>Zoology</td>
<td>3</td>
</tr>
</tbody>
</table>

d. One of the following courses: 3 or 4 credits

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLD 450</td>
<td>Eukaryotic Pathogens</td>
<td>3</td>
</tr>
<tr>
<td>CSS 442</td>
<td>Agricultural Ecology</td>
<td>3</td>
</tr>
<tr>
<td>FOR 404</td>
<td>Forest Ecology</td>
<td>3</td>
</tr>
<tr>
<td>FSC 440</td>
<td>Food Microbiology</td>
<td>3</td>
</tr>
<tr>
<td>MMG 425</td>
<td>Microbial Ecology</td>
<td>3</td>
</tr>
<tr>
<td>MMG 445</td>
<td>Microbial Biotechnology (W)</td>
<td>3</td>
</tr>
<tr>
<td>PLB 402</td>
<td>Biology of Fungi</td>
<td>3</td>
</tr>
<tr>
<td>PLB 424</td>
<td>Algal Biology</td>
<td>3</td>
</tr>
<tr>
<td>PSL 425</td>
<td>Physiological Biophysics</td>
<td>4</td>
</tr>
</tbody>
</table>

e. Four of the following courses: 12 credits

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE 445</td>
<td>Biosensors for Medical Diagnostics</td>
<td>3</td>
</tr>
<tr>
<td>BE 456</td>
<td>Electric Power and Control</td>
<td>3</td>
</tr>
<tr>
<td>BE 469</td>
<td>Sustainable Bioenergy Systems</td>
<td>3</td>
</tr>
<tr>
<td>BE 477</td>
<td>Food Engineering: Fluids</td>
<td>3</td>
</tr>
<tr>
<td>BE 478</td>
<td>Food Engineering: Solids</td>
<td>3</td>
</tr>
<tr>
<td>BE 481</td>
<td>Water Resources Systems Analysis and Modeling</td>
<td>3</td>
</tr>
<tr>
<td>BE 482</td>
<td>Diffuse-Source Pollution Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CHE 468</td>
<td>Biomass Conversion Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ECE 445</td>
<td>Biomedical Instrumentation</td>
<td>3</td>
</tr>
</tbody>
</table>

Concentrations in Biosystems Engineering

The department offers concentrations for students who wish to focus on a specific application area in the discipline. The concentrations are available to, but not required of, any student enrolled in the Bachelor of Science degree program in Biosystems Engineering. Courses completed to satisfy requirement 3. above may also be used to satisfy the requirements of a concentration. The concentration will be noted on the students transcript.

Bioenergy Engineering

To earn a Bachelor of Science degree in Biosystems Engineering with a bioenergy engineering concentration, students must complete degree requirements 1. , 2., and 3. above and the following:

CREDITS

1. All of the following courses (9 credits):

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE 469</td>
<td>Sustainable Bioenergy Systems</td>
<td>3</td>
</tr>
<tr>
<td>CHE 468</td>
<td>Biomass Conversion Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CSS 447</td>
<td>Bioenergy Feedstock Production</td>
<td>3</td>
</tr>
</tbody>
</table>

2. One of the following courses (3 or 4 credits):

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMG 445</td>
<td>Microbial Biotechnology (W)</td>
<td>3</td>
</tr>
<tr>
<td>PLB 402</td>
<td>Biology of Fungi</td>
<td>3</td>
</tr>
<tr>
<td>PLB 424</td>
<td>Algal Biology</td>
<td>4</td>
</tr>
</tbody>
</table>
3. One of the following courses (3 or 4 credits):
 CHE 481 Biocatalysis Engineering 3
 CHE 882 Multidisciplinary Bioprocessing Laboratory 3
 CHE 883 Multidisciplinary Bioprocessing Laboratory 3
 GLG 471 Applied Geophysics 4
 MC 450 Environmental Microbiology 3
 ME 417 Design of Alternative Energy Systems 3
 ME 422 Introduction to Combustion 3
 MMG 445 Bioremediation and Biotechnology (W) 3
 PLB 420 Biology of Fungi 4
 PLB 424 Algal Biology 4

Courses used to fulfill requirement 2. in this concentration may not be used to fulfill this requirement.

Biomedical Engineering
To earn a Bachelor of Science degree in Biosystems Engineering with a biomedical engineering concentration, students must complete degree requirements 1., 2., and 3. above and the following:

1. The following course (3 credits):
 BE 445 Biomedical Sensor Systems 3

2. One of the following courses (3 credits):
 ECE 445 Biomedical Instrumentation 3
 ME 484 Biofluid Mechanics and Heat Transfer 3

3. One of the following courses (3 credits):
 BLD 450 Hazards of Pathogens 3
 PSL 425 Physiological Biophysics 3

4. Two of the following courses (5 or 6 credits):
 BLD 204 Medical Statistics 3
 BLD 430 Molecular Laboratory Diagnostics 3
 BLD 434 Clinical Immunology 3
 BLD 450 Virology ... 3
 ECE 445 Biomedical Instrumentation 3
 ECE 446 Biomedical Instrumentation 3
 ME 484 Biofluid Mechanics and Heat Transfer 3
 MSE 425 Biomaterials and Biocompatibility 3
 PLB 400 Introduction to Bioinformatics 3
 PSL 425 Physiological Biophysics 3

Courses used to fulfill requirements 2. and 3. in this concentration may not be used to fulfill this requirement.

Ecosystems Engineering
To earn a Bachelor of Science degree in Biosystems Engineering with an ecosystems engineering concentration, students must complete degree requirements 1., 2., and 3. above and the following:

1. All of the following courses (9 credits):
 BE 481 Water Resource Systems Analysis and Modeling 3
 BE 482 Diffuse Source Pollution Engineering 3
 MMG 425 Bioremediation and Biotechnology (W) 3

2. Two of the following courses (5 or 6 credits):
 CE 422 Applied Hydraulics 3
 CS 210 Fundamentals of Soil Science 3
 CS 330 Soil Chemistry 3
 CS 360 Soil Biology ... 3
 CSS 442 Biological Soil Ecology 3
 CSS 455 Pollutants in the Soil Environment 3
 FOR 404 Forest Ecology 3
 FW 417 Wetland Ecology and Management 3
 FW 420 Stream Ecology 3
 FW 443 Restoration Ecology 3

Food Engineering
To earn a Bachelor of Science degree in Biosystems Engineering with a food engineering concentration, students must complete degree requirements 1., 2., and 3. above and the following:

1. All of the following courses (9 credits):
 BE 477 Food Engineering: Fluids 3
 BE 478 Food Engineering: Solids 3
 FSC 440 Food Microbiology 3

2. Two of the following courses, one of which must be at the 400-level (8 or 7 credits):
 BMB 200 Introduction to Biotechnology 4
 FSC 211 Principles of Food Science 3
 FSC 401 Food Chemistry 3
 FSC 430 Food Processing: Fruits and Vegetables 3
 FSC 431 Food Processing: Cereals 3
 FSC 432 Food Processing: Dairy Foods 3
 FSC 433 Food Processing: Muscle Foods 3

LINKED BACHELOR’S-MASTER’S DEGREE IN BIOSYSTEMS ENGINEERING

Bachelor of Science Degree in Biosystems Engineering

The department welcomes applications from Michigan State University Biosystems Engineering undergraduate students in their junior and senior year. Admission applications must be made during the prior spring semester for an anticipated spring graduation or the prior fall semester for an anticipated fall graduation to allow admission before the final semester as a Biosystems Engineering undergraduate. Admission to the program requires a minimum undergraduate grade-point average of 3.5 and an approved program of study for the Master of Science degree in Biosystems Engineering at the time of admission. Admission to the Linked Bachelor’s-Master’s program allows the application of up to 9 credits toward the master’s program for qualifying 400-level and above course work taken at the undergraduate level at Michigan State University or an external accredited institution. The number of approved credits, not to exceed 9, are applied toward the credit requirement of the master’s degree. Credits applied to the Linked Bachelor’s-Master’s program are not eligible to be applied to any other graduate degree program.

GRADUATE STUDY

The department offers Master of Science and Doctor of Philosophy programs in biosystems engineering through the College of Agriculture and Natural Resources. For information about those programs, refer to the statement on the Department of Biosystems and Agricultural Engineering in the College of Agriculture and Natural Resources section of this catalog.

Students who are enrolled in Master of Science degree programs in the Department of Biosystems and Agricultural Engineering may elect a Specialization in Food Safety. For additional information, refer to the statement on the specialization in the College of Veterinary Medicine section of this catalog.

DEPARTMENT OF CHEMICAL ENGINEERING AND MATERIALS SCIENCE

Martin Hawley, Chairperson

The undergraduate and graduate programs of the Department of Chemical Engineering and Materials Science have been training top-quality graduates for over 75 years. Graduates from the Department of Chemical Engineering and Materials Science are highly sought after for work on important societal problems. The faculty is dedicated to strong classroom instruction and world-class research focused in the areas of energy and sustainability, advanced materials and nanotechnology, and biotechnology and medicine.

UNDERGRADUATE PROGRAMS

Students in chemical engineering and materials science learn to convert low-value raw materials into high-value products. Students learn how to analyze and understand different processes and how, at the macroscopic and molecular levels these processes result in different properties in the final product. Emphasis is placed on developing students who understand the technical aspects of production, the environmental, economic, and societal impact of engineering, and who possess a desire for lifelong learning and growth. Optional concentrations are available for students to focus their programs of study on areas of particular interest.

Graduates are trained to succeed in multidisciplinary teams at the interfaces between disciplines. They work across a broad spectrum of fields including industrial chemicals, automotive, plastics, petroleum processing, pharmaceuticals, textiles, food,
electronics, sensors, consumer goods, biomedical technology, and specialty materials of construction. Within these fields, our graduates are involved in research and development of products and processes, in the design and operation of manufacturing facilities, and in management and product quality control.

CHEMICAL ENGINEERING

Chemical engineers convert raw materials to finished products via pathways involving chemical and physical changes. The principles of mass, energy, and momentum conservation, chemical reactions, thermodynamics, and economics are applied to develop new products and to design and operate manufacturing facilities to produce products that benefit society. Chemical engineering principles are, in turn, based on the sciences of chemistry, biology, mathematics, and physics, which form the underlying foundation of the discipline.

Students in this degree program will study the application of chemical engineering principles to biochemical and biomedical systems, nanoscale devices, polymer processing, and novel energy systems. Principles of sustainability, environmentally-friendly "green" processing, entrepreneurship, and other emerging topics are also addressed in courses and concentrations.

The Bachelor of Science Degree program in Chemical Engineering is accredited by the Engineering Accreditation Commission of ABET, 111 Market Place, Suite 1050, Baltimore, MD 21202-4012; telephone 1-410-347-7700.

Requirements for the Bachelor of Science Degree in Chemical Engineering

1. The University requirements for bachelor's degrees as described in the Undergraduate Education section of this catalog; 128 credits, including general elective credits, are required for the Bachelor of Science degree in Chemical Engineering. The University's Tier II writing requirement for the Chemical Engineering major is met by completing Chemical Engineering 316 and 433. Those courses are referenced in Item 3.a. below.

Students who are enrolled in the College of Engineering may complete the alternative track to Integrative Studies in Biological and Physical Sciences that is described in Item 1. under the heading Graduation Requirements for All Majors in the College statement. Certain courses referenced in requirement 3. below may be used to satisfy the alternative track.

2. The requirements of the College of Engineering for the Bachelor of Science degree.

3. The credits earned in certain courses referenced in requirement 3. below may be counted toward College requirements as appropriate.

3.e. above and the following:

CHE 481 Biochemical Engineering3
MMG 301 Introductory Microbiology3

One of the following:

(1) BMB 401 Comprehensive Biochemistry4
(2) BMB 461 Advanced Biochemistry I3

BMB 462 Advanced Biochemistry II3

Two or three of the following courses. Students who chose BMB 401 above must complete three courses. Students who chose BMB 461 and 462 above must complete two courses:

BMB 829 Methods of Macromolecular Synthesis and Analysis2
CHE 882 Advanced Biochemical Engineering3
CHE 883 Multidisciplinary Bioprocessing Laboratory3
MMG 409 Eukaryotic Cell Biology3
CHE 421 Prokaryotic Cell Physiology3
CHE 433 Process Design and Optimization I4
CHE 434 Process Design and Optimization II2
CHE 473 Chemical Engineering Principles in Polymers and Materials Systems3

Students must complete at least 6 credits of technically oriented subject-related courses approved by the student's advisor. Acceptable subjects include, but are not limited to, composites processing or biochemical engineering (in addition to that required in 3.c. above), electronic materials, environment, advanced mathematics, transport phenomena, advanced chemistry, foods, legal and regulatory issues, advanced materials, advanced biology, statistics, biomedical engineering, bioenergy, and polymers.

NOTE: Elective courses in Item 3. e. must include at least 3 credits of engineering topics, which includes courses taught in the College of Engineering as well as courses taught in advanced mathematics, advanced chemistry, advanced biology, advanced statistics, and advanced physics. If Biochemistry and Molecular Biology 462 is taken to fulfill requirement 3.b. it will count as technical elective credit in Item 3.e.

Concentrations in Chemical Engineering

In response to increasing interest in the application of chemical engineering principles to related fields, the Department of Chemical Engineering and Materials Science offers concentrations in biochemical engineering, bioenergy, biomedical engineering, environmental engineering, food science, and polymer science and engineering to students wishing an area of concentration in the degree. Concentrations are available to, but not required of, any student enrolled in the Bachelor of Science degree program in chemical engineering. The concentration will be noted on the student's transcript.

NOTE: Completing the Bachelor of Science degree in chemical engineering with a concentration may require more than 128 credits.

Biochemical Engineering

To earn a Bachelor of Science degree in Chemical Engineering with a biochemical engineering concentration, students must complete requirements 1., 2., 3.a., and 3.e. above and the following:

CHE 882 Advanced Biochemical Engineering3
CHE 883 Multidisciplinary Bioprocessing Laboratory3
MMG 409 Eukaryotic Cell Biology3
CHE 421 Prokaryotic Cell Physiology3
CHE 433 Process Design and Optimization I4
CHE 434 Process Design and Optimization II2
CHE 473 Chemical Engineering Principles in Polymers and Materials Systems3

Students who are enrolled in the College of Engineering may complete the alternative track to Integrative Studies in Biological and Physical Sciences that is described in Item 1. under the heading Graduation Requirements for All Majors in the College statement. Certain courses referenced in requirement 3. below may be used to satisfy the alternative track.

3.e. above and the following:

MMG 301 Introductory Microbiology3

One of the following: ... 4 or 6

CHE 481 Biochemical Engineering3
MMG 301 Introductory Microbiology3

CHE 481 Biochemical Engineering3

To earn a Bachelor of Science degree in Chemical Engineering with a biochemical engineering concentration, students must complete requirements 1., 2., 3.a., 3.b., 3.d., and 3.e. above and the following:

All of the following courses: ... 12
BE 469 Sustainable Bioenergy Systems3
CHE 468 Biomass Conversion Engineering3
CHE 481 Biochemical Engineering3
CSS 467 Bioenergy Feedstock Production3

One of the following courses: 3 or 4
AEC 829 The Economics of Environmental Resources3
CHE 882 Advanced Biochemical Engineering3
CHE 883 Multidisciplinary Bioprocessing Laboratory3
GLG 471 Applied Geophysics4
MC 450 International Environmental Law and Policy3
MMG 445 Microbial Biotechnology (W)3

Biomedical Engineering

To earn a Bachelor of Science degree in Chemical Engineering with a biomedical engineering concentration, students must complete requirements 1., 2., 3.a., 3.b., 3.d., and 3.e. above and the following:

All of the following courses: ... 9
CHE 481 Biochemical Engineering3
MMG 409 Eukaryotic Cell Biology3
PSL 431 Human Physiology I3

Two of the following courses: 6 or 7
BMB 471 Biochemistry Laboratory (W)3
CHE 883 Multidisciplinary Bioprocessing Laboratory3
CHE 883 Multidisciplinary Bioprocessing Laboratory3
ME 494 Biofluid Mechanics and Heat Transfer3
ZOL 341 Fundamental Genetics4

Environmental

To earn a Bachelor of Science degree in Chemical Engineering with an environmental concentration, the student must complete requirements 1., 2., and 3.a., 3.b., 3.d., and 3.e. above and the following:

All of the following courses: ... 6
CHE 481 Biochemical Engineering3
MMG 409 Eukaryotic Cell Biology3

Engineering

Department of Chemical Engineering and Materials Science

CHE 481 Biochemical Engineering ... 3
ENE 280 Principles of Environmental Engineering and Science 3
Three of the following courses: .. 9
CE 485 Landfill Design .. 3
EEP 255 Ecological Economics ... 3
EEP 320 Environmental Economics 3
EEP 405 Corporate Environmental Management 3
ENE 481 Environmental Chemistry: Equilibrium Concepts 3
ENE 483 Water and Wastewater Engineering 3
ESA 200 Introduction to Environmental Studies and Agriscience .3
ESA 430 Environmental and Natural Resource Law 3
ZOL 446 Environmental Issues and Public Policy 3

Food Science
To earn a Bachelor of Science degree in Chemical Engineering with a food science concentration, students must complete requirements 1., 2., 3., a., 3.b., 3.c., 3.d., and 3.e. above and all of the following:

All of the following courses: .. 9
FSC 401 Food Chemistry .. 3
FSC 440 Food Microbiology ... 3
MMG 301 Introductory Microbiology 3
One of the following courses .. 3 or 4
BE 477 Food Engineering: Fluids ... 3
BE 478 Food Engineering: Solids ... 3
FSC 325 Food Processing: Unit Operations 3
FSC 455 Food and Nutrition Laboratory 3
FSC 470 Integrated Approaches to Food Product Development ...3

Polymer Science and Engineering
To earn a Bachelor of Science degree in Chemical Engineering with a polymer science and engineering concentration, students must complete requirements 1., 2., 3., a., 3.b., 3.d., and 3.e. above and all of the following:

All of the following courses: .. 10
CE 221 Statics ... 3
CHE 472 Composite Materials Processing 3
ME 222 Mechanics of Deformable Solids 3
Two of the following courses ... 6 or 7
CHE 871 Material Surfaces and Interfaces 3
CHE 872 Polymers and Composites: Manufacturing, Structure and Performance ... 3
MSE 370 Physical Processing of Materials 3
MSE 426 Introduction to Composite Materials 3
PKG 323 Packaging with Plastics .. 3

MATERIALS SCIENCE and ENGINEERING

Materials Science and Engineering majors learn to select and create materials used to realize engineering designs in fields such as bioengineering, microelectronics and aerospace. They also learn how to manipulate the elements of matter into the atomic arrangements that insure efficient and cost-effective materials performance, demanded by today's advanced applications.

Through the core course work, students gain the scientific and engineering foundation needed to design metallic, ceramic, polymeric, and composite materials and, in turn, components manufactured from these materials. Students may enhance the knowledge they gain in metals, ceramics, and polymers by completing a concentration in biomedical materials, manufacturing, polymers, or metallurgy. Students may also choose to enroll in electives of complementary fields such as business, electronic materials or statistics.

The Bachelor of Science Degree program in Materials Science and Engineering is accredited by the Engineering Accreditation Commission of ABET, 111 Market Place, Suite 1050, Baltimore, MD 21202-4012; telephone 1-410-347-7700.

Requirements for the Bachelor of Science Degree in Materials Science and Engineering

1. The University requirements for bachelor's degrees as described in the Undergraduate Education section of this catalog; 128 credits, including general elective credits, are required for the Bachelor of Science degree in Materials Science and Engineering.

2. The University's Tier II writing requirement for the Materials Science and Engineering major is met by completing Materials Science and Engineering 466. That course is referenced in item 3. a. below.

3. The following requirements for the major:

 a. All of the following courses: .. 41 to 44
 - CE 221 Statics .. 3
 - CEM 152 Principles of Chemistry 3
 - CEM 161 Chemistry Laboratory I 3
 - ECE 345 Electronic Instrumentation and Systems 3
 - ME 222 Mechanics of Deformable Solids 4
 - MSE 250 Materials Science and Engineering 3
 - MSE 310 Phase Equilibria in Materials 3
 - MSE 320 Mechanical Properties of Materials 3
 - MSE 331 Materials Characterization Methods I 3
 - MSE 350 Electronic Structure and Properties of Materials. 3
 - MSE 360 Fundamentals of Microstructural Design 3
 - ESE 370 Physical Processing of Materials 3
 - MSE 381 Materials Characterization Methods II 2
 - MSE 466 Design and Failure Analysis (W) 3
 - MSE 477 Manufacturing Processes 3
 - STT 351 Probability and Statistics for Engineering 3
 - Electrical and Computer Engineering 302 and 303 may be substituted for Electrical and Computer Engineering 345.

 b. Two of the following courses: ... 6
 - MSE 454 Ceramic and Refractory Materials 3
 - MSE 468 Manufacturing Processes 3
 - MSE 476 Physical Metallurgy of Ferrous and Aluminum Alloys .. 3
 - Complete at least 5 credits from 400-level courses within the College of Engineering.
 - Complete at least 7 credits in courses selected from a list of approved technical electives available from the Department of Chemical Engineering and Materials Science.

Concentrations in Materials Science and Engineering

Students may elect to complete a more focused set of courses to enhance their ability to function at the interface with another scientific, engineering, or business discipline. Concentrations are available to, but not required of, any student enrolled in the Bachelor of Science degree in Materials Science and Engineering. Completing the Bachelor of Science degree in Materials Science and Engineering with a concentration may require more than 128 credits. The concentration will be noted on the student's transcript.

Biomedical Materials Engineering

To gain interdisciplinary skills in human biology and earn a Bachelor of Science degree in Materials Science and Engineering with a biomedical materials engineering concentration, students must complete requirement 3. a. above and the following (25 credits):

1. All of the following courses (16 credits):
 - ANTR 350 Human Gross Anatomy and Structural Biology 3
 - CEM 351 Organic Chemistry I .. 3
 - ME 495 Tissue Mechanics .. 3
 - MSE 429 Biomaterials and Biocompatibility 3
 - ZOL 341 Fundamental Genetics 4

2. One of the following courses (3 credits):
 - MSE 454 Ceramics and Refractory Materials 3
 - MSE 465 Design and Application of Engineering Materials 3
 - MSE 476 Physical Metallurgy of Ferrous and Aluminum Alloys .3

3. At least 6 credits from a list of approved technical electives 6

Manufacturing Engineering

To gain interdisciplinary skills with business and design engineers for manufacturing projects and earn a Bachelor of Science degree in Materials Science and Engineering with a manufacturing engineering concentration, students must complete requirement 3. a. above and the following (18 credits):

1. All of the following courses (9 credits):
 - ECE 415 Computer Aided Manufacturing 3
 - ME 478 Product Development ... 3
 - MSE 465 Design and Application of Engineering Materials 3

2. Three of the following courses (9 credits):
 - GBL 323 Introduction to Business Law 3
 - MSE 426 Introduction to Composite Materials 3
 - MSE 454 Ceramic and Refractory Materials 3
 - MSE 476 Physical Metallurgy of Ferrous and Aluminum Alloys 3

Completion of this concentration fulfills requirement 2. of the admission requirements for the Master of Science degree in Manufacturing and Engineering Management offered by The Eli Broad College of Business.
Ermic engineering concentration, students must complete requirement 3. a. above and the following (18 credits): 1. All of the following courses (15 credits): ME 423 Intermediate Mechanics of Deformable Solids ... 3 ME 475 Computer Aided Design of Structures ... 3 MSE 426 Introduction to Composite Materials ... 3 MSE 465 Design and Application of Engineering Materials ... 3 MSE 476 Physical Metallurgy of Ferrous and Aluminum Alloys ... 3 2. One of the following courses (3 credits): ME 425 Experimental Mechanics .. 3 MSE 451 Microscopic and Diffraction Analysis of Materials .. 3

Polymeric Engineering
To gain interdisciplinary skills to facilitate interactions with chemical engineers and earn a Bachelor of Science degree in Materials Science and Engineering with a polymeric engineering concentration, students must complete requirement 3. a. above and the following (15 credits): All of the following courses (15 credits): CEM 351 Organic Chemistry I .. 3 CHE 311 Fluid Flow and Heat Transfer ... 3 CHE 472 Composite Materials Processing ... 3 CHE 473 Chemical Engineering Principles in Polymers and Materials Systems 3 MSE 426 Introduction to Composite Materials ... 3

GRADUATE STUDY
The Department of Chemical Engineering and Materials Science offers Master of Science and Doctor of Philosophy degree programs in chemical engineering and in materials science and engineering. A wide range of course offerings and research activities allows an individual program to be designed to fit the background, capabilities, and aims of the student. Studies in the department may be supplemented with courses offered by other departments in the College of Engineering and in other colleges. The graduate programs in chemical engineering and materials science and engineering are designed to develop research expertise needed for the graduate to serve as a principal investigator in industrial or academic research. Course work is designed to expand the student's knowledge of engineering principles and applications. Each student conducts an extensive research project that significantly advances fundamental understanding of a chemical engineering or materials science system. Results of the research are documented in a thesis, dissertation, and research paper(s) for publication in a peer-reviewed journal.

CHEMICAL ENGINEERING
Emphasis in the graduate programs in chemical engineering is placed upon a fundamental approach to chemical engineering principles and the applications of chemistry and science and mathematics. Selected topics in chemical engineering are developed from a fundamental viewpoint, with opportunity for study and research in such areas as process analysis, chemical engineering thermodynamics, chemical reaction engineering, composite materials, polymers, heat transfer, mass transfer, distillation, absorption, extraction, transport phenomena, diffusion, and biochemical engineering.

Master of Science
In addition to meeting the requirements of the University and of the College of Engineering, students must meet the requirements specified below.

Admission
An applicant for admission to the master's degree program in chemical engineering must hold a bachelor's degree in chemical engineering or a related field and must have a grade–point average that would indicate success in graduate study. International applicants must submit their scores on the Graduate Record Examination General Test.

Requirements for the Master of Science Degree in Chemical Engineering
The students must complete a total of 30 credits for the degree under Plan A (with thesis) or a total of 36 credits for the degree under Plan B (without thesis), and meet the requirements specified below:

Requirements for Both Plan A and Plan B:

1. Core Courses. All of the following courses: .. 15
 CHE 801 Advanced Chemical Engineering Calculations .. 3
 CHE 821 Advanced Chemical Engineering Thermodynamics ... 3
 CHE 822 Transport Phenomena .. 3
 CHE 831 Advanced Chemical Reaction Engineering ... 3
 CHE 892 Seminar ... 3

2. Supporting Courses. Six credits in courses outside the Department of Chemical Engineering and Materials Science approved by the student's academic advisor. This requirement is waived for those students who are admitted to the master's degree program with a bachelor's degree in a discipline related to chemical engineering.

Additional Requirements for Plan B
Six to 9 credits in a coordinated technical minor.

Doctor of Philosophy
In addition to meeting the requirements of the university and of the College of Engineering, students must meet the requirements specified below.

Admission
An applicant for admission to the Ph.D. degree program in chemical engineering must hold a bachelor's or master's degree in chemical engineering or a related field and must have a grade–point average that would indicate success in graduate study. International applicants must submit their scores on the Graduate Record Examination General Test.

Requirements for the Doctor of Philosophy Degree in Chemical Engineering
The guidance committee report must be proposed by the student and approved by the student's major professor, the student's guidance committee, the chairperson of the Department of Chemical Engineering and Materials Science, and the Dean of the College of Engineering.
In addition to meeting the requirements of the university and of the College of Engineering, students must meet the requirements specified by their guidance committees.

MATERIALS SCIENCE AND ENGINEERING

Master of Science

In addition to meeting the requirements of the university and of the College of Engineering, students must meet the requirements specified below.

Admission

The department welcomes applications from students who possess a bachelor's degree in a related engineering or science discipline.

Students who are admitted to the master's program with a degree in a discipline other than materials science and engineering and who have not completed Materials Science and Engineering 351, 355, 365, and 451 or equivalent courses may be admitted with provisional status. Such students will be required to demonstrate proficiency in the material in the courses referenced above, either by completing each of those courses with a grade of at least 3.0 or by passing an examination on the material in those courses sanctioned by the department Graduate Studies Committee. Of the courses referenced above, only Materials Science and Engineering 451 may be counted toward the requirements for the master's degree.

Requirements for the Master of Science Degree in Materials Science and Engineering

The student must complete a total of 30 credits for the degree under either Plan A (with thesis) or Plan B (without thesis) and meet the requirements specified below:

Requirements for Both Plan A and Plan B:

The student must complete:

1. The following core courses in materials science and engineering: Materials Science and Engineering 851, 855, and 862 or 865.
2. At least one of the following core courses in engineering mechanics: Mechanical Engineering 825, 861, 820, or 821.
3. At least one credit of Materials Science and Engineering 885.
4. At least one course in mathematics or statistics at the 400–level or above approved by the student's academic advisor.

Doctor of Philosophy

In addition to meeting the requirements of the university and of the College of Engineering, students must meet the requirements specified below.

Admission

An applicant for admission must identify at least one prospective faculty advisor that he or she would like to direct his or her program of study. Admission to the Ph.D. program is contingent on a faculty advisor accepting the student as an advisee.

Requirements for the Doctor of Philosophy Degree in Materials Science and Engineering

The student must complete:

1. At least one of the following core courses in engineering mechanics: Mechanical Engineering 825, 861, 820, or 821.
2. At least one course in mathematics or statistics at the 400–level or above.

These requirements are waived for those students who completed equivalent courses prior to enrolling in the doctoral program.

DEPARTMENT of CIVIL and ENVIRONMENTAL ENGINEERING

Ronald S. Harichandran, Chairperson

UNDERGRADUATE PROGRAMS

CIVIL ENGINEERING

The civil engineering major is designed to provide graduates with a broad understanding of the physical factors involved in the planning, design, and operation of public and private facilities.

The bachelor's degree program in civil engineering is oriented to the application of engineering principles to several areas of specialization, including transportation, structures, geotechnical engineering, environmental engineering, water resources, and pavements and materials.

The Bachelor of Science Degree program in Civil Engineering is accredited by the Engineering Accreditation Commission of ABET, 111 Market Place, Suite 1050, Baltimore, MD 21202-4012; telephone 1-410-347-7700.

Requirements for the Bachelor of Science Degree in Civil Engineering

1. The University requirements for bachelor's degrees as described in the Undergraduate Education section of this catalog; 128 credits, including general elective credits, are required for the Bachelor of Science degree in Civil Engineering.

The University's Tier II writing requirement for the Civil Engineering major is met by completing Civil Engineering 321 and 341. Those courses are referenced in item 3. a. below.

Students who are enrolled in the College of Engineering may complete the alternative track to Integrative Studies in Biological and Physical Sciences that is described in the alternative track. They are required to complete at least one of the following courses:

- Introduction to Civil and Environmental Engineering
- Engineering Analysis
- Structural Analysis
- Soil Mechanics
- Introduction to Fluid Mechanics
- Civil Engineering Materials
- Transportation Engineering
- Senior Design in Civil and Environmental Engineering

The University's Tier I writing requirement for the Civil Engineering major is met by completing Civil Engineering 321 and 341. Those courses are referenced in item 3. a. below.

The credits earned in certain courses referenced in requirement 3. below may be used to satisfy the alternative track.

The requirements of the College of Engineering for the Bachelor of Science degree.

4. The requirements of the College of Engineering for the Bachelor of Science degree.

5. The credits earned in certain courses referenced in requirement 3. below may be counted toward College requirements as appropriate.

The following requirements for the major:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 221</td>
<td>Statics</td>
<td>3</td>
</tr>
<tr>
<td>CE 271</td>
<td>Introduction to Civil and Environmental Engineering</td>
<td>4</td>
</tr>
<tr>
<td>CE 272</td>
<td>Civil and Environmental Engineering Analysis</td>
<td>3</td>
</tr>
<tr>
<td>CE 305</td>
<td>Introduction to Structural Analysis</td>
<td>3</td>
</tr>
<tr>
<td>CE 312</td>
<td>Soil Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>CE 321</td>
<td>Introduction to Fluid Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>CE 337</td>
<td>Civil Engineering Materials</td>
<td>4</td>
</tr>
<tr>
<td>CE 341</td>
<td>Transportation Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CE 495</td>
<td>Senior Design in Civil and Environmental Engineering</td>
<td>4</td>
</tr>
<tr>
<td>CEM 161</td>
<td>Chemistry Laboratory I</td>
<td>1</td>
</tr>
</tbody>
</table>

CREDITS 43
The environmental engineering major is designed to provide students with the engineering and scientific principles to analyze, design, and manage environmental systems, including water supplies, wastewater treatment facilities, air pollution control systems, surface and groundwater resources, and landfills. The program offers a thorough background in engineering fundamentals, along with a broad understanding of mathematical, physical, chemical, and biological concepts as they relate to environmental engineering.

Requirements for the Bachelor of Science Degree in Environmental Engineering

1. The University requirements for bachelor’s degrees as described in the Undergraduate Education section of this catalog; 128 credits, including general elective credits, are required for the Bachelor of Science degree in Environmental Engineering. The University’s Tier II writing requirement for the Environmental Engineering major is met by completing Civil Engineering 321. That course is referenced in item 3. a. below.

Students who are enrolled in the College of Engineering may complete the alternative track to Integrative Studies in Biological and Physical Sciences that is described in item 1. under the heading Graduation Requirements for All Majors in the College statement. Certain courses referenced in requirement 3. below may be used to satisfy the alternative track.

2. The requirements of the College of Engineering for the Bachelor of Science degree. The credits earned in certain courses referenced in requirement 3. below may be counted toward College requirements as appropriate.

3. The following requirements for the major.

<table>
<thead>
<tr>
<th>Track</th>
<th>Credits</th>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental Track</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Both of the following courses:</td>
<td>3</td>
<td>ENE 481 Environmental Chemistry: Equilibrium Concepts</td>
</tr>
<tr>
<td>2. One of the following courses:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE 485 Landfill Design</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ENE 421 Engineering Hydrology</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ENE 487 Microbiology for Environmental Science and Engineering</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ENE 489 Air Pollution: Science and Engineering</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Geotechnical Track</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Both of the following courses:</td>
<td>3</td>
<td>CE 418 Geotechnical Engineering</td>
</tr>
<tr>
<td>2. One of the following courses:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE 431 Pavement Design and Analysis I</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CE 515 Selected Topics in Geotechnical Engineering</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CE 518 Advanced Geotechnical Design</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Pavements Track</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Both of the following courses:</td>
<td>3</td>
<td>CE 431 Pavement Design and Analysis I</td>
</tr>
<tr>
<td>2. One of the following courses:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE 418 Geotechnical Engineering</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CE 831 Advanced Concrete Pavement Analysis and Design</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CE 832 Advanced Asphalt Pavement Analysis and Design</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Structures Track</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Both of the following courses:</td>
<td>3</td>
<td>CE 405 Design of Steel Structures</td>
</tr>
<tr>
<td>2. One of the following courses:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE 406 Design of Concrete Structures</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CE 409 Structural Mechanics</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CE 805 Advanced Design of Steel Structures</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CE 806 Advanced Structural Concrete Design</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Transportation Track</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Both of the following courses:</td>
<td>3</td>
<td>CE 448 Transportation Planning</td>
</tr>
<tr>
<td>2. One of the following courses:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE 449 Highway Design</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CE 452 Highway Design</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Water Resources Track</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Both of the following courses:</td>
<td>3</td>
<td>ENE 421 Engineering Hydrology</td>
</tr>
<tr>
<td>2. One of the following courses:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENE 422 Applied Hydraulics</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>GLG 411 Hydrogeology</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>General Track</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Students may choose a general track in fulfillment of the Track requirement. Students must complete 12 credits from among four different tracks above. Students must also complete 6 additional credits across all tracks which may include course work from Construction Engineering and Management courses below.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction Engineering and Management Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE 471 Construction Engineering-Equipment, Methods and Planning</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CMP 411 Construction Project Scheduling</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CMP 415 Cost Estimating Analysis</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CMP 423 Construction Project Management</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Environment Science</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BS 161 Cell and Molecular Biology</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>BS 162 Organismal and Population Biology</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CE 221 Statics</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CE 271 Introduction to Civil and Environmental Engineering</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CE 321 Introduction to Fluid Mechanics</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CE 495 Senior Design in Civil and Environmental Engineering</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>CEM 161 Chemistry Laboratory I</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CHE 401 Materials and Energy Balances</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ENE 280 Principles of Environmental Engineering and Science</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ENE 421 Engineering Hydrology</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ENE 480 Environmental Measurements Laboratory</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ENE 481 Environmental Chemistry: Equilibrium Concepts</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ENE 483 Water and Wastewater Engineering</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ENE 487 Microbiology for Environmental Science and Engineering</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ENE 489 Air Pollution: Science and Engineering</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>BS 161 Cell and Molecular Biology</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>BS 162 Organismal and Population Biology</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CE 221 Statics</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CE 271 Introduction to Civil and Environmental Engineering</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CE 321 Introduction to Fluid Mechanics</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CE 495 Senior Design in Civil and Environmental Engineering</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>CEM 161 Chemistry Laboratory I</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CHE 401 Materials and Energy Balances</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ENE 280 Principles of Environmental Engineering and Science</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ENE 421 Engineering Hydrology</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ENE 480 Environmental Measurements Laboratory</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ENE 481 Environmental Chemistry: Equilibrium Concepts</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ENE 483 Water and Wastewater Engineering</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ENE 487 Microbiology for Environmental Science and Engineering</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ENE 489 Air Pollution: Science and Engineering</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CEM 161 Chemistry Laboratory I</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CHE 401 Materials and Energy Balances</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ENE 280 Principles of Environmental Engineering and Science</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ENE 421 Engineering Hydrology</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ENE 480 Environmental Measurements Laboratory</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ENE 481 Environmental Chemistry: Equilibrium Concepts</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ENE 483 Water and Wastewater Engineering</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ENE 487 Microbiology for Environmental Science and Engineering</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ENE 489 Air Pollution: Science and Engineering</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>BS 161 Cell and Molecular Biology</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>BS 162 Organismal and Population Biology</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CE 221 Statics</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CE 271 Introduction to Civil and Environmental Engineering</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CE 321 Introduction to Fluid Mechanics</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CE 495 Senior Design in Civil and Environmental Engineering</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>CEM 161 Chemistry Laboratory I</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CHE 401 Materials and Energy Balances</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ENE 280 Principles of Environmental Engineering and Science</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ENE 421 Engineering Hydrology</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ENE 480 Environmental Measurements Laboratory</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ENE 481 Environmental Chemistry: Equilibrium Concepts</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ENE 483 Water and Wastewater Engineering</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ENE 487 Microbiology for Environmental Science and Engineering</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ENE 489 Air Pollution: Science and Engineering</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>BS 161 Cell and Molecular Biology</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>BS 162 Organismal and Population Biology</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CE 221 Statics</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CE 271 Introduction to Civil and Environmental Engineering</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CE 321 Introduction to Fluid Mechanics</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CE 495 Senior Design in Civil and Environmental Engineering</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>CEM 161 Chemistry Laboratory I</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CHE 401 Materials and Energy Balances</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ENE 280 Principles of Environmental Engineering and Science</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ENE 421 Engineering Hydrology</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ENE 480 Environmental Measurements Laboratory</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ENE 481 Environmental Chemistry: Equilibrium Concepts</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ENE 483 Water and Wastewater Engineering</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ENE 487 Microbiology for Environmental Science and Engineering</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ENE 489 Air Pollution: Science and Engineering</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CE 271 Introduction to Civil and Environmental Engineering</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CE 321 Introduction to Fluid Mechanics</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CE 495 Senior Design in Civil and Environmental Engineering</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>CEM 161 Chemistry Laboratory I</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CHE 401 Materials and Energy Balances</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ENE 280 Principles of Environmental Engineering and Science</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ENE 421 Engineering Hydrology</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ENE 480 Environmental Measurements Laboratory</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ENE 481 Environmental Chemistry: Equilibrium Concepts</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ENE 483 Water and Wastewater Engineering</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ENE 487 Microbiology for Environmental Science and Engineering</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ENE 489 Air Pollution: Science and Engineering</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>BS 161 Cell and Molecular Biology</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>BS 162 Organismal and Population Biology</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CE 221 Statics</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CE 271 Introduction to Civil and Environmental Engineering</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CE 321 Introduction to Fluid Mechanics</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CE 495 Senior Design in Civil and Environmental Engineering</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>CEM 161 Chemistry Laboratory I</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CHE 401 Materials and Energy Balances</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ENE 280 Principles of Environmental Engineering and Science</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ENE 421 Engineering Hydrology</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ENE 480 Environmental Measurements Laboratory</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ENE 481 Environmental Chemistry: Equilibrium Concepts</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ENE 483 Water and Wastewater Engineering</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ENE 487 Microbiology for Environmental Science and Engineering</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ENE 489 Air Pollution: Science and Engineering</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Geo-environmental Engineering Track

All of the following courses (18 credits):

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 312 Soil Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>CE 337 Civil Engineering Materials I</td>
<td>4</td>
</tr>
<tr>
<td>CE 418 Geotechnical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CE 485 Landfill Design</td>
<td>3</td>
</tr>
<tr>
<td>ME 222 Mechanics of Deformable Solids</td>
<td>3</td>
</tr>
</tbody>
</table>

Water Resources Track

All of the following courses (13 credits):

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENE 422 Applied Hydraulics</td>
<td>3</td>
</tr>
<tr>
<td>GLG 412 Glacial Geology and the Record of Climate Change</td>
<td>4</td>
</tr>
<tr>
<td>GLG 421 Environmental Geochemistry</td>
<td>3</td>
</tr>
</tbody>
</table>

Major Tracks Complete 12 to 18 credits of electives as specified below.
The Department of Civil and Environmental Engineering offers graduate degree programs that are listed below:

Master of Science Degree in Civil Engineering

The department welcomes applications from Michigan State University Civil Engineering undergraduate students in their junior and senior year. Admission applications must be made during the prior spring semester for an anticipated spring graduation or the prior fall semester for an anticipated fall graduation to allow admission before the final semester as a Civil Engineering undergraduate. Admission to the program requires a minimum undergraduate grade-point average of 3.5 and an approved program of study for the Master of Science degree in Civil Engineering at the time of admission. Admission to the Linked Bachelor’s-Master’s program allows the application of up to 9 credits toward the master’s program for qualifying 400-level and above course work taken at the undergraduate level at Michigan State University or an external accredited institution. The number of approved credits, not to exceed 9, are applied toward the credit requirement of the master’s degree. Credits applied to the Linked Bachelor’s-Master’s program are not eligible to be applied to any other graduate degree program.

Master of Science Degree in Environmental Engineering

The department welcomes applications from Michigan State University Civil Engineering undergraduate students in their junior and senior year who are pursuing an environmental engineering concentration within the Bachelor of Science degree in Civil Engineering. Admission applications must be made during the prior spring semester for an anticipated spring graduation or the prior fall semester for an anticipated fall graduation to allow admission before the final semester as a Civil Engineering undergraduate. Admission to the program requires a minimum undergraduate grade-point average of 3.5 and an approved program of study for the Master of Science degree in Environmental Engineering at the time of admission. Admission to the Linked Bachelor’s-Master’s program allows the application of up to 9 credits toward the master’s program for qualifying 400-level and above course work taken at the undergraduate level at Michigan State University or an external accredited institution. The number of approved credits, not to exceed 9, are applied toward the credit requirement of the master’s degree. Credits applied to the Linked Bachelor’s-Master’s program are not eligible to be applied to any other graduate degree program.

CIVIL ENGINEERING

Students in the master's and doctoral degree programs in civil engineering may pursue advanced study in the areas of structures, fluid mechanics and hydraulics, geotechnical engineering, pavements, and transportation.

Requirements for the Master of Science Degree in Civil Engineering

The student must complete a total of 30 credits for the degree under either Plan A (with thesis) or Plan B (without thesis).

<table>
<thead>
<tr>
<th>Plan A</th>
<th>Plan B</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 credits</td>
<td>8 credits</td>
</tr>
<tr>
<td>8 credits</td>
<td>16 credits</td>
</tr>
</tbody>
</table>

A student under Plan A must complete at least 4, but not more than 8, credits of Civil Engineering 899. Should the student complete more than 8 credits of Civil Engineering 899, no more than 8 credits may be counted toward the requirements for the degree.

A student under Plan B may choose to complete a research project or a design project as part of the 30 credits required for the degree. A student who elects either of these options must complete at least 1, but not more than 3, credits of Civil Engineering 892 or at least 3, but not more than 5, credits of Civil Engineering 893.
Doctor of Philosophy

Admission
All applicants are encouraged to submit their scores from the Graduate Record Examination General Test.

Requirements for the Doctor of Philosophy Degree in Civil Engineering
In addition to meeting the requirements of the university and of the College of Engineering, students must meet the requirements specified by their guidance committees.

ENVIRONMENTAL ENGINEERING
Students in the master's and doctoral degree programs in environmental engineering may pursue advanced study in the areas of biological and chemical treatment of hazardous substances in soils, leachates, industrial wastes, and groundwater; the fate and movement of chemical contaminants in surface water, groundwater, and soils; and environmental chemistry.

Master of Science

The student plans a program of study with the help of his or her academic advisor and subject to the approval of the advisor.

In addition to meeting the requirements of the university and of the College of Engineering, students must meet the requirements specified below.

Admission
Applicants for admission are expected to have a level of competency equivalent to that achieved by earning an undergraduate degree in environmental engineering, or in civil engineering with an environmental engineering specialization. The undergraduate program should have included courses in mathematics through differential equations, chemistry, physics (mechanics), fluid mechanics, computer programming, and the design of water and wastewater treatment processes.

Depending on their undergraduate programs and their specialities within environmental engineering, students who are admitted to the master's degree program with bachelor's degrees in fields related to environmental engineering may be required to complete collateral courses.

All applicants are encouraged to provide their scores from the Graduate Record Examination General Test.

Requirements for the Master of Science Degree in Environmental Engineering
The student must complete a total of 30 credits for the degree under either Plan A (with thesis) or Plan B (without thesis).

A student under Plan A must complete at least 4, but not more than 8, credits of Environmental Engineering 899. Should the student complete more than 8 credits of Environmental Engineering 899, no more than 8 credits may be counted toward the requirements for the degree.

A student under Plan B may choose to complete a research project or a design project as part of the 30 credits required for the degree. A student who elects either of these options must complete at least 1, but not more than 3, credits of Environmental Engineering 892 or at least 3, but not more than 5, credits of Environmental Engineering 893.

Doctor of Philosophy

Admission
All applicants are encouraged to submit their scores from the Graduate Record Examination General Test.

Requirements for the Doctor of Philosophy Degree in Environmental Engineering
In addition to meeting the requirements of the university and of the College of Engineering, students must meet the requirements specified by their guidance committees.

DEPARTMENT of COMPUTER SCIENCE and ENGINEERING

Matt W. Mutka, Chairperson

UNDERGRADUATE PROGRAM

Computer science encompasses the broad areas of information processing and problem solving using digital computers. Students learn to analyze, design, and build integrated software and hardware digital systems that process, transmit, and reason about information in order to solve problems. Computer science graduates are employed in essentially all areas of industry, government, and education. They serve as system analysts involved with problems in business and research, designers and planners of process and production control software systems, computer component and system designers, programmers, and teachers.

The Bachelor of Science program provides both a theoretical foundation in computer science, required for continued success in this rapidly changing field, as well as practical experience with current tools and techniques. To achieve these goals, students take courses that span a spectrum of knowledge ranging from theoretical foundations, which enable rigorous analysis of computational problems and solutions, to applied design and engineering methods. At the upper level, students choose from a wide range of elective courses focusing on computer networks, computer architecture, artificial intelligence, database systems, computer security, software engineering, and computer graphics. The senior year culminates with a team-oriented design course building on much of what one has learned throughout the undergraduate experience. Complementing these major areas, the cognate provides an excellent opportunity to develop an individually selected area of interest.

Students majoring in computer science with interests in other areas have the opportunity to consult and work with interested faculty from a wide range of academic disciplines.

Students who are enrolled in the Bachelor of Science degree program with a major in computer science may elect a Specialization in Game Design and Development. For additional information, refer to the Specialization in Game Design and Development statement in the Department of Telecommunication, Information Studies and Media section of this catalog.
Requirements for the Bachelor of Science Degree in Computer Science

1. The University requirements for bachelor's degrees as described in the Undergraduate Education section of this catalog; 120 credits, including general elective credits, are required for the Bachelor of Science degree in Computer Science.

 The University's Tier II writing requirement for the Computer Science major is met by completing Computer Science and Engineering 498, referenced in item 1 b. below.

 Students who are enrolled in the College of Engineering may complete the alternative track to Integrative Studies in Biological and Physical Sciences that is described in item 1 under the heading Graduation Requirements for All Majors in the College statement.

2. The requirements of the College of Engineering for the Bachelor of Science degree.

 The credits earned in certain courses referenced in requirement 3 below may be counted toward College requirements as appropriate.

3. The following requirements for the major:

 a. Bioscience - Courses may not be used to satisfy both (1) and (2) below.
 (1) One of the following courses:
 BS 110 Organisms and Populations ... 4
 BS 111 Cells and Molecules .. 4
 ENT 205 Pests, Society and Environment 3
 MMB 120 Fundamentals of Microbiology 3
 PLB 105 Plant Biology .. 3
 PSL 250 Introductory Physiology ... 4
 ZOL 100 Introductory Human Genetics 3
 Biological Science 110 satisfies both requirement 3.a.(1) and 3.a.(2).
 (2) One of the following courses:
 BS 110 Organisms and Populations ... 4
 BS 111L Cell and Molecular Biology Laboratory 2
 CEM 161 Chemistry Laboratory I .. 1
 CEM 162 Chemistry Laboratory II .. 1
 PHY 191 Physics Laboratory for Scientists, I 1
 PHY 192 Physics Laboratory for Scientists, II 1
 PLB 106 Plant Biology Laboratory ... 1
 b. All of the following courses: .. 32
 CSE 100 Computer Science as a Profession 4
 CSE 231 Introduction to Programming I 4
 CSE 232 Introduction to Programming II 4
 CSE 260 Discrete Structures in Computer Science 4
 CSE 300 Computer Organization and Architecture 3
 CSE 331 Algorithms and Data Structures 3
 CSE 335 Object-Oriented Software Design 3
 CSE 410 Operating Systems .. 3
 CSE 488 Collaborative Design (W) ... 4
 STT 351 Probability and Statistics for Engineering 3
 c. An additional five courses selected from the following: 15
 CSE 420 Computer Architecture ... 3
 CSE 422 Computer Networks .. 3
 CSE 425 Introduction to Computer Security 3
 CSE 435 Software Engineering .. 3
 CSE 440 Introduction to Artificial Intelligence 3
 CSE 450 Translation of Programming Languages 3
 CSE 452 Organization of Programming Languages 3
 CSE 460 Computation and Formal Language Theory 3
 CSE 471 Media Processing and Multimedia Computing 3
 CSE 472 Computer Graphics .. 3
 CSE 475 Introduction to Computational Linguistics 3
 CSE 480 Database Systems .. 3
 CSE 484 Information Retrieval .. 3
 Students may substitute two of the five courses with mathematics or statistics courses. All substitutions must be preapproved by the student's academic advisor.
 d. Required Cognate: .. 15
 Cognates in the following areas are available to students in Computer Science: business, communication arts and sciences, foreign language, mathematics, the natural sciences, philosophy, psychology, the social sciences, and telecommunications. Students may complete cognates in other areas with the approval of the Department of Computer Science and Engineering academic advisor. The cognate should enhance the student's ability to apply analytical procedures in a specific subject area.
 The cognate requires a minimum of four courses totaling 15 or more credits outside the College of Engineering selected from (1) or (2) below. The academic advisor of the Department of Computer Science and Engineering must pre approve both the cognate and the cognate courses.
 (1) At least 6 of the 15 credits must be in courses at the 300-400 level. The cognate in The Eli Broad College of Business requires a specific set of courses: ACC 230, EC 210, FI 320, GBL 323, and MKT 327.
 (2) A sequence of at least four courses in a foreign language.

MINOR IN COMPUTER SCIENCE

The Minor in Computer Science and Engineering is administered by the Department of Computer Science and Engineering. This minor will provide students with a basic foundation in computer science that is applicable to many disciplines. This will also provide opportunities for students in industry or government, as well as prepare students for graduate-level study in computer science.

The minor is available as an elective to students who are enrolled in bachelor's degree programs at Michigan State University other than the Bachelor of Science Degree in Computer Science or the Bachelor of Science Degree in Computer Engineering.

With the approval of the department and college that administers the student's degree program, the courses that are used to satisfy the minor may also be used to satisfy the requirements for the bachelor's degree. At least 12 unique credits counted towards the requirements for a student's minor must not be used to fulfill the requirements for that student's major.

Students who plan to complete the requirements for the minor must apply to the Department of Computer Science and Engineering. The minimum criteria for acceptance is the completion of Computer Science and Engineering 231 and 260 with a combined grade-point average in those two courses of 3.0. Enrollment may be limited. Application forms are available at www.cse.msu.edu.

Requirements for the Minor in Computer Science

Complete 18 credits in the Department of Computer Science and Engineering from the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSE 231 Introduction to Programming I</td>
<td>4</td>
</tr>
<tr>
<td>CSE 232 Introduction to Programming II</td>
<td>4</td>
</tr>
<tr>
<td>CSE 260 Discrete Structures</td>
<td>4</td>
</tr>
<tr>
<td>CSE 320 Computer Organization and Architecture</td>
<td>3</td>
</tr>
<tr>
<td>CSE 331 Algorithms and Data Structures</td>
<td>3</td>
</tr>
<tr>
<td>CSE 335 Object-Oriented Software Design</td>
<td>3</td>
</tr>
<tr>
<td>CSE 410 Operating Systems</td>
<td>3</td>
</tr>
<tr>
<td>CSE 420 Computer Architecture</td>
<td>3</td>
</tr>
<tr>
<td>CSE 422 Computer Networks</td>
<td>3</td>
</tr>
<tr>
<td>CSE 425 Introduction to Computer Security</td>
<td>3</td>
</tr>
<tr>
<td>CSE 435 Software Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CSE 440 Introduction to Artificial Intelligence</td>
<td>3</td>
</tr>
<tr>
<td>CSE 450 Translation of Programming Languages</td>
<td>3</td>
</tr>
<tr>
<td>CSE 452 Organization of Programming Languages</td>
<td>3</td>
</tr>
<tr>
<td>CSE 460 Computation and Formal Language Theory</td>
<td>3</td>
</tr>
<tr>
<td>CSE 471 Media Processing and Multimedia Computing</td>
<td>3</td>
</tr>
<tr>
<td>CSE 472 Computer Graphics</td>
<td>3</td>
</tr>
<tr>
<td>CSE 475 Introduction to Computational Linguistics</td>
<td>3</td>
</tr>
<tr>
<td>CSE 480 Database Systems</td>
<td>3</td>
</tr>
<tr>
<td>CSE 484 Information Retrieval</td>
<td>3</td>
</tr>
</tbody>
</table>

TEACHER CERTIFICATION OPTION

A computer science disciplinary minor is available for teacher certification.

Students who elect the computer science disciplinary minor must contact the Department of Computer Science and Engineering.

For additional information, refer to the statement on TEACHER CERTIFICATION in the Department of Teacher Education section of this catalog.
LINKED BACHELOR’S-MASTER’S DEGREE IN COMPUTER SCIENCE

Bachelor of Science Degree in Computer Engineering
Master of Science Degree in Computer Science
The department welcomes applications from Michigan State University Computer Engineering undergraduate students in their junior and senior year. Admission applications must be made during the prior spring semester for an anticipated spring graduation or the prior fall semester for an anticipated fall graduation to allow admission before the final semester as a Computer Engineering undergraduate. Admission to the program requires a minimum undergraduate grade-point average of 3.5 and an approved program of study for the Master of Science degree in Computer Science at the time of admission. Admission to the Linked Bachelor’s-Master’s program allows the application of up to 9 credits toward the master’s program for qualifying 400-level and above course work taken at the undergraduate level at Michigan State University or an external accredited institution. The number of approved credits, not to exceed 9, are applied toward the credit requirement of the master’s degree. Credits applied to the Linked Bachelor’s-Master’s program are not eligible to be applied to any other graduate degree program.

LINKED BACHELOR’S-MASTER’S DEGREE IN COMPUTER SCIENCE

Bachelor of Science Degree in Computer Science
Master of Science Degree in Computer Science
The department welcomes applications from Michigan State University Computer Science undergraduate students in their junior and senior year. Admission applications must be made during the prior spring semester for an anticipated spring graduation or the prior fall semester for an anticipated fall graduation to allow admission before the final semester as a Computer Science undergraduate. Admission to the program requires a minimum undergraduate grade-point average of 3.5 and an approved program of study for the Master of Science degree in Computer Science at the time of admission. Admission to the Linked Bachelor’s-Master’s program allows the application of up to 9 credits toward the master’s program for qualifying 400-level and above course work taken at the undergraduate level at Michigan State University or an external accredited institution. The number of approved credits, not to exceed 9, are applied toward the credit requirement of the master’s degree. Credits applied to the Linked Bachelor’s-Master’s program are not eligible to be applied to any other graduate degree program.

GRADUATE STUDY

The Department of Computer Science and Engineering offers programs leading to the Master of Science and Doctor of Philosophy degrees. Advanced study is available in a variety of computer science research areas such as algorithms, computer security, databases, data mining, machine learning, natural language processing, networking, pattern recognition and image processing, and software engineering, as well as many interdisciplinary research areas such as bioinformatics, cognitive science, and digital evolution.

Students who are enrolled in master’s or doctoral degree programs in the Department of Computer Science and Engineering may elect an Interdepartmental Specialization in Cognitive Science. For additional information, refer to the statement on Interdepartmental Graduate Specializations in Cognitive Science in the College of Social Science section of this catalog. For additional information, contact the Department of Computer Science and Engineering.

Master of Science

In addition to meeting the requirements of the university and of the College of Engineering, students must meet the requirements specified below.

Requirements for the Master of Science Degree in Computer Science

The student must complete a total of 30 credits for the degree under either Plan A (with thesis) or Plan B (without thesis) and meet the requirements specified below:

Requirements for Both Plan A and Plan B:

1. At least one semester of a graduate seminar.

Additional Requirements for Plan A:

The student must complete:

1. At least one course from each of the following groups of courses:
 a. Computer Science and Engineering 802, 803, 841. Computer Science and Engineering 845 and 846 combined may be substituted for one of those courses.
 b. Computer Science and Engineering 807, 808, 814, 880.
 d. Computer Science and Engineering 830, 835, 860, 862.
2. At least 6, but not more than 8, credits of CSE 899 Master’s Thesis Research.

Additional Requirements for Plan B:

The student must complete one of the following two options:

1. A minimum of 30 credits in courses approved by the student’s academic advisor.
2. Complete the following:
 a. At least one course from each of the following groups of courses:
 (1) Computer Science and Engineering 802, 803, 841. Computer Science and Engineering 845 and 846 combined may be substituted for one of those courses.
 (2) Computer Science and Engineering 807, 808, 814, 880.
 (3) Computer Science and Engineering 812, 820, 822, 838.
 (4) Computer Science and Engineering 830, 835, 860, 862.
 b. A supervised project while enrolled in 4 credits of Computer Science and Engineering 898.
Requirements for the Doctor of Philosophy Degree in Computer Science

In addition to meeting the requirements of the university and of the College of Engineering, students must meet the requirements specified below.

Requirements for the Bachelor of Science Degree in Computer Engineering

1. The University requirements for bachelor's degrees as described in the Undergraduate Education section of this catalog; 128 credits, including general elective credits, are required for the Bachelor of Science degree in Computer Engineering.

 The University's Tier II writing requirement for the Computer Engineering major is met by completing Electrical and Computer Engineering 480. That course is referenced in item 3. b. below.

 Students who are enrolled in the College of Engineering may complete the alternative track to Integrative Studies in Biological and Physical Sciences that is described in item 1. under the heading Graduation Requirements for All Majors in the College statement. Certain courses referenced in requirement 3. below may be used to satisfy the alternative track.

2. The requirements of the College of Engineering for the Bachelor of Science degree.

 The credits earned in certain courses referenced in requirement 3. below may be counted toward College requirements as appropriate.

3. The following requirements for the major:

 a. One of the following courses: .. 1
 CEM 161 Chemistry Laboratory I 1
 PHY 191 Physics Laboratory for Scientists, I 1

 b. All of the following courses: .. 56
 CSE 231 Introduction to Programming I 4
 CSE 232 Introduction to Programming II 4
 CSE 260 Discrete Structures in Computer Science 4
 CSE 331 Algorithms and Data Structures 3
 CSE 410 Operating Systems ... 3
 ECE 201 Circuits and Systems I 3
 ECE 202 Circuits and Systems II 3
 ECE 203 Electric Circuits and Systems Laboratory 1
 ECE 230 Digital Logic Fundamentals 3
 ECE 280 Electrical Engineering Analysis 3
 ECE 302 Electronic Circuits ... 1
 ECE 303 Electronics Laboratory 1
 ECE 331 Microprocessors and Digital Systems 4
 ECE 390 Ethics, Professionalism and Contemporary Issues 1
 ECE 480 Senior Design .. 4

 c. Electives
 Complete 24 credits of electives as specified below. At least 18
 credits must be from core and focus track electives combined. Ad-
 ditional credits to meet the 24 credit requirement may be taken
 from other courses listed below, any 400-level Computer Science
 and Engineering (CSE) or Electrical and Computer Engineering
 (ECE) courses, or by completing an approved 3 or 4 credit experi-
 ential, out-of-classroom education experience obtained through
 engineering cooperative education or independent study.

 Core
 At least 6 credits from the following:
 CSE 420 Computer Architecture 3
 CSE 422 Computer Networks .. 3
 ECE 410 VLSI Design .. 4

 Focus Track
 At least 12 credits from the following:
 Hardware
 ECE 402 Applications of Analog Integrated Circuits 4
 ECE 411 Electronic Design Automation 4
 ECE 412 Introduction to Mixed-Signal Circuit Design 4
 Software
 CSE 335 Object-oriented Software Design 3
 CSE 450 Translation of Programming Languages 3
 CSE 471 Media Processing and Multimedia Computing 3
 ECE 366 Introduction to Signal Processing 3
 Recommended Electives
 ECE 305 Electromagnetic Fields and Waves I 4
 ECE 313 Control Systems ... 3
 ECE 404 Radio Frequency Electronic Circuits 4
 ECE 415 Computer Aided Manufacturing 3
 ECE 416 Digital Control ... 3
 ECE 457 Communication Systems 3
 ECE 458 Communication Systems Laboratory 1
 ECE 466 Digital Signal Processing and Filter Design 3
 ECE 474 Principles of Electronics Devices 3

DEPARTMENT of ELECTRICAL and COMPUTER ENGINEERING

Timothy Grotjohn, Chairperson

UNDERGRADUATE PROGRAMS

COMPUTER ENGINEERING

Computer engineering is concerned with the organization and design of computers and computer systems. The study of computer hardware and software, and their integration and application, is emphasized. The undergraduate program in computer engineering integrates studies in mathematics, basic sciences, engineering sciences, and engineering design. The program is structured to establish analytical and design skills in areas such as computer architecture, digital logic design, analog and mixed-signal circuits, computer communication networks, digital computer control, integrated circuit engineering, software engineering, operating systems, data structures and algorithms, computer-aided engineering, and electronic design automation. Complementing these fundamentals, the program also provides opportunities for specialization in individually selected areas of interest.

The Bachelor of Science Degree program in Computer Engineering is accredited by the Engineering Accreditation Commission of ABET, 111 Market Place, Suite 1050, Baltimore, MD 21202-4012; telephone 1-410-347-7700.

ELECTRICAL AND COMPUTER ENGINEERING

The Bachelor of Science degree in Electrical and Computer Engineering is offered only at the MSU Dubai instructional site. The program is designed to provide students with an opportunity to study electrical engineering and computer engineering including exploration of both hardware and software.
Requirements for the Bachelor of Science Degree in Electrical and Computer Engineering

1. The University requirements for bachelor's degrees as described in the Undergraduate Education section of this catalog, 128 credits, including general elective credits, are required for the Bachelor of Science degree in Electrical and Computer Engineering. The University's Tier II writing requirement for the Electrical and Computer Engineering major is met by completing Electrical and Computer Engineering 480. That course is referenced in item 3. b. below.

Students who are enrolled in the College of Engineering may complete the alternative track to Integrative Studies in Biological and Physical Sciences that is described in item 1. under the heading Graduation Requirements for All Majors in the College statement. Certain courses referenced in requirement 3. below may be used to satisfy the alternative track.

2. The requirements of the College for the Engineering major is met by completing Electrical and Computer Engineering 480. That course is referenced in item 3. b. below.

The credits earned in certain courses referenced in requirement 3. below may be counted toward College requirements as appropriate.

3. The following requirements for the major:

<table>
<thead>
<tr>
<th>CREDITS</th>
<th>REQUIREMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a. One of the following courses:</td>
</tr>
<tr>
<td>4</td>
<td>b. All of the following courses:</td>
</tr>
<tr>
<td>43</td>
<td>c. Complete a minimum of 21 credits from the following courses. Specific courses offered at the Dubai instructional site can be expected to be a subset of this list during an individual student’s degree pursuit.</td>
</tr>
<tr>
<td>1</td>
<td>(1) At least one of the following laboratory courses:</td>
</tr>
<tr>
<td>4</td>
<td>ECE 402 Applications of Analog Integrated Circuits</td>
</tr>
<tr>
<td>4</td>
<td>ECE 404 Radio Frequency Electronic Circuits</td>
</tr>
<tr>
<td>4</td>
<td>ECE 410 VLSI Design</td>
</tr>
<tr>
<td>4</td>
<td>ECE 411 Electronic Design Automation</td>
</tr>
<tr>
<td>3</td>
<td>ECE 412 Introduction to Mixed-Signal Integrated Circuits</td>
</tr>
<tr>
<td>3</td>
<td>ECE 416 Digital Control</td>
</tr>
<tr>
<td>1</td>
<td>ECE 458 Communication Systems Laboratory</td>
</tr>
<tr>
<td>3</td>
<td>(2) At least one of the following courses:</td>
</tr>
<tr>
<td>3</td>
<td>CSE 335 Object-oriented Software Design</td>
</tr>
<tr>
<td>3</td>
<td>CSE 410 Operating Systems</td>
</tr>
<tr>
<td>3</td>
<td>CSE 420 Computer Architecture</td>
</tr>
<tr>
<td>3</td>
<td>CSE 450 Translation of Programmed Languages</td>
</tr>
<tr>
<td>3</td>
<td>CSE 471 Media Processing and Multimedia Computing</td>
</tr>
<tr>
<td>3</td>
<td>(3) At least one of the following courses:</td>
</tr>
<tr>
<td>4</td>
<td>ECE 320 Energy Conversion and Power Electronics</td>
</tr>
<tr>
<td>3</td>
<td>ECE 423 Power System Analysis</td>
</tr>
<tr>
<td>3</td>
<td>ECE 442 Introduction to Communication Networks</td>
</tr>
<tr>
<td>3</td>
<td>ECE 457 Communication Systems</td>
</tr>
<tr>
<td>3</td>
<td>ECE 466 Digital Signal Processing and Filter Design</td>
</tr>
<tr>
<td>3</td>
<td>ECE 474 Principles of Electronic Devices</td>
</tr>
</tbody>
</table>

Students may use registered 'out of classroom' experiences to substitute for credits in this requirement. Students who complete a total of three experiences documented by pre-approved Engineering 393 or Electrical and Computer Engineering 490 or 499 credits, may reduce this requirement to 18 credits. All substitutions must be approved by the student's academic advisor.

ELECTRICAL ENGINEERING

The program provides both required and elective studies in communications, computers, control systems, electromagnetics, electronics, materials processing, power, signals, solid state, and biomedical engineering. It places emphasis on the fundamentals of science and mathematics and their application to the solution of contemporary problems that are within the purview of professional electrical engineers. The program is designed to establish a sound scientific basis for continuous growth in professional competence.

The Bachelor of Science Degree program in Electrical Engineering is accredited by the Engineering Accreditation Commission of ABET, 111 Market Place, Suite 1050, Baltimore, MD 21202-4012; telephone 1-410-347-7700.

Requirements for the Bachelor of Science Degree in Electrical Engineering

1. The University requirements for bachelor's degrees as described in the Undergraduate Education section of this catalog, 128 credits, including general elective credits, are required for the Bachelor of Science degree in Electrical Engineering. The University’s Tier II writing requirement for the Electrical Engineering major is met by completing Electrical and Computer Engineering 480. That course is referenced in item 3. b. below.

Students who are enrolled in the College of Engineering may complete the alternative track to Integrative Studies in Biological and Physical Sciences that is described in item 1. under the heading Graduation Requirements for All Majors in the College statement. Certain courses referenced in requirement 3. below may be used to satisfy the alternative track.

2. The requirements of the College for the Engineering major is met by completing Electrical and Computer Engineering 480. That course is referenced in item 3. b. below.

The credits earned in certain courses referenced in requirement 3. below may be counted toward College requirements as appropriate.

3. The following requirements for the major:

<table>
<thead>
<tr>
<th>CREDITS</th>
<th>REQUIREMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a. One of the following courses:</td>
</tr>
<tr>
<td>42</td>
<td>b. All of the following courses:</td>
</tr>
<tr>
<td>3</td>
<td>c. One of the following courses:</td>
</tr>
<tr>
<td>3</td>
<td>d. A minimum of six courses totaling a minimum of 18 credits, of 3 or 4 credits each, selected from at least four different areas. A laboratory course must be included. Students may substitute, for one of the six required courses, a 3 or 4 credit experiential education experience obtained in a minimum of three out-of-classroom experiences through engineering cooperative education or independent study. Students interested in the experiential education experience must contact the department for approval.</td>
</tr>
</tbody>
</table>

Electromagnetics

| 4 | ECE 405 Electromagnetic Fields and Waves II |
| 4 | ECE 407 Electromagnetic Compatibility |

Power

| 4 | ECE 420 Machines and Power Laboratory |
| 3 | ECE 423 Power System Analysis |

Communications/Signal Processing

3	ECE 442 Introduction to Communication Networks
3	ECE 457 Communication Systems
3	ECE 458 Communication Systems Laboratory
3	ECE 466 Digital Signal Processing and Filter Design

Control/Robotics

| 3 | ECE 415 Computer Aided Manufacturing |
| 3 | ECE 416 Digital Control |

Biomedical Engineering

| 3 | ECE 445 Biomedical Instrumentation |
| 3 | ECE 446 Biomedical Signal Processing |

Electrical and Computer Engineering

| 3 | ECE 447 Introduction to Biomedical Imaging |
| 3 | ECE 448 Modeling and Analysis of Bioelectrical Systems |
Biomedical Engineering Concentration

The department offers a concentration for students who plan to pursue graduate work in biomedical areas or seek employment in selected medical-related areas. The concentration is available to, but not required of, any student enrolled in the Bachelor of Science degree in Electrical Engineering. Courses completed to satisfy requirement 3. above may also be used to satisfy the requirements of the concentration. The concentration will be noted on the student’s transcript.

Biomedical Engineering

To earn a Bachelor of Science degree in Electrical Engineering with a biomedical engineering concentration, students must complete requirements 1., 2., and 3. above and the following:

CREDITS

1. Complete 6 credits from the following courses:
 - ANTR 350 Human Gross Anatomy and Structural Biology ... 3
 - BS 111 Cells and Molecules ... 3
 - PSL 250 Introductory Physiology ... 3
 - PSL 431 Human Physiology I ... 3
 - PSL 432 Human Physiology II .. 3

2. Complete 6 credits from the following courses:
 - ECE 445 Biomedical Instrumentation .. 3
 - ECE 446 Biomedical Signal Processing .. 3
 - ECE 447 Introduction to Biomedical Imaging ... 3
 - ECE 448 Modeling and Analysis of Bioelectrical Systems 3

3. Complete 3 credits from the following courses:
 - ME 494 Biofluid Mechanics and Heat Transfer .. 3
 - ME 495 Tissue Mechanics ... 3
 - MSE 425 Biomedical and Biocompatibility ... 3

A 400-level list above or other approved Electrical and Computer Engineering (ECE) courses with biomedical engineering content as approved by the student’s advisor. The course used to fulfill this requirement may not be used to fulfill concentration requirement 1. or 2.

LINKED BACHELOR’S-MASTER’S DEGREE IN COMPUTER SCIENCE

Bachelor of Science Degree in Computer Engineering

Master of Science Degree in Computer Science

The department welcomes applications from Michigan State University Electrical Engineering undergraduate students in their junior and senior year. Admission applications must be made during the prior spring semester for an anticipated spring graduation or the prior fall semester for an anticipated fall graduation to allow admission before the final semester as a Computer Engineering undergraduate. Admission to the program requires a minimum undergraduate grade-point average of 3.5 and an approved program of study for the Master of Science degree in Electrical Engineering at the time of admission. Admission to the Linked Bachelor’s-Master’s program allows the application of up to 9 credits toward the master’s program for qualifying 400-level and above course work taken at the undergraduate level at Michigan State University or an external accredited institution. The number of approved credits, not to exceed 9, are applied toward the credit requirement of the master’s degree. Credits applied to the Linked Bachelor’s-Master’s program are not eligible to be applied to any other graduate degree program.

GRADUATE STUDY

The Department of Electrical and Computer Engineering offers programs leading to the Master of Science and Doctor of Philosophy degrees. Graduate study in the department is organized into three groups: computer engineering including computer architecture, computer networks, and VLSI/microelectronics; electrosiences including electromagnetics and electronic materials and devices; and systems including control and robotics, biomedical engineering, power, and signal processing and communications. An interdisciplinary approach marks many of the research projects that faculty share with graduate students.

Master of Science

In addition to meeting the requirements of the university and of the College of Engineering, students must meet the requirements specified below.

Admission

Applicants for admission should possess a Bachelor of Science degree in electrical engineering or a related field such as physics, mathematics, or computer science, and should have a grade–point average that would indicate success in graduate study.
Students who are admitted without a Bachelor of Science degree in electrical engineering may be required to complete collateral courses.

International applicants are required to submit Graduate Record Examination General Test scores.

Requirements for the Master of Science Degree in Electrical Engineering

The student must complete a total of 30 credits under either Plan A (with thesis) or Plan B (without thesis) and meet the requirements specified below:

CREDITS

1. Core Courses. Complete a minimum of four Electrical and Computer Engineering courses at the 800 or 900-level totaling at least 12 credits. Two of the courses must be selected from the following:
 - ECE 813: Advanced VLSI Design
 - ECE 820: Advanced Computer Architecture
 - ECE 821: Advanced Power Electronics and Applications
 - ECE 826: Linear Control Systems
 - ECE 835: Advanced Electromagnetic Fields and Waves I
 - ECE 863: Analysis of Stochastic Systems
 - ECE 874: Physical Electronics

2. Supporting Courses. At least 6 credits in approved courses in areas such as mathematics, statistics, or physics.

3. Seminar Requirement. First-year graduate students are required to attend seven seminars from the graduate seminar series.

Doctor of Philosophy

Admission

International applicants are required to submit Graduate Record Examination General Test scores.

Requirements for the Doctor of Philosophy Degree in Electrical Engineering

In addition to meeting the requirements of the university and of the College of Engineering, students must meet the requirements specified by their guidance committees.

1. The doctoral program must include a minimum of 36 credits, in addition to 24 credits of Electrical and Computer Engineering 999.

2. No 800-900 level independent study credits taken beyond the bachelor's degree may be counted towards the doctoral degree.

3. A minimum of 3 credits must be taken outside of the College of Engineering in disciplinary areas such as mathematics, statistics, or physics.

4. All courses that are used to satisfy the requirements for the degree must have been completed under the numerical grading system.

5. Students may request up to 3 credits of master's thesis research be applied towards this requirement.

6. First year graduate students are required to attend seven seminars from the graduate seminar series.

DEPARTMENT of MECHANICAL ENGINEERING

Alejandro R. Diaz, Chairperson

UNDERGRADUATE PROGRAMS

Mechanical engineering is essential to our health, happiness and safety. Mechanical engineers use their knowledge to collaborate with others in providing energy, transportation, and manufacturing infrastructure for our society. They are creative problem-solvers who seek to design devices and processes that are better, faster, more efficient and cheaper. The programs in mechanical engineering and engineering mechanics at Michigan State University provide an education which is an appropriate foundation for a career in a wide range of industries including: aerospace, automotive, biomedical, electronics, energy, and petrochemical as well as consulting.

MECHANICAL ENGINEERING

Mechanical engineers apply the fundamental principles of motion (mechanics) and energy (thermosciences) to serve the needs of people through the creative problem-solving process known as engineering design. These principles are represented in the subjects of solid and fluid mechanics, thermodynamics, heat transfer, mechanical systems, and material science. Practicing mechanical engineers work in many application areas, which include such industries as automotive, chemical, energy, consumer product, aerospace, computer and electronic, and biomedical.

The undergraduate mechanical engineering program prepares its graduates for the mechanical engineering profession through a foundation of engineering fundamentals; the development of analytical, computational, and experimental capabilities to recognize, model, and solve engineering problems; and the application of the engineering design method. Communication and teaming skills are integrated throughout the program.

For students who desire an international experience as part of their education, the department sponsors various programs such as "Mechanical Engineering in Aachen, Germany." During the spring semester, a small group of juniors and seniors pursue their normal studies abroad at the Technical University of Aachen where they have outstanding opportunities to participate in advanced research, explore industrial activities, and experience European culture and lifestyle.

The Bachelor of Science Degree program in Mechanical Engineering is accredited by the Engineering Accreditation Commission of ABET, 111 Market Place, Suite 1050, Baltimore, MD 21202-4012; telephone 1-410-347-7700.
Requirements for the Bachelor of Science Degree in Mechanical Engineering

1. The University requirements for bachelor's degrees as described in the Undergraduate Education section of this catalog; 128 credits, including general elective credits, are required for the Bachelor of Science degree in Mechanical Engineering. The University's Tier II writing requirement for the Mechanical Engineering major is met by completing Mechanical Engineering 332, 412, 451, 461, and 481. Those courses are referenced in item 3.b. (1) below.

 Students who are enrolled in the College of Engineering may choose the alternative track to the major in Biological and Physical Sciences that is described in item 1, under the heading Graduation Requirements for All Majors in the College statement. Certain courses referenced in requirement 3.b. below may be used to satisfy the alternative track.

2. The requirements of the College of Engineering for the Bachelor of Science degree.

 The credits earned in certain courses referenced in requirement 3.b. below may be counted toward College requirements as appropriate.

3. The following requirements for the major: CREDITS

 a. All of the following courses outside the Department of Mechanical Engineering: .. 13
 CE 221 Statics 3
 CEM 161 Chemistry Laboratory I 1
 ECE 345 Electronic Instrumentation and Systems 3
 MSE 250 Materials Science and Engineering 3
 STT 351 Probability and Statistics for Engineering . 3

 b. All of the following courses in the Department of Mechanical Engineering: .. 42
 ME 180 Engineering Graphic Communications 3
 ME 222 Mechanics of Deformable Solids 4
 ME 361 Dynamics 3
 ME 201 Thermodynamics 3
 ME 332 Fluid Mechanics 4
 ME 336 Mechanical Design I 3
 ME 391 Mechanical Engineering Analysis 3
 ME 410 Heat Transfer 3
 ME 412 Heat Transfer Laboratory 2
 ME 451 Control Systems 4
 ME 461 Mechanical Vibrations 4
 ME 471 Mechanical Design II 3
 ME 481 Mechanical Engineering Design Projects 3

 c. Senior Electives (a minimum of 9 credits):
 ME 416 Computer Aided Design of Thermal Systems . 3
 ME 417 Design of Alternative Energy Systems 3
 ME 422 Introduction to Combustion 3
 ME 423 Intermediate Mechanics of Deformable Solids . 3
 ME 425 Experimental Mechanics 3
 ME 426 Introduction to Composite Materials 3
 ME 432 Intermediate Fluid Mechanics 3
 ME 440 Aerospace Engineering Fundamentals 3
 ME 442 Turbomachinery 3
 ME 444 Automotive Engines 3
 ME 445 Automotive Powertrain Design 3
 ME 456 Mechatronic System Design 3
 ME 457 Mechatronic System Modeling and Simulation . 3
 ME 464 Intermediate Dynamics 3
 ME 465 Computer Aided Optimal Design 3
 ME 475 Computer Aided Design of Structures 3
 ME 477 Manufacturing Processes 3
 ME 478 Product Development 3
 ME 496 International Networked Teams for Engineering Design .. 3
 ME 490 Independent Study in Mechanical Engineering ... 1 to 3
 ME 491 Selected Topics in Mechanical Engineering 1 to 4
 ME 494 Biofluid Mechanics and Heat Transfer 3
 ME 495 Tissue Mechanics 3
 ME 496 Hemodynamics 3
 ME 497 Biomechanical Design 3

 d. Design-intensive Senior Electives (a minimum of 3 credits):
 ME 416 Computer Aided Design of Thermal Systems ... 3
 ME 417 Design of Alternative Energy Systems 3
 ME 442 Turbomachinery 3
 ME 445 Automotive Powertrain Design 3
 ME 457 Mechatronic System Design 3
 ME 465 Computer Aided Optimal Design 3
 ME 475 Computer Aided Design of Structures 3

Concentration in Biomechanical Engineering

A concentration in Biomechanical Engineering is available to, but not required of, any student enrolled in the Bachelor of Science degree in Mechanical Engineering. Completing the Bachelor of Science degree in Mechanical Engineering with a concentration in biomechanical engineering may require more than 128 credits. The concentration will be noted on the student's transcript.

Biomechanical Engineering

To earn a Bachelor of Science degree in Mechanical Engineering with a biomechanical engineering concentration, students must complete requirements 1., 2., 3.a., 3.b., and 3.d. above and the following:

 Credits of the following courses: .. 7
 BS 111 Cells and Molecules 3
 PSL 250 Introductory Physiology 4
 Nine credits from the following courses: 9
 ME 494 Biofluid Mechanics and Heat Transfer 3
 ME 495 Tissue Mechanics 3
 ME 496 Hemodynamics ... 3
 ME 490 Independent Study in Mechanical Engineering ... 1 to 4
 ME 491 Selected Topics in Mechanical Engineering 1 to 4
 MSE 425 Biomaterials and Biocompatibility 3

Concentration in Engineering Mechanics

A concentration in Engineering Mechanics is available to, but not required of, any student enrolled in the Bachelor of Science degree in Mechanical Engineering. Completing the Bachelor of Science degree in Mechanical Engineering with a concentration in engineering mechanics may require more than 128 credits. The concentration will be noted on the student's transcript.

Engineering Mechanics

To earn a Bachelor of Science degree in Mechanical Engineering with an engineering mechanics concentration, students must complete requirements 1., 2., and 3.a., and 3.b. above and the following:

 Credits of the following courses: .. 12
 ME 423 Intermediate Mechanics of Deformable Solids 3
 ME 425 Experimental Mechanics 3
 ME 464 Computer Aided Dynamics 3
 ME 475 Computer Aided Design of Structures 3

Concentration in Manufacturing Engineering

A concentration in Manufacturing Engineering is available to, but not required of, any student enrolled in the Bachelor of Science degree in Mechanical Engineering. Completing the Bachelor of Science degree in Mechanical Engineering with a concentration in manufacturing engineering may require more than 128 credits. The concentration will be noted on the student's transcript.

Manufacturing Engineering

To earn a Bachelor of Science degree in Mechanical Engineering with a manufacturing engineering concentration, students must complete requirements 1., 2., 3.a., 3.b., and 3.d. above and the following:

 Credits of the following courses: .. 10
 EC 210 Economics Principles Using Calculus 3
 ME 372 Machine Tool Laboratory 1
 ME 477 Manufacturing Processes 3
 ME 478 Product Development 3
 One of the following courses: 3
 CHE 472 Composite Materials Processing 3
 ECE 415 Computer Aided Manufacturing 3
 MSE 426 Introduction to Composite Materials 3

Concentration in Global Engineering

A concentration in Global Engineering is available to, but not required of, any student enrolled in the Bachelor of Science degree in Mechanical Engineering. Completing the Bachelor of Science degree in Mechanical Engineering with a concentration in global engineering may require more than 128 credits. The concentration will be noted on the student's transcript.
Global Engineering
To earn a Bachelor of Science degree in Mechanical Engineering with a global engineering concentration, students must complete requirements 1., 2., 3.a., and 3.b. above and 12 credits of approved mechanical engineering courses from a MSU co-sponsored Study Abroad institution. At least 3 credits must include a team design project.

LINKED BACHELOR’S-MASTER’S DEGREE IN ENGINEERING MECHANICS

Bachelor of Science Degree in Mechanical Engineering with a concentration in Engineering Mechanics
Master of Science Degree in Engineering Mechanics
The department welcomes applications from Michigan State University Mechanical Engineering undergraduate students in their junior and senior year, who are pursuing an engineering mechanics concentration within the Bachelor of Science degree in Mechanical Engineering. Admission applications must be made during the prior spring semester for an anticipated spring graduation or the prior fall semester for an anticipated fall graduation to allow admission before the final semester as a Mechanical Engineering undergraduate. Admission to the program requires a minimum undergraduate grade-point average of 3.5 and an approved program of study for the Master of Science degree in Engineering Mechanics at the time of admission. Admission to the Linked Bachelor’s-Master’s program allows the application of up to 9 credits toward the master’s program for qualifying 400-level and above course work taken at the undergraduate level at Michigan State University or an external accredited institution. The number of approved credits, not to exceed 9, are applied toward the credit requirement of the master’s degree. Credits applied to the Linked Bachelor’s-Master’s program are not eligible to be applied to any other graduate degree program.

LINKED BACHELOR’S-MASTER’S DEGREE IN MECHANICAL ENGINEERING

Bachelor of Science Degree in Mechanical Engineering
Master of Science Degree in Mechanical Engineering
The department welcomes applications from Michigan State University Mechanical Engineering undergraduate students in their junior and senior year. Admission applications must be made during the prior spring semester for an anticipated spring graduation or the prior fall semester for an anticipated fall graduation to allow admission before the final semester as a Mechanical Engineering undergraduate. Admission to the program requires a minimum undergraduate grade-point average of 3.5 and an approved program of study for the Master of Science degree in Mechanical Engineering at the time of admission. Admission to the Linked Bachelor’s-Master’s program allows the application of up to 9 credits toward the master’s program for qualifying 400-level and above course work taken at the undergraduate level at Michigan State University or an external accredited institution. The number of approved credits, not to exceed 9, are applied toward the credit requirement of the master’s degree. Credits applied to the Linked Bachelor’s-Master’s program are not eligible to be applied to any other graduate degree program.

GRADUATE STUDY
The Department of Mechanical Engineering offers programs leading to Master of Science and Doctor of Philosophy degrees, both in mechanical engineering and in engineering mechanics. Individual programs can be designed from a wide range of courses to suit the background, capabilities and aims of the student. Studies in the department may be supplemented by courses offered by other departments in the College of Engineering and in other colleges. Courses and research opportunities are available in the following areas: fluid mechanics, combustion, heat transfer, thermodynamics, bioengineering, internal combustion engines, turbomachinery, computational fluid dynamics, system dynamics, controls, vibrations, nonlinear dynamics, mechatronics, manufacturing, computational design, computational solid mechanics, mechanics and processing of composite materials, elasticity, nonlinear elasticity, plasticity, experimental mechanics, and micromechanics.

ENGINEERING MECHANICS

Master of Science
In addition to meeting the requirements of the university and of the College of Engineering, students must meet the requirements specified below.

Admission
The department welcomes applications from students who possess a bachelor's degree in a related engineering or science discipline.
Students who are admitted to the master's program with a degree in a discipline other than engineering mechanics and who have not completed Mechanical Engineering 221, 222, 361, and 423 or equivalent courses may be admitted with provisional status. Such students will be required to demonstrate proficiency in the material in the courses referenced above, either by completing each of those courses with a grade of at least 3.0 or by passing an examination on the material in those courses sanctioned by the department Graduate Studies Committee. Of the courses referenced above, only Mechanical Engineering 423 may be counted toward the requirements for the master's degree.

Requirements for the Master of Science Degree in Engineering Mechanics
The student must complete a total of 30 credits for the degree under either Plan A (with thesis) or Plan B (without thesis) and must meet the requirements specified below:

Requirements for Both Plan A and Plan B:
1. The following core courses in engineering mechanics: Mechanical Engineering 825 or 861, 820, and 821.
2. At least one of the following core courses in mechanical engineering: Materials Science and Engineering 851, 855, 862, or 865.
3. At least one credit of Materials Science and Engineering 885.
4. At least one course in mathematics or statistics at the 400-level or above approved by the student's academic advisor.

Doctor of Philosophy
In addition to meeting the requirements of the university and of the College of Engineering, students must meet the requirements specified below.

Admission
An applicant for admission must identify at least one prospective faculty advisor that he or she would like to direct his or her pro-
gram of study. Admission to the Ph.D program is contingent on a faculty advisor accepting the student as an advisee.

Requirements for the Doctor of Philosophy Degree in Engineering Mechanics
The student must complete:
1. At least one of the following core courses in materials science and engineering: Materials Science and Engineering 851, 855, 862, or 865.
2. At least one course in mathematics or statistics at the 400-level or above.
 These requirements are waived for those students who completed equivalent courses prior to enrolling in the doctoral program.

MECHANICAL ENGINEERING

Master of Science
In addition to meeting the requirements of the university and of the College of Engineering, students must meet the requirements specified below.

Admission
An applicant should possess a bachelor's degree in mechanical engineering or a related field.
 The applicant must submit scores from the Graduate Record Examination General Test.

Requirements for the Master of Science Degree in Mechanical Engineering
The student must complete a total of 30 credits for the degree under either Plan A (with thesis) or Plan B (without thesis) and meet the requirements specified below:

Requirements for Both Plan A and Plan B:
The student must:
1. Complete at least one course in three of the following four areas:
 b. Fluid Mechanics: Mechanical Engineering 830
2. Complete at least 6 additional credits in Mechanical Engineering courses at the 800-900 level, not including Mechanical Engineering 898 or 899.

Additional Requirements for Plan A:
The student must:
1. Complete at least 20 credits in courses at the 800–900 level including at least 6, but not more than 8, credits in Mechanical Engineering 899.
2. Submit a brief thesis proposal for approval by the student's academic advisor early in the student's program of study.

Additional Requirements for Plan B:
The student must complete at least 22 credits in courses at the 800–900 level.

Doctor of Philosophy
In addition to meeting the requirements of the university and of the College of Engineering, students must meet the requirements specified below.

Admission
The applicant must submit scores from the Graduate Record Examination General Test.

Requirements for the Doctor of Philosophy Degree in Mechanical Engineering
In addition to meeting the requirements of the university and the College of Engineering, students must meet the requirements specified by their guidance committees.