We have entered a new and exciting era of scientific understanding that has taken concepts like genetic engineering, nanoscience and biotechnology out of the realm of science fiction and into everyday life. New applications of science will continue to have profound effects. Thus, graduates with training in any of the biological, mathematical, or physical sciences offered in the College of Natural Science are finding new employment opportunities with industries on the cutting edge of high technology, as well as in teaching, communications, professional and environmental fields, and many other areas.

The mission of the College of Natural Science closely parallels the mission of the University as defined by the Boldness by Design imperatives: a commitment to research, education, and service. The College of Natural Science is one of the largest colleges within the University, overseeing academic programs in the departments of Biochemistry and Molecular Biology, Chemistry, Food Science and Human Nutrition, Geological Sciences, Mathematics, Microbiology and Molecular Genetics, Physics and Astronomy, Physiology, Plant Biology, Statistics and Probability, and Zoology. It also administers the Biomedical Laboratory Diagnostics Program; the Division of Science and Mathematics Education; and the W. K. Kellogg Biological Station, a world-class biological research center. All departments within the College offer both undergraduate and graduate students experience conducting research in laboratories. Students in the College of Natural Science have access to a range of research and laboratory facilities on campus, in addition to unique research opportunities in facilities like the MSU/DOE Plant Research Laboratory, the National Superconducting Cyclotron Laboratory, and the W. K. Kellogg Biological Station. A special on-site research and science teaching program for both undergraduate and graduate students is offered at the Station during the summer session. Graduate students may also choose to enter one of the college's interdisciplinary research programs in Genetics; Cell and Molecular Biology; Neuroscience; or Ecology, Evolutionary Biology and Behavior.

Promoting science literacy—opening up the world of science to our youth—is the key to comprehending the total impact of new scientific developments in our lives. Already our environment is threatened by such things as insecticides, food additives, and toxic wastes. Our future leaders must have an appreciation of the sciences in order to make informed decisions regarding the preservation of our environment. To that end, the College of Natural Science offers credit courses in communities throughout Michigan in cooperation with University Outreach and Engagement programs.

UNDERGRADUATE PROGRAMS

Undergraduate students in the College of Natural Science may opt for either a Bachelor of Science or a Bachelor of Arts degree program.

The college offers programs of study culminating in a bachelor's degree with either a departmental or an interdepartmental major. All programs are liberal in character and involve a specified minimum of nonscience credits in addition to those needed to meet integrative studies requirements. Electives in both major and nonmajor areas make it possible to mold a program of interest and challenge for each student.

The departmental major features study in a single discipline and is generally considered the proper choice for concentrated study in a limited area. A departmental major consists of not fewer than 27 nor more than 79 credits in courses recognized by the college as applicable to the major. Specific major requirements

College of NATURAL SCIENCE

R. James Kirkpatrick, Jr., DEAN
are given in the sections that follow. Departmental majors are available through Lyman Briggs College as coordinate majors.

The interdepartmental major features study in several disciplines with no single discipline being dominant and is generally considered the proper choice if breadth of background in several fields of the natural sciences is desired. The college offers interdepartmental majors: biological science—interdepartmental, earth science—interdepartmental, human biology, and physical science. In addition, the College of Education, in cooperation with the College of Natural Science, offers an integrated science teaching major for students accepted in elementary education. For further information, refer to the section on MSU SUBJECT MATTER TEACHING MAJORS AND MINORS FOR TEACHER PREPARATION AND CERTIFICATION in the Department of Teacher Education section of the catalog. The interdepartmental major consists of a minimum of 45 credits (biological science) or 36 credits (earth science) and 50 credits (physical science) and not more than 67 credits in courses recognized by the college as applicable toward the major. Interdepartmental majors are available through Lyman Briggs College as coordinate majors. Interdisciplinary majors are also available through Lyman Briggs College.

Major Preference Students

Students who meet the general requirements for admission to the university shown in the Undergraduate Education section of this catalog and who are not enrolled in Lyman Briggs College are enrolled in the Undergraduate University Division but may declare a major preference in the College of Natural Science and be assigned an academic advisor in this college. All programs in the biological sciences, physical sciences, and mathematics presume a minimum of two and one-half entrance units in mathematics (one and one-half units of algebra and one unit of geometry).

Admission as a Junior to the College of Natural Science

1. Completion of at least 56 credits acceptable to the college with an academic record which at least meets the requirements of Academic Standing of Undergraduate Students.
2. Acceptance as a major in one of the academic programs of the college.

Graduation Requirements

1. The University requirements for bachelor's degrees as described in the Undergraduate Education section of this catalog.

Students who are enrolled in majors leading to Bachelor of Science and Bachelor of Arts degrees in the College of Natural Science may complete an alternative track to Integrative Studies in Biological and Physical Sciences that consists of:

a. One course in Biological Science, Entomology, Microbiology, Physiology, Plant Biology, or Zoology.

b. Chemistry 141 or 151 or 181H.

c. Two credits of laboratory experience in biological or physical science.

Credits earned in courses in the alternative track may also be counted toward college and major requirements for Bachelor of Science and Bachelor of Arts degrees.

2. The requirements of the College of Natural Science for the Bachelor of Science and Bachelor of Arts degrees that are listed below:

a. The requirements for either a departmental major or an interdepartmental major of 27 to 79 credits. For specific requirements, see the sections that follow.

b. A minimum grade-point average of 2.00 in courses in the student's major; i.e., in all courses that are required for the major and that are not counted toward college and University requirements.

c. The following credit distribution requirements:

 (1) A minimum of 30 credits in courses numbered 300 and above.

 (2) A maximum of 67 credits in courses offered in a single curriculum division of the college; i.e., Biological Science or Mathematical Science or Physical Science.

d. Only credits in courses graded on the numerical or Pass–No Grade system may be counted toward college and major requirements for Bachelor of Science and Bachelor of Arts degrees in the College of Natural Science. College of Natural Science students may not enroll in courses that are to be counted toward college and major requirements, including courses in other colleges, on a Credit–No Credit basis.

3. The requirements of the College of Natural Science for either the Bachelor of Science degree or the Bachelor of Arts degree that are listed below:

a. Requirements for the Bachelor of Science degree:

 (1) One semester of calculus.

 (2) A second semester of calculus or one semester of statistics and probability.

 (3) Two semesters of chemistry including at least one laboratory experience.

 (4) Two semesters of physics.

 (5) One semester of biological science.

b. Requirements for the Bachelor of Arts degree:

 (1) One semester of calculus.

 (2) A second semester of calculus or one semester of statistics and probability.

 (3) One semester each of biological science, chemistry, and physics including at least one laboratory experience.

 (4) Six credits in courses in the arts and humanities or the social, behavioral, and economic sciences beyond the credits that are counted toward the University's Integrative Studies requirement.

Many major programs which lead to a Bachelor of Science degree require a proficiency greater than the college established minimum in one, or more, of the following fields: chemistry, physics, and mathematics. Also, for either the Bachelor of Arts or the Bachelor of Science degree, when two or more options exist for the fulfillment of any college—established requirement, one of the options may be specified as a major requirement. The specific requirements for each major program are given in the sections that follow.

Chemistry and mathematics requirements should be completed to the fullest extent possible during the freshman and sophomore years. Bachelor of Science candidates with a major in a physical science should complete the physics requirement during the sophomore year. Students with a major in a biological science may postpone completion of the physics requirement until the junior year, but should complete Biological Science 110, 111 by the end of the sophomore year. The biology courses should be completed during the freshman year because they are prerequisites to most of the courses offered by the departments in the biological sciences. All students should complete the University's Tier I writing requirement during the freshman year.
Honors Study

The College of Natural Science encourages honors students to develop distinctive undergraduate programs in their chosen fields. All qualified students in the college may also be members of the Honors College. A member of the faculty is selected to serve as advisor to Honors College students in each major field, and it is the advisor's responsibility to help the student plan a rigorous and balanced program which will also reflect the student's special interests and competencies.

The departments of the college annually offer numerous honors opportunities at both introductory and advanced levels. At the introductory level these consist chiefly of regularly offered honors courses. Honors options are also available in many other courses. At the advanced level honors students are encouraged to undertake faculty-guided independent research in their fields of specialization. These honors experiences are provided mainly, but not exclusively, for Honors College students. In addition, honors undergraduates are encouraged, when appropriate, to undertake work at the graduate level.

Charles Drew Science Scholars

The Charles Drew Science Scholars program was created to help students currently underrepresented in the sciences achieve the best possible preparation for pursuing their educational goals in science and mathematics. The program is designed to: a) assist students with the transition from high school to college and b) to expose them to the vast number of career opportunities in the sciences.

These goals are attained, in part, through problem-solving courses, specially designed courses in mathematics, and designated sections of biology and chemistry courses. In addition, tutoring is available and students are exposed to both successful undergraduate and graduate role models.

The purpose of this program is, through advising and focused academic support, to help interested and motivated students develop the foundation for successful careers in science. Students are encouraged to contact the College of Natural Science for additional information about this program.

Preprofessional Programs

All professional colleges have established minimum requirements in selected areas of knowledge for admission (hereafter referred to as admission requirements). Although fulfilling these requirements does not in itself guarantee admission, their fulfillment is a necessary first step for those who aspire to enter a professional college.

At Michigan State University students may select programs of study which help to prepare them for enrollment in professional colleges. Since the admission requirements of various professional colleges vary, it is not feasible to establish a single program that satisfies the admission requirements of all colleges in a given profession. However, in the fields of dentistry, allopathic and osteopathic medicine, podiatry, and optometry, the College of Natural Science does have suggested programs of study. These programs satisfy the minimum admission requirements of most professional colleges. It is the student's responsibility to determine whether or not the proposed program meets the minimum admission requirements of a particular professional college.

There are a number of programs of study which may be completed in the normal four years and which provide both the academic preparation for admission to a professional school and fulfill the requirements for a bachelor's degree. The preprofessional programs as outlined do not in themselves lead to a bachelor's degree.

PREMEDICAL PROGRAM:

Students who meet the requirements for admission to the university as freshmen and sophomores, as shown in the Undergraduate Education section of this catalog, may select the premedical program in the College of Natural Science as their major preference. Students who are enrolled in the premedical program are enrolled in the Undergraduate University Division, but receive academic advising through the college.

University regulations require that a student who has arrived at junior standing must select a major leading to a baccalaureate degree. The College of Natural Science does not offer a bachelor's degree program for premedical students. Therefore, upon reaching junior standing, students who have been enrolled in the premedical program must be admitted to a major in either the College of Natural Science or in another college in order to complete the requirements for a bachelor's degree, regardless of whether they have completed the requirements for the premedical program.

Requirements for the Premedical Program

1. A total of 60 credits in courses in the natural sciences, mathematics, social sciences, humanities, and writing, including courses that are used to satisfy the University requirements and the courses that are listed below: ... 60
 a. All of the following courses (30 credits):
 BS 110 Organisms and Populations ... 4
 BS 111 Cells and Molecules .. 3
 BS 111L Cell and Molecular Biology Laboratory 2
 CEM 141 General Chemistry .. 4
 CEM 161 Chemistry Laboratory I .. 1
 CEM 251 Organic Chemistry I .. 3
 CEM 252 Organic Chemistry II ... 3
 CEM 255 Organic Chemistry Laboratory 2
 PHY 231 Introductory Physics I .. 3
 PHY 232 Introductory Physics II .. 3
 PHY 251 Introductory Physics Laboratory I 1
 PHY 252 Introductory Physics Laboratory II 1
 Some dental colleges do not require Chemistry 252.
 b. 3 additional credits in general chemistry selected from the following courses: Chemistry 142, 152, and 162.
 c. 3 credits in a biological science course in addition to Biological Science 110, 111, and 111L.

2. Students who are enrolled in the premedical program should complete the University requirements for bachelor's degrees as described in the Undergraduate Education section of this catalog.

Students who are enrolled in the Preclinical Program in the College of Natural Science may complete an alternative track to integrative studies in Biological and Physical Sciences that consists of the following courses: Biological Science 110, 111, and 111L and Chemistry 141. The completion of Biological Science 110 and 111L satisfies the laboratory requirement. Biological Science 110, 111, and 111L and Chemistry 141 may be counted toward both the alternative track and the requirements for the preclinical program referenced in item 1. a. above.

A Tier I writing course is included in the University requirements. Students who are enrolled in the premedical program are required to meet the Tier II writing requirement approved for the student's major leading to the bachelor's degree.

PREMEDICAL PROGRAM
(including Pre–Osteopathy, Pre–Podiatry, Pre–Pharmacy, and Pre–Physician's Assistant):

Students who meet the requirements for admission to the university as freshmen and sophomores, as shown in the Undergraduate Education section of the catalog, may select the premedical program in the College of Natural Science as their major preference. Students who are enrolled in the premedical program are enrolled in the Undergraduate University Division, but receive academic advising through the college.

University regulations require that a student who has arrived at junior standing must select a major leading to a baccalaureate degree. The College of Natural Science does not offer a bachelor's degree program for premedical students. Therefore, upon reaching junior standing, students who have been enrolled in the premedical program must be admitted to a major in either the College of Natural Science or in another college in order to complete
the requirements for a bachelor's degree, regardless of whether they have completed the requirements for the premedical program.

Requirements for the Premedical Program

(incorporating Pre-Osteopathy, Pre-Podiatry, Pre-Pharmacy, and Pre-Physician's Assistant)

1. A total of 90 credits in courses in the natural sciences, mathematics, social sciences, humanities, and writing, including courses that are used to satisfy the University requirements and the courses that are listed below: ... 90

a. All of the following courses (30 credits):
 - BS 110 Organisms and Populations 4
 - BS 111 Cells and Molecules 3
 - BS 111L Cell and Molecular Biology Laboratory .. 2
 - CEM 141 General Chemistry 4
 - CEM 161 Chemistry Laboratory I 1
 - CEM 251 Organic Chemistry I 3
 - CEM 252 Organic Chemistry II 3
 - CEM 255 Organic Chemistry Laboratory 2
 - PHY 231 Introductory Physics I 3
 - PHY 232 Introductory Physics II 3
 - PHY 252 Introductory Physics Laboratory I 1

b. 3 additional credits in general chemistry selected from the following courses: Chemistry 142, 152, and 162.

c. One 300–400 level course in biology with laboratory (3 credits) and another course in biology (3 credits).

d. One additional course in biology, chemistry, or physics (3 credits).

2. Students who are enrolled in the premedical program should complete the University requirements for bachelor's degrees as described in the Undergraduate Education section of this catalog.

3. Students who are enrolled in the Premedical Program (including Pre-Osteopathy, Pre-Podiatry, Pre-Pharmacy, and Pre-Physician's Assistant) in the College of Natural Science may complete an alternative track to Integrative Studies in Biological and Physical Sciences that consists of the following courses: Biological Science 110, 111, and 111L and Chemistry 141. The completion of Biological Science 110 and 111L satisfies the laboratory requirement. Biological Science 110, 111, and 111L and Chemistry 141 may be counted toward both the alternative track and the requirements for the premedical program referenced in item 1. a. above.

A Tier I writing course is included in the University requirements. Students who are enrolled in the premedical program are required to meet the Tier II writing requirement approved for the student's major leading to the bachelor's degree.

TEACHER CERTIFICATION OPTIONS

The following disciplinary majors leading to bachelor's degrees in the College of Natural Science are available for teacher certification: biological science–interdepartmental, chemistry, earth science–interdepartmental, mathematics, physical science–interdepartmental, and physics.

The following disciplinary minors in the College of Natural Science are also available for teacher certification: biological science, chemistry, earth science, mathematics, and physics.

Students interested in elementary teacher certification in science should reference the section on MSU SUBJECT MATTER TEACHING MAJORS AND MINORS FOR TEACHER PREPARATION AND CERTIFICATION in the Department of Teacher Education section of this catalog.

Students who elect the biological science–interdepartmental or the physical science–interdepartmental disciplinary major, or the biological science disciplinary minor, must contact the Division of Science Education of the College of Natural Science.

Students who elect a chemistry disciplinary major or the chemistry disciplinary minor must contact the Department of Chemistry.

Students who elect the earth science–interdepartmental disciplinary major or the earth science disciplinary minor must contact the Department of Geological Sciences.

Students who elect a mathematics disciplinary major or the mathematics disciplinary minor must contact the Department of Mathematics.

Students who elect a physics disciplinary major or the physics disciplinary minor must contact the Department of Physics and Astronomy.

For additional information, refer to the statements on the disciplinary majors referenced above and to the statement on TEACHER CERTIFICATION in the Department of Teacher Education section of this catalog.

College of Natural Science Dual Degree Program: Bachelor of Science and Master of Science

The dual degree program provides an opportunity for academically talented undergraduate students who are enrolled in Bachelor of Science degree programs in the College of Natural Science to enroll in graduate courses and conduct research toward the Master of Science degree while completing the last two years of their bachelor's degree programs.

All of the Bachelor of Science and Master of Science degree programs in the College of Natural Science are available for inclusion in the dual degree program. Although most of the Bachelor of Science and Master of Science degree programs are administered by departments and schools within the college, a few such programs are administered by the college. During the second semester of the sophomore year, the student should contact the unit or units that administer the Bachelor of Science and Master of Science degree programs that the student plans to pursue while enrolled in the dual degree program and apply for admission to those programs.

A student who is accepted into the dual degree program can be admitted to both the Bachelor of Science degree program and the Master of Science degree program as early as the beginning of the junior year. Upon completion of the requirements for both the
Bachelor of Science degree and the Master of Science degree, both degrees are awarded simultaneously. The Master of Science degree will not be awarded until the student has completed the requirements for the Bachelor of Science degree.

To be admitted to the dual degree program, an applicant must:
1. Have a grade-point average of 3.00 or higher in all undergraduate course work.
2. Have a grade-point average of 3.00 or higher in all courses in the College of Natural Science.
3. Be accepted for admission by the graduate admissions committee of the college or department or school.

Departments and schools may specify additional requirements for admission to the dual degree program. The student should contact the appropriate department or school for additional information.

Within the first semester of enrollment in the dual degree program, the student's master's advisor must be identified and the student's master's guidance committee must be established. The advisor and the committee assist the student in developing a program of study for the Master of Science degree.

The student's program of study must be approved by the committee.

A student who is admitted to the dual degree program must:
1. Satisfy all of the requirements for the Bachelor of Science degree program to which the student was admitted.
 Although a minimum of 120 credits is required for the Bachelor of Science degree, more than 120 credits may be required for a given degree program.
2. Satisfy all of the requirements for the Master of Science degree program to which the student was admitted after being admitted to that program.
 Although a minimum of 30 credits is required for the Master of Science degree, more than 30 credits may be required for a given degree program.
 The credits and courses that are used to satisfy the requirements for the Bachelor of Science degree may not be used to satisfy the requirements for the Master of Science degree.

Departments and schools may specify additional requirements for the dual degree program. The student should contact the appropriate department or school for additional information.

GRADUATE STUDY

The graduate programs of the College of Natural Science provide for advanced study with emphasis either in a single discipline or in the multidisciplinary areas of the biological sciences and the physical sciences. The graduate programs are designed to develop independent effort, encourage creative thinking, and educate the student in the fundamentals of basic research.

The programs of study lead to one of the following degrees: Master of Arts, Master of Science, Master of Arts for Teachers, and Doctor of Philosophy. The specific degrees available and the programs leading to them for each discipline are given in the departmental or program listing.

Each student's program of study is arranged to suit individual needs, the only restriction being that the final program must conform to one of the general patterns approved by the faculty. The general university requirements for these degrees are given in the Graduate Education section of this catalog. A department or college may specify additional requirements. Most of the departments in the college require participation in teaching during the course of the graduate program.

Students who are enrolled in doctoral degree programs in departments and programs emphasizing environmental science and policy may elect the Graduate Specialization in Environmental Science and Policy. For additional information, refer to the Graduate Specialization in Environmental Science and Policy statement in the College of Social Science section of this catalog.

Students who are enrolled in master's and doctoral degree programs in the College of Agriculture and Natural Resources, the College of Natural Science, and the College of Veterinary Medicine may elect the Graduate Specialization in Fish and Wildlife Disease Ecology and Conservation Medicine. For additional information, refer to the statement on Graduate Specialization in Fish and Wildlife Disease Ecology and Conservation Medicine in the College of Agriculture and Natural Resources section of this catalog.

Students who are enrolled in Master of Science degree programs in the departments of Entomology, Microbiology and Molecular Genetics, and Plant Pathology may elect a Specialization in Food Safety. For additional information, refer to the statement on the specialization in the College of Veterinary Medicine section of this catalog.

Master of Arts for Teachers

The Master of Arts for Teachers degree is designed to provide an enriching educational experience for teachers who are interested in a program of graduate study with less specialization in a science area than is common in most master's degree programs. The degree is for teachers who wish to take graduate work in a subject–matter area but who do not anticipate continuation of graduate study beyond the master's level. However, the student who holds the Master of Arts for Teachers degree may, upon the satisfactory completion of additional work as recommended by the appropriate academic unit, become eligible for admission to a doctoral program.

The degree may be earned with a major in chemistry, general science, geological sciences, or mathematics.

In addition to meeting the requirements of the university as described in the Graduate Education section of this catalog, students must meet the requirements specified below.

Admission

An applicant for admission to the Master of Arts for Teachers program must be a senior in or a graduate of an institution having substantially the same requirements for the bachelor's degree as Michigan State University, and possess, or be a candidate for, a teacher's certificate. Admission is recommended by the director of the program in which admission is sought, with approval of the Dean of the College of Natural Science.

Requirements for the Master of Arts for Teachers Degree

An appropriate course of study is planned with the candidate by an advisor from the academic unit in the College of Natural Science to which the candidate has been admitted. The minimum number of credits required for the degree is 30, in addition to any credits which must be taken to complete requirements for provisional teacher certification. A comprehensive written or oral examination may be required. A thesis is usually not required, but should one be required, a maximum of 10 semester credits may be allotted for it. The student must complete the requirements for provisional teacher certification before the degree may be granted.
Admission to provisional status may be used to indicate incomplete records, incomplete interpretation of available records, a grade–point average below 3.00 but with other evidence of good capacity, or minor deficiencies in subject matter. Students may be transferred from one classification to another at any time by the dean, normally upon the recommendation of the department.

The college as a whole does not require an entrance examination. However, all departments expect students to provide Graduate Record Examination General Test scores.

Requirements for the Master of Science or Master of Arts Degree
For Plan A, a maximum of 15 credits of master's thesis research may be permitted.

Academic Standards
The minimum standard is a 3.00 grade–point average. Standards may be set higher than the minimum by the academic unit responsible for the degree program. The accumulation of grades below 3.0 in more than three courses of 3 or more credits each, or deferreds in more than three courses of 3 or more credits each at any given time, or a combination of the above in excess of four courses may remove the student from candidacy for the degree. A student who fails to meet the academic standards for any program may, on recommendation of the director, be required by the dean to withdraw at the end of the semester.

Residence
The minimum residence requirement is 8 credits on campus. Some programs may require more.

Time Limit
The time limit for completion of the master's degree is six years from the beginning of the first semester in which credit was earned toward the degree.

Doctor of Philosophy
The Doctor of Philosophy degree is awarded for an original contribution to scientific knowledge and high attainment of scholarship in the mathematical or natural sciences. This degree, with its emphasis on research in the frontiers of science, is the traditional terminal degree in the College of Natural Science.

In addition to meeting the requirements of the university as described in the Graduate Education section of this catalog, students must meet the requirements specified below.

Admission
Admission may be granted to a student who has a record of high scholastic attainment and demonstrated research potential acceptable to the department or program and to the college. A master's degree in an appropriate subject–matter field may be required, but the completion of a master's degree is not a guarantee of admission. Most programs require the applicant to submit Graduate Record Examination General Test scores; many also require the Graduate Record Examination Subject Test in the area of specialization.

Admission to provisional status may be used to indicate incomplete records, incomplete interpretation of available records, a grade–point average below 3.00 but with additional evidence of good capacity, or minor deficiencies in subject matter.

Students may be transferred from one classification to another at any time by the dean, normally upon the recommendation of the department.

Academic Standards
The minimum standard is a 3.00 grade–point average. Standards may be set higher than the minimum by the academic unit responsible for the degree program. The accumulation of grades below 3.0 in more than three courses of 3 or more credits each, or deferreds in more than three courses of 3 or more credits each at any given time, or a combination of the above in excess of four courses automatically removes the student from candidacy for the degree. A student who fails to meet the academic standards for any program may, on recommendation of the director, be required by the dean to withdraw at the end of any semester.

Residence
In some programs a student may be permitted to enter the doctoral program without taking a master's degree. In such cases 30 semester credits of approved work are considered the equivalent of the master's degree, and the minimum residence requirement for the combined program is three semesters, involving at least 4 credits of graduate work each semester.

2022-2023 Catalog
MATHEMATICS EDUCATION

The Master of Science and Doctor of Philosophy degrees in Mathematics Education are administered jointly by the College of Natural Science and the College of Education. The College of Natural Science is the primary administrative unit.

Master of Science

The Master of Science Degree in Mathematics Education is designed for persons who show promise of becoming researchers and leaders in state, national, and international mathematics education communities. The program prepares researchers and leaders to address critical questions about mathematics education. Students will have opportunities to develop analytical perspectives on current issues in mathematics education.

Admission

Students who may be interested in this program include the following: (1) graduates of undergraduate mathematics or mathematics education programs who are interested in research-based academic careers; (2) K-12 teachers who intend to return to the classroom with strong, research-oriented knowledge and experience in mathematics education; (3) graduates of undergraduate mathematics or mathematics education programs who are interested in the application of knowledge to curriculum or policy development, curriculum development, policy, assessment, etc., not necessarily with a focus on research; and (4) graduates of master’s or doctoral programs in mathematics who wish to become mathematics education faculty in a college or university mathematics or education department.

Students will have opportunities to acquire an understanding and experience in various aspects of the mathematics education field including investigation of mathematical learning and teaching, the development of instructional materials, participation in policy formation and analysis, development and use of assessment, and integration of technology into mathematics learning and teaching.

In addition to meeting the requirements of the university, students must meet the requirements specified below.

Admission

The program admits students with a variety of backgrounds. Some students will have equally strong backgrounds in education and mathematics. Others may have more extensive prior preparation in one of these two disciplines. Candidates should have the equivalent of an undergraduate major in mathematics or satisfactory completion of course work in mathematics appropriate to the applicant’s program of study and approved by an Admissions Committee of the Mathematics Education Faculty Group, with the expectation of completing additional mathematics study if necessary. In such cases, the guidance committee will help design programs that include appropriate course work in mathematics. Applicants with deficiencies in academic preparation may be admitted provisionally. These collateral courses will not count toward the degree. In addition, K-12 teaching experience is strongly encouraged, but not required. The Graduate Record Examination (GRE) General Test is required of all applicants.

Students will be admitted to the program by an Admissions Committee composed of members of the Mathematics Education Faculty Group, with the provision that a minimum of two faculty members must state that they are willing to serve as the student’s academic advisor. All admitted students will be assigned an academic advisor.

Candidates will apply directly to the Mathematics Education Graduate Program, and must have three letters of recommendation sent to the Director of the Mathematics Education Graduate Program.

Requirements for the Master of Science Degree in Mathematics Education

The student must complete a minimum of 35 credits for the degree under Plan A (with thesis). The student’s program of study must be approved by the student’s academic advisor and must include:

1. Both of the following courses: ... 6
 SME 926 Proseminar in Mathematics Education I 3
 SME 927 Proseminar in Mathematics Education II 3
2. Two of the following courses: ... 6
 CEP 913 Psychology and Pedagogy of Mathematics 3
 SME 903 Topics in Mathematics Education Research 3
 SME 997 Special Topics in Mathematics Education 3
 TE 950 Mathematical Ways of Knowing ... 3
3. One of the following courses: ... 3
 MTH 801 Current Issues in Mathematics Education 3
 MTH 802A Critical Content of School Mathematics: Algebra and Analysis 3
 MTH 802B Critical Content of School Mathematics: Geometry and Discrete Mathematics ... 3
4. One of the following courses: ... 2 or 3
 SME 879 Teaching College Mathematics ... 3
 TE 994 Laboratory and Field Experience in Curriculum, Teaching and Educational Policy ... 2
5. The following course: ... 3
 SME 954 Design and Methods in Mathematics Education Research 3
6. One of the following courses: ... 3 or 4
 CEP 931 Qualitative Methods in Educational Research ... 4
 CEP 932 Quantitative Methods in Educational Research I 3
 CEP 933 Quantitative Methods in Educational Research II 3
 CEP 934 Data Analysis I .. 4
 CEP 935 Advanced Topics in Multivariate Data Analysis II 3
 STT 430 Introduction to Probability and Statistics ... 3
 STT 441 Probability and Statistics I: Probability ... 3
 STT 442 Probability and Statistics II: Statistics ... 3
 STT 801 Design of Experiments ... 3
 STT 825 Sample Surveys ... 3
 STT 842 Categorical Data Analysis ... 3
 STT 843 Multivariate Analysis ... 3
 STT 861 Theory of Probability and Statistics I ... 3
 STT 862 Theory of Probability and Statistics II ... 3
7. One 3-credit course in general education foundations, policy, or learning development, selected from a list of approved courses available from the student’s academic advisor.
8. Nine credits in the Department of Mathematics at a level appropriate to the student’s program of study and career goals at the 400-level or above, excluding Mathematics 424, 443, 801, 802A, and 802B.
9. At least 4 credits of SME 899 Master’s Thesis Research and completion of a research thesis prior to taking the program’s comprehensive examination. The student must successfully pass the comprehensive examination, which includes an oral defense of the research thesis and a written component administered by program faculty.

Doctor of Philosophy

The Doctor of Philosophy degree in Mathematics Education is designed for persons who show promise of becoming leaders in local, state, national, and international mathematics education communities. The program prepares researchers and leaders to address critical issues in mathematics education by developing analytical perspectives for research, engaging in reflective teaching, and deepening mathematical knowledge.

Students who may be interested in the program include the following: (1) graduates of undergraduate mathematics or mathematics education programs with interests in research and academic careers; and (2) K-12 teachers, intending to return to the classroom or to leadership in schools and districts, who desire strong, research-oriented knowledge and experience in mathematics education.

Students will have opportunities to acquire an understanding and experience in various aspects of the mathematics education field including investigation of mathematical learning and teaching, the development of instructional materials, participation in policy formation and analysis, development and use of assessment, and integration of technology into mathematics learning and teaching.

Doctor of Philosophy
courses in mathematics that, together with the student’s prior course work and teaching experiences, are appropriate for the student’s career plans.

In addition to meeting the requirements of the university and of the College of Natural Science, students must meet the requirements specified below.

Admission
The program admits students with a variety of backgrounds. Some students will have equally strong backgrounds in education and mathematics. Others may have more extensive prior preparation in one of these two disciplines. Candidates should have the equivalent of an undergraduate major in mathematics or satisfactory completion of courses in mathematics appropriate to the applicant’s program of study and approved by the Admissions Committee, with the expectation of completing additional mathematics study if necessary. In such cases, the guidance committee will help the candidate to design a program that includes appropriate course work in mathematics. Applicants with deficiencies in academic preparation may be admitted provisionally. These collateral courses will not count toward the degree. In addition, K-12 teaching experience is strongly encouraged, but not required. The Graduate Record Examination (GRE) General Test is required of all applicants.

Admissions decisions will be made by an Admissions Committee composed of members of the Mathematics Education Faculty Group. A student who shows promise for success at doctoral study but who needs additional background to be eligible for admission to the Ph.D. program will be provided with specific conditions to be met before admission. Upon successful completion of these requirements, the student may re-apply.

Requirements for the Doctor of Philosophy Degree in Mathematics Education
The student must complete the requirements listed below. The student’s program of study must be approved by the student’s academic advisor and must include:

1. Both of the following courses (6 credits):
 SME 926 Proseminar in Mathematics Education I 3
 SME 927 Proseminar in Mathematics Education II 3
2. Two of the following courses (6 credits):
 CEP 913 Psychology and Pedagogy of Mathematics 3
 SME 903 Topics in Mathematics Education Research 3
 SME 997 Special Topics in Mathematics Education 3
 TE 950 Mathematical Ways of Knowing 3
3. One of the following courses (3 credits):
 MTH 801 Current Issues in Mathematics Education 3
 MTH 802A Critical Content of School Mathematics: Geometry and Analysis ... 3
 MTH 802B Critical Content of School Mathematics: Geometry and Discrete Mathematics 3
4. One of the following courses (2 or 3 credits):
 SME 879 Teaching College Mathematics 3
 TE 994 Laboratory and Field Experience in Curriculum, Teaching and Educational Policy 2
5. The following course (3 credits):
 SME 954 Design and Methods in Mathematics Education Research ... 3
6. Two of the following courses (6 or 7 credits):
 CEP 931 Qualitative Methods in Educational Research 3
 CEP 932 Quantitative Methods in Educational Research I 3
 CEP 933 Quantitative Methods in Educational Research II 3
 EAD 955B Field Research Methods in Educational Administration 3
 STT 801 Design of Experiments ... 3
 STT 825 Sample Surveys .. 3
 STT 842 Categorical Data Analysis .. 3
 STT 843 Multivariate Analysis .. 3
7. One 3-credit course in general education foundations, policy, teacher education, or learning and development, selected from a list of approved courses available from the student’s guidance committee.
8. Twelve credits in the Department of Mathematics at a level appropriate to the student’s program of study and career goals at the 400-level or above, excluding Mathematics 424, 443, 801, 802A, and 802B.
9. Nine credits in a cognate selected in consultation with the guidance committee. The cognate must be at least three courses appropriate to the student’s program of study.

10. Successful completion of comprehensive written examinations administered by program faculty.
11. Twenty-four credits of Science and Mathematics Education 999 Doctoral Dissertation Research.

CENTER for INTEGRATIVE STUDIES in GENERAL SCIENCE

Michael D. Gottfried, Director

Integrative Studies is Michigan State University’s unique approach to liberal general education, offering a core curriculum that complements specialized work by students in their majors. Integrative Studies courses integrate multiple ways of knowing and modes of inquiry and introduce students to important ways of thinking in the three core knowledge areas: the Arts and Humanities, the Biological and Physical Sciences, and the Social, Behavioral, and Economic Sciences. They assist students early during their study to develop as more critical thinkers. They also encourage appreciation of our humanity and creativity, human cultural diversity, the power of knowledge, and our responsibilities for ourselves and for our world.

Courses in Michigan State University’s Integrative Studies Program are aimed at developing intellectual abilities, including critical thinking and interpretive skills. They help increase knowledge about other times, places, and cultures, key ideas and issues in human experience, and the scientific method and its usefulness in understanding the natural and social worlds. They are expected to enhance appreciation of the role of knowledge, and of values and ethics, in understanding human behavior and solving social problems. Finally, they help students recognize responsibilities and opportunities associated with democratic citizenship and with living in an increasingly interconnected, interdependent world.

The Center for Integrative Studies in the Arts and Humanities in the College of Arts and Letters has primary responsibility for the Arts and Humanities area of Integrative Studies at Michigan State University.

The Center for Integrative Studies in General Sciences in the College of Natural Sciences has primary responsibility for Integrative Studies courses in the Biological and Physical Sciences at Michigan State University.

The Center for Integrative Studies in the Social Sciences in the College of Social Science has primary responsibility for Integrative Studies courses in the Social, Behavioral, and Economic Sciences at Michigan State University.
INTERDEPARTMENTAL DEGREE PROGRAMS

The College of Natural Science offers interdepartmental degree programs in biological science—interdepartmental; cell and molecular biology; earth science—interdepartmental; ecology, evolutionary biology and behavior; general science; genetics; genetics–environmental toxicology; human biology; neuroscience; and physical science—interdepartmental. These programs are designed to serve students who wish to develop a broad background in the natural sciences. Students who desire academic preparation in the natural sciences with emphasis in a single discipline should enroll in a departmental major. The interdepartmental programs are not intended for this purpose.

Students interested in elementary education who wish to major in science should reference the section on MSU SUBJECT MATTER TEACHING MAJORS AND MINORS FOR TEACHER PREPARATION AND CERTIFICATION in the Department of Teacher Education section of this catalog.

BIOLOGICAL SCIENCE—INTERDEPARTMENTAL

UNDERGRADUATE PROGRAM

The biological science—interdepartmental major, which leads to the Bachelor of Science degree, is designed for persons who want a broad background in fields that comprise biological sciences and who want to understand the interrelationships among such fields. This major is designed primarily for persons who plan to teach biological sciences in middle and secondary schools.

Requirements for the Bachelor of Science Degree in Biological Science—Interdepartmental

1. The University requirements for bachelor’s degrees as described in the Undergraduate Education section of this catalog; 120 credits, including general elective credits, are required for the Bachelor of Science degree in Biological Science—Interdepartmental.

 The University’s Tier II writing requirement for the Biological Sciences—Interdepartmental major is met by completing NSC 401. That course is referenced in item 3.a. below.

 Students who are enrolled in the College of Natural Science may complete the alternative track to Integrative Studies in Biological and Physical Sciences that is described in item 1. under the heading Graduation Requirements in the College statement. Certain courses referenced in requirement 3. below may be used to satisfy the alternative track.

2. The requirements of the College of Natural Science for the Bachelor of Science degree.

 The credits earned in certain courses referenced in requirement 3. below may be counted toward College requirements as appropriate.

3. The following requirements for the major:

 a. All of the following courses: ... 38

 CEM 161 Chemistry Laboratory I 1
 CEM 162 Chemistry Laboratory II 1
 CEM 181H Honors Chemistry I 4
 CEM 182H Honors Chemistry II 4
 CEM 185H Honors Chemistry Laboratory I 2
 CEM 186H Honors Chemistry Laboratory II 2

 b. One of the following groups of courses: 9 to 12

 (1) CEM 141 General Chemistry 4
 CEM 142 General and Inorganic Chemistry 3
 CEM 161 Chemistry Laboratory I 1
 CEM 162 Chemistry Laboratory II 1

 (2) CEM 151 General and Descriptive Chemistry 4
 CEM 152 Principles of Chemistry 3

 c. One of the following pairs of courses: 6 or 7

 (1) MTH 132 Calculus I 3
 MTH 133 Calculus II 3

 (2) MTH 132 Calculus I 3
 MTH 201 Statistical Methods 4

 (3) MTH 124 Survey of Calculus I 3
 MTH 126 Survey of Calculus II 3

 (4) MTH 124 Survey of Calculus I 3
 STT 201 Statistical Methods 4

 (5) MTH 152H Honors Calculus I 4
 MTH 153H Honors Calculus II 3

3. The following requirements for the major:

 a. All of the following courses: ... 30

 (1) PHY 183 Physics for Scientists and Engineers I ... 4
 PHY 192 Physics Laboratory for Scientists, I 1

 (2) PHY 193H Honors Physics I–Mechanics 3
 PHY 251 Introductory Physics Laboratory I 1

 b. One of the following, either (1) or (2): 8

 (1) ZOL 408 Histology ... 4
 ZOL 425 Cells and Development (W) 4

 (2) Both of the following courses:

 MMG 301 Introductory Microbiology 3
 MMG 302 Introductory Laboratory for General and
 Allied Health Microbiology 1

 c. One of the following courses: ... 4

 BMB 401 Basic Biochemistry 4
 ZOL 408 Histology ... 4

 d. One of the following pairs of courses: 2

 (1) ZOL 341 Fundamental Genetics 4
 ZOL 355 Ecology ... 3

 e. One of the following pairs of courses: 2

 (1) PHY 191 Physics Laboratory for Scientists, I 1
 PHY 192 Physics Laboratory for Scientists, II 1

 (2) PHY 192 Physics Laboratory for Scientists, II 1
 PHY 251 Introductory Physics Laboratory I 1

 f. One of the following, either (1) or (2): 8

 (1) MTH 132 Calculus I 3
 MTH 133 Calculus II 3

 (2) MTH 132 Calculus I 3
 MTH 133 Calculus II 3

 g. One of the following courses: ... 3

 PLB 301 Introductory Plant Physiology 3
 PLB 418 Plant Systematics 3
 PLB 434 Plant Structure and Function 4
 PLP 405 Plant Pathology 3

 h. One of the following courses: ... 4

 CEM 161 Chemistry Laboratory I 1
 CEM 162 Chemistry Laboratory II 1

 i. One of the following courses: ... 4

 CEM 181H Honors Chemistry I 4
 CEM 182H Honors Chemistry II 4

 j. One of the following courses: ... 4

 ZOL 341 Fundamental Genetics 4
 ZOL 355 Ecology ... 3

 k. One of the following courses: ... 4

 MMG 301 Introductory Microbiology 3
 MMG 302 Introductory Laboratory for General and
 Allied Health Microbiology 1

 l. One of the following courses: ... 4

 ZOL 408 Histology ... 4
 ZOL 425 Cells and Development (W) 4

 m. One of the following courses: ... 4

 BMB 401 Basic Biochemistry 4
 ZOL 408 Histology ... 4

 n. One of the following courses: ... 4

 BMB 401 Basic Biochemistry 4
 ZOL 408 Histology ... 4

 o. One of the following courses: ... 4

 PLB 301 Introductory Plant Physiology 3
 PLB 418 Plant Systematics 3
 PLB 434 Plant Structure and Function 4
 PLP 405 Plant Pathology 3

 p. One of the following courses: ... 4

 ZOL 425 Cells and Development (W) 4

 q. One of the following courses: ... 4

 PLB 301 Introductory Plant Physiology 3
 PLB 418 Plant Systematics 3
 PLB 434 Plant Structure and Function 4
 PLP 405 Plant Pathology 3

TEACHER CERTIFICATION OPTIONS

The biological science—interdepartmental disciplinary major leading to the Bachelor of Science degree is available for teacher certification.

A biological science disciplinary minor is also available for secondary teacher certification.

Students who elect the biological science—interdepartmental disciplinary major or the biological science disciplinary minor must contact the College of Natural Science.

For additional information, refer to the statement on TEACHER CERTIFICATION in the Department of Teacher Education section of this catalog.

GRADUATE STUDY

Master of Science

The Master of Science degree program with a major in Biological Science—Interdepartmental is designed for science teachers who wish to pursue graduate study in the biological sciences. To meet the needs of practicing teachers, the courses that are required for the program are offered in the summer and on weekends.

In addition to meeting the requirements of the university and of the College of Natural Science, students must meet the requirements specified below.

NATURAL SCIENCE

Interdepartmental Degree Programs
Admission

Requirements for admission to the master’s degree program in biological science—interdepartmental include a bachelor’s degree in biology, teacher certification for grades 7–12, at least 1 year of teaching experience, and current employment as a teacher of biology or related disciplines at the middle or secondary school level.

Requirements for the Master of Science Degree in Biological Science—Interdepartmental

The program is available under either Plan A (with thesis) or Plan B (without thesis). For a student under Plan A, a thesis committee that consists of the student’s faculty advisor, the student’s program director, and one other faculty member must approve the student’s program of study.

The student must complete at least 30 credits distributed as follows:

CREDITS

Requirements for Both Plan A and Plan B

1. All of the following courses (20 credits):
 - SME 871 Biochemistry and Cell Biology for Teachers 7
 - SME 874 Field Ecology for Teachers 7
 - SME 901 Frontiers in Biological Sciences 6

Additional Requirements for Plan A

1. SME 899 Master’s Thesis Research 10
 Research for the thesis involves developing laboratories and demonstrations as part of a new teaching unit and teaching that unit, collecting and analyzing relevant data.

Additional Requirements for Plan B

1. SME 899 Research for Inservice Teachers 10
 Research for inservice teachers requires a curriculum-based project and implementa-
 tion report.

Requirements for the Master of Science Degree in Cell and Molecular Biology

Students in the M.S. program in Cell and Molecular Biology must complete a total of 30 credits for the degree under either Plan A (with thesis) or Plan B (without thesis). These credits must include core courses in molecular biology, cell biology, and genetics. Detailed course and other requirements are specified in the cell and molecular biology graduate manual.

For a Plan A master’s degree, students must complete a minimum of 4 and a maximum of 10 credits of Cell and Molecular Biology 899, Master’s Research. They must also prepare a written thesis, complete a final research seminar, and pass an oral examination.

For a Plan B master’s degree, student may complete a maximum of 8 credits of Cell and Molecular Biology 890, Independent Study. They must also complete a final report and pass an oral examination.

Doctor of Philosophy

The interdepartmental Doctor of Philosophy degree program with a major in cell and molecular biology is administered by the College of Natural Science. Students may elect to complete the requirements for a second major, in addition to the requirements for the Doctor of Philosophy degree in cell and molecular biology.

The educational objectives of the program are to provide doctoral students with fundamental knowledge and research skills so that they may become independent and self–educating scholars.

In addition to meeting the requirements of the university and of the College of Natural Science, students must meet the requirements specified below.

Admission

To be considered for admission to the Doctor of Philosophy degree program with a major in cell and molecular biology, an applicant must have taken the Graduate Record Examination General Test.

To be admitted to the doctoral program in cell and molecular biology, it is recommended that an applicant have:
1. Completed a Bachelor of Science or Bachelor of Arts degree with a minimum grade–point average of 3.00.
2. A broad background in biology, including courses in biochemistry, genetics, cell biology, and molecular biology.
3. Completed at least one year of study in each of the following fields: physics, inorganic chemistry, organic chemistry, and mathematics through integral calculus.
4. A grade of 3.0 or above in each science and mathematics course completed.
5. Acceptable scores on the Graduate Record Examination General Test.

Applicants with deficiencies in academic preparation may be admitted provisionally, in which case they will be required to complete collateral courses.

CELL AND MOLECULAR BIOLOGY

GRADUATE STUDY

Master of Science

This program provides theoretical and practical training in cell and molecular biology to prepare students for a variety of professional positions in academia, industry or government.

Admission

Most students enter the Master of Science degree program in cell and molecular biology with the goal of eventually obtaining a Ph.D. degree. However, students with limited research experience or specific deficiencies in their undergraduate training may be admitted to this program to obtain additional experience. Applicants will be considered by the Cell and Molecular Biology admissions committee, and in general the criteria for admission are similar to those of the Ph.D. program (an undergraduate major in biological science, acceptable GPA and GRE scores, and letters of recommendation).

In addition to meeting the requirements of the university and the College of Natural Science, students must meet the requirements specified below.
Requirements for the Doctor of Philosophy Degree in Cell and Molecular Biology

The student must:

1. Complete all of the following courses (15 credits):
 - BMB 801 Molecular Biology and Protein Structure 4
 - BMB 825 Cell Structure and Function 3
 - CMB 800 Cell and Molecular Biology Seminar 3
 - CMB 892 Research Forum 4
 - One graduate course in scientific ethics 1

2. Complete one of the following courses (3 credits):
 - MMG 833 Microbial Genetics 3
 - MMG 835 Eukaryotic Molecular Genetics 3

3. Complete a minimum of two additional graduate courses of at least 3 credits each that are related to the student’s research.

4. Complete a 10-week research rotation in the laboratory of each of three different members of the cell and molecular biology faculty during the first year of enrollment in the program.

5. Pass the preliminary examination given at the end of the second year of graduate study.

6. Successfully complete a minimum of two semesters as a teaching assistant in a department represented on the cell and molecular biology faculty. The student’s teaching assignment must be approved by the director of the doctoral program in cell and molecular biology.

For additional information, contact the director of the doctoral program in cell and molecular biology, 153 Giltner Hall, Michigan State University, East Lansing, MI 48824.

CELL and MOLECULAR BIOLOGY
—ENVIRONMENTAL TOXICOLOGY

Doctor of Philosophy

For information about the Doctor of Philosophy degree program in cell and molecular biology—environmental toxicology, refer to the statement on Doctoral Program in Environmental and Integrative Toxicological Sciences in the Graduate Education section of this catalog.

EARTH SCIENCE—INTERDEPARTMENTAL

UNDERGRADUATE PROGRAM

The Department of Geological Sciences administers the earth science—interdepartmental major, which leads to the Bachelor of Science degree. The major is designed for persons who wish a broad background in geology, meteorology, oceanography, and astronomy and who want to understand the interrelationships among these fields. The general earth science concentration is designed primarily for persons who plan to teach earth science in middle and secondary schools. The meteorology/atmospheric sciences concentration is designed primarily for persons who plan to enter a graduate program in meteorology/atmospheric sciences.

Requirements for the Bachelor of Science Degree in Earth Science—Interdepartmental

1. The University requirements for bachelor's degrees as described in the Undergraduate Education section of this catalog; 120 credits, including general elective credits, are required for the Bachelor of Science degree. The major is designed for persons who wish a broad background in geology, meteorology, oceanography, and astronomy and who want to understand the interrelationships among these fields. The general earth science concentration is designed primarily for persons who plan to teach earth science in middle and secondary schools. The meteorology/atmospheric sciences concentration is designed primarily for persons who plan to enter a graduate program in meteorology/atmospheric sciences.

2. The requirements of the College of Natural Science for the Bachelor of Science degree are available for second-year teacher certification.

3. A minimum of 6 credits from the following courses:
 - GLG 412 Glacial and Quaternary Geology
 - GLG 421 Environmental Geochemistry
 - GLG 422 Aquatic and Marine Organic Geochemistry
 - GLG 434 Evolutionary Paleobiology
 - PLB 335 Plants Through Time

Meteoroology/Atmospheric Sciences (32 to 38 credits):

1. All of the following courses:
 - GEO 405 Weather Analysis and Forecasting
 - MTH 133 Calculus I
 - MTH 234 Multivariable Calculus
 - MTH 235 Differential Equations
 - PHY 183 Physics for Scientists and Engineers I
 - PHY 184 Physics for Scientists and Engineers II

2. One of the following courses:
 - GEO 401 Plate Tectonics
 - GLG 401 Plate Tectonics
 - GEO 402 Agricultural Climatology
 - GLG 411 Hydrogeology
 - GEO 409 Global Climate Change and Variability
 - GLG 421 Environmental Geochemistry
 - GLG 422 Aquatic and Marine Organic Geochemistry
 - GLG 434 Evolutionary Paleobiology
 - PHY 183 Physics for Scientists and Engineers I
 - PHY 232 Introductory Physics II
 - PHY 251 Introductory Physics Laboratory I
 - PHY 252 Introductory Physics Laboratory II
 - PHY 232 Introductory Physics II
 - PHY 420 Agricultural Climatology
 - GEO 409 Global Climate Change and Variability
 - GEO 424 Advanced Remote Sensing
 - GLG 411 Hydrogeology
 - GEO 409 Global Climate Change and Variability
 - GLG 434 Evolutionary Paleobiology
 - PLB 335 Plants Through Time

3. Three of the following courses:
 - GEO 401 Plate Tectonics
 - GLG 401 Plate Tectonics
 - GEO 402 Agricultural Climatology
 - GEO 409 Global Climate Change and Variability
 - GLG 411 Hydrogeology
 - GLG 421 Environmental Geochemistry
 - Geography 402 or 409 may also be used to satisfy requirement (3) above.

TEACHER CERTIFICATION OPTIONS

The earth science—interdepartmental disciplinary major leading to the Bachelor of Science degree is available for teacher certification.

An earth science disciplinary minor is also available for secondary teacher certification.

Students who elect the earth science—interdepartmental disciplinary major or the earth science disciplinary minor must contact the Department of Geological Sciences.
For additional information, refer to the statement on TEACHER CERTIFICATION in the Department of Teacher Education section of this catalog.

ECOLOGY, EVOLUTIONARY BIOLOGY AND BEHAVIOR

GRADUATE STUDY

Dual Major

The interdepartmental dual major in ecology, evolutionary biology and behavior is administered by the College of Natural Science. The dual major is available only to those students who plan to complete a Ph.D. degree program that involves ecology, evolutionary biology and behavior and a major in one of the following departments that are affiliated with the interdepartmental program: Anthropology, Computer Science and Engineering, Crop and Soil Sciences, Entomology, Fisheries and Wildlife, Forestry, Geography, Geological Sciences, Horticulture, Microbiology and Molecular Genetics, Philosophy, Plant Biology, Plant Pathology, Psychology, Statistics and Probability, and Zoology. The student does not have the option of completing a dual major in ecology, evolutionary biology and behavior alone.

The educational objectives of the interdepartmental program are to:

1. provide an opportunity for doctoral students to obtain a comprehensive and contemporary academic experience in the field of ecology, evolutionary biology and behavior.
2. stimulate doctoral students with an interest in ecology, evolutionary biology and behavior to become sensitive to their professional obligations and responsibilities.
3. develop an intellectual environment which will foster the growth of research and teaching in the area of ecology, evolutionary biology and behavior.

Students who are enrolled in the dual major in Ecology, Evolutionary Biology and Behavior may elect an Interdepartmental Specialization in Cognitive Science. For additional information, refer to the statement on Interdepartmental Graduate Specializations in Cognitive Science in the College of Social Science section of this catalog. For additional information, contact the College of Natural Science.

In addition to meeting the requirements of the university and of the College of Natural Science, students must meet the requirements specified below.

Admission

In order to enroll in the dual major in ecology, evolutionary biology and behavior a student must also have been admitted to a major in one of the affiliated departments. A minimum undergraduate grade-point average of 3.00 and undergraduate mathematics through calculus are required for admission to the dual major.

The Graduate Admissions Committee, composed of members of the ecology, evolutionary biology and behavior faculty from affiliated departments, reviews applications for admission and recommends acceptance of applicants for admission. In special cases an applicant who has deficiencies in background courses may be admitted to the dual major on a provisional basis.

Guidance Committee

During the first year of enrollment in the dual major, the student and a member of the ecology, evolutionary biology and behavior faculty who will serve as the student’s major professor will constitute a guidance committee that will assist in planning the student’s program of study. At least two members of the ecology, evolutionary biology and behavior faculty shall be members of the committee. The student’s program of study will involve ecology, evolutionary biology and behavior and a major in one of the affiliated departments. The program shall be planned in accordance with the statement on Dual Major Doctoral Degrees in the Graduate Education section of this catalog.

Students in the dual major in ecology, evolutionary biology and behavior are expected to attend weekly seminars and to participate in the graduate student-organized research colloquium.

Requirements for the Dual Major in Ecology, Evolutionary Biology and Behavior

CREDITS

1. One 3-credit course in ecology at the 800-900 level from one of the departments that is affiliated with the dual major in ecology, evolutionary biology and behavior.
2. Twenty-four credits in Doctoral Dissertation Research (course number 999) from one of the departments referenced above.
3. Pass a comprehensive examination that will be defined by the requirements of the participating department and that will include a written examination in which the student demonstrates a knowledge of ecology, evolutionary biology and behavior as determined by the guidance committee.
4. Submit a dissertation that, in the judgment of the student’s guidance committee, represents the integration of ecology, evolutionary biology and behavior and the student’s departmental major.

GENERAL SCIENCE

GRADUATE STUDY

Master of Arts for Teachers

The Master of Arts for Teachers degree program is designed for elementary and middle school teachers who wish to pursue graduate study in the broad area of teaching science. To meet the needs of practicing teachers, the courses that are required for the program are offered in the summer and after school hours.

In addition to meeting the requirements of the university and of the College of Natural Science, students must meet the requirements specified below.

Admission

The requirements for admission to the master's degree program in general science include a bachelor's degree, teacher certification for grades K–8, at least 3 years of teaching experience, and current employment as a teacher in an elementary or middle school.
Requirements for the Master of Arts for Teachers Degree in General Science

The program is available only under Plan B (without thesis). A total of 30 credits is required for the degree. The student’s program of study must be approved by the student's academic advisor. The student must meet the requirements specified below.

CREDITS
1. All of the following courses (21 credits):
 - SME 828 Physical Science I 3
 - SME 829 Physical Science II 3
 - SME 832 Earth Science I 3
 - SME 833 Earth Science II 3
 - SME 838 Life Science I 3
 - SME 839 Life Science II 3
 - SME 889 Research for Inservice Teachers 3
 An approved school-based project that involves either developing new science instruction or a project that is designed to transform science teaching in the student’s school is required for Science and Mathematics Education 889.
2. One of the following courses (3 credits):
 - TE 860 Practice and Inquiry in Science Education 3
 - TE 861A Teaching Science for Understanding 3
3. Six credits of approved electives including at least one course from the Department of Teacher Education.

GENETICS

GRADUATE STUDY

Master of Science

The primary purpose of the Master of Science in Genetics is to train students for a variety of careers in areas of genetics and genomics. The program also seeks to provide graduate students who are seeking the Ph.D. degree, state-of-the-art knowledge and skills to prepare them for careers in research and teaching.

Admission

Applicants will be considered for admission by the Genetics Admissions Committee. The criteria for admission include an undergraduate major in the biological sciences, acceptable grade-point average and GRE scores, a statement of objectives and three letters of recommendation. The Genetics Admissions Committee will also consider requests for students to transfer from the Doctor of Philosophy in Genetics to this program.

In addition to meeting the requirements of the university and the College of Natural Science, students must meet the requirements specified below.

Requirements for the Master of Science Degree in Genetics

All students in the Master of Science in Genetics must earn at least 20 credits of which a minimum of 20 credits must consist of course work and must include the core courses specified for the Ph.D. program. Detailed course work and other requirements are specified in the Student Handbook of the Genetics Program. For a Plan A (with thesis) degree, students must complete 4 to 10 credits of Genetics 899, Master's Thesis Research, submit a written thesis, present a final research seminar and pass a final oral examination. For a Plan B (without thesis) degree, students must have earned at least 26 credits through course work, may receive a maximum of 4 credits for work completed in Genetics 899, Master's Thesis Research, submit a final report and pass an oral examination.

Doctor of Philosophy

The interdepartmental Doctor of Philosophy degree program with a major in genetics is administered by the College of Natural Science. The objectives of the program are (1) to prepare the student for independent research and teaching, (2) to help the student to understand the nature and significance of genetics as a whole and to gain strength in related sciences, such as molecular biology and biochemistry, and (3) to enable the student to keep in the forefront of this continuously changing field.

Students may specialize in one area of genetics, but are required to familiarize themselves with all major areas of the discipline. Students may elect to complete the requirements for a second major, such as biochemistry, in addition to the requirements for the doctoral degree in genetics.

In addition to meeting the requirements of the university and of the College of Natural Science, students must meet the requirements specified below.

Admission

For regular admission a student must have a bachelor's degree with a grade-point average of 3.30, appropriate background in the biological and physical sciences, and approval of the Genetics Program Admissions Committee. In special cases an applicant who fails to meet the grade-point average requirement, or who has deficiencies in background courses, i.e., organic chemistry, physics, calculus, or biology, may be admitted on a provisional basis. Applicants admitted on a provisional basis must remove these deficiencies within one year of admission to the genetics program.

Requirements for the Doctor of Philosophy Degree in Genetics

The program of study is planned by the student in consultation with the major professor and a guidance committee. Specific courses in genetics, as well as courses in other areas considered relevant to the student’s interests and chosen research area, are included in the program. Students in the program will write and defend a research dissertation which shows original treatment of an important research problem. A detailed description of the genetics program and of the research interests of the genetics faculty may be obtained by writing the Director of the Genetics Program, Michigan State University, S–352 Plant Biology Building, East Lansing, MI 48824.

HUMAN BIOLOGY

UNDERGRADUATE PROGRAM

The human biology major, which leads to the Bachelor of Science degree, is designed for persons who want a broad background in fields that comprise biological sciences and who want to understand the interrelationships among such fields. This major is designed for persons who plan to pursue careers in the health care professions and for students who are interested in the biological sciences, but are not interested in a teaching option.
Requirements for the Bachelor of Science Degree in Human Biology

1. The University requirements for bachelor’s degrees as described in the Undergraduate Education section of this catalog; 120 credits, including general elective credits, are required for the Bachelor of Science degree in Human Biology.

 The University’s Tier II writing requirement for the Human Biology major is met by completing NSC 495. That course is referenced in item 3. a. below.

 Students who are enrolled in the College of Natural Science may complete the alternative track to Integrative Studies in Biological and Physical Sciences that is described in item 1. under the heading Native track to Integrative Studies in Biological and Physical Sciences that is described in the College statement. Certain courses referenced in requirement 3. below may be used to satisfy the alternative track.

2. The requirements of the College of Natural Science for the Bachelor of Science degree.

 The credits earned in certain courses referenced in requirement 3. below may be counted toward College requirements as appropriate.

3. The following requirements for the major:

 CREDITS

 a. All of the following courses: ... 23

 - BS 110 Organisms and Populations 4
 - BS 111 Cells and Molecules ... 3
 - BS 111L Cell and Molecular Biology Laboratory 2
 - CEM 251 Organic Chemistry I 3
 - CEM 252 Organic Chemistry II 3
 - CEM 255 Organic Chemistry Laboratory 2
 - HNF 453 Nutrition and Human Development 3
 - ZOL 341 Fundamental Genetics 4

 b. One of the following, either (1) or (2): 4 or 6

 - (1) PSL 310 Physiology for Pre-Health Professionals 4
 - (2) PSL 431 Human Physiology I 3

 c. One of the following, either (1) or (2): 4 or 6

 - (1) BMB 401 Basic Biochemistry 4
 - (2) BMB 461 Biochemistry I 3

 d. One of the following groups of courses: 9 to 12

 (1) CEM 141 General Chemistry 4
 - CEM 142 General and Inorganic Chemistry 3
 - CEM 151 Chemistry Laboratory I 1
 - CEM 162 Chemistry Laboratory II 1
 - CEM 165 Chemistry Laboratory III 1
 - CEM 181H Honors Chemistry I 4
 - CEM 182H Honors Chemistry II 4
 - CEM 185H Honors Chemistry Laboratory I 2
 - CEM 186H Honors Chemistry Laboratory II 2

 e. One of the following groups of courses: 6 or 7

 (1) MTH 132 Calculus I .. 3
 - MTH 133 Calculus II .. 3
 - STT 201 Statistical Methods .. 4
 - STT 231 Statistics for Scientists 3
 - MTH 124 Survey of Calculus I 3
 - MTH 126 Survey of Calculus II 3
 - STT 201 Statistical Methods .. 4
 - STT 231 Statistics for Scientists 3
 - MTH 152H Honors Calculus I 3
 - MTH 153H Honors Calculus II 3

 f. One of the following pairs of courses: 6 or 8

 (1) PHY 183 Physics for Scientists and Engineers I 4
 - PHY 184 Physics for Scientists and Engineers II 4
 - PHY 193H Honors Physics I-Mechanics 3
 - PHY 294H Honors Physics II-Electromagnetism 3
 - PHY 231 Introductory Physics I 3
 - PHY 232 Introductory Physics II 3

 g. One of the following pairs of courses: 2

 (1) ANTR 350 Human Gross Anatomy and Structural Biology 3
 (2) ZOL 320 Developmental Biology 4
 (3) ZOL 328 Comparative Anatomy and Biology of Vertebrates 4

NEUROSCIENCE

Several colleges and departments within Michigan State University cooperate in offering the interdepartmental Master of Science and Doctor of Philosophy degree program with a major in neuroscience, which is administered by the College of Natural Science. Students may elect to complete the requirements for a second major, in addition to the requirements for the Master of Science and Doctor of Philosophy degree in neuroscience.

Students who are enrolled in the master’s or doctoral degree program with a major in Neuroscience may also elect an Interdepartmental Specialization in Cognitive Science. For additional information, refer to the statement on Interdepartmental Specializations in Cognitive Science in the College of Social Science section of this catalog. For additional information, contact the College of Natural Science.

Master of Science

The major objective of the M.S. program is to provide sufficient theoretical and practical training in neuroscience to allow students to obtain professional level positions in academic, industrial, or governmental institutions.

Admission

To be considered for admission to the Master of Science degree in Neuroscience an applicant should:

1. have taken a broad spectrum of basic science courses.
2. have a grade-point average of at least 3.00 in science and mathematics courses.
3. have earned an overall grade-point average of 3.0.
4. have the results of the Graduate Record Examination (GRE) General Test forwarded to the College of Natural Science. Laboratory research experience is recommended, but not required. Applicants with deficiencies in academic preparation may be admitted provisionally, with the requirement that they com-
plete collateral science courses during the first year of study; these collateral courses will not count toward the degree.

Admission decisions are made by the Neuroscience Program Graduate Affairs Committee.

In addition to meeting the requirements of the university and the College of Natural Science, students must meet the requirements specified below.

Requirements for the Master of Science Degree in Neuroscience

The program is available under either Plan A (with thesis) or Plan B (without thesis). A total of 30 credits is required for the degree under either Plan A or Plan B. The student’s program of study must be approved by the student’s guidance committee. The student must meet the requirements specified below:

Requirements for Plan A and Plan B

1. Complete all of the following courses (20 credits):
 - ANT 839 Systems Neuroscience 4
 - NEU 804 Molecular and Developmental Neurobiology 3
 - NEU 806 Advanced Neuroscience Techniques Laboratory 3
 - PHM 827 Physiology and Pharmacology of Excitable Cells 4
 - PHM 890 Problems 3
 - PSY 811 Advanced Behavioral Neuroscience 3
 - PSY 809 Developmental Psychology 3
 - PSY 851 Neuropsychology 3
 - PSY 810 Synaptic Transmission 3
2. Complete a minimum of 6 credits in Neuroscience 880 or 889. Plan A students must complete 4 credits of Neuroscience 899.
3. Complete an additional 4 credits of elective courses related to the student’s research and approved by the student’s guidance committee. These credits may be earned in Neuroscience 880 or 889 if the student chooses.
4. Complete a one semester laboratory rotation with each of two neuroscience faculties in the first year of study. Students will select the two laboratories in which they will rotate at the beginning of Fall Semester based on discussions and mutual agreement with neuroscience faculty members.

Additional Requirements for Plan A

Successful completion and defense of a thesis based on original research on an important problem in neuroscience in a seminar-based public forum.

Additional Requirements for Plan B

Successful completion and presentation of a research-based paper.

Doctor of Philosophy

The program provides an opportunity for doctoral students to acquire both a broad and in-depth knowledge of the function of the nervous system. The program is designed to:

1. Make it possible for a doctoral student to obtain a comprehensive and contemporary academic experience in the field of neuroscience.
2. Prepare students for their future professional obligations and responsibilities as scholars.
3. Develop an intellectual environment that will foster the growth of research and teaching in the area of neuroscience.

In addition to meeting the requirements of the university and of the College of Natural Science, students must meet the requirements specified below.

Admission

To be considered for admission to the Doctor of Philosophy degree program with a major in neuroscience, an applicant should have:

1. Completed a broad spectrum of basic science courses.
2. A grade-point average of at least 3.00 in science and mathematics courses.
3. Experience in laboratory research.

To be eligible for regular admission to the Doctor of Philosophy degree program with a major in neuroscience, an applicant must have:

1. Completed an undergraduate degree in a biological or physical science or in a related discipline.
2. An overall grade-point average of at least 3.00.

3. Satisfactory scores on the Graduate Record Examination General Test as judged by the faculty.

Admission decisions are made by the Neuroscience Program Admissions Committee. Applicants with deficiencies in academic preparation may be admitted provisionally, with the requirement that they complete collateral science courses not counting toward the degree.

Requirements for the Doctor of Philosophy Degree in Neuroscience

The student must:

1. Complete all of the following courses:
 - ANT 839 Systems Neuroscience 4
 - BMB 825 Cell Structure and Function 3
 - NEU 827 Advanced Neurobiology 4
 - PHM 880 Problems 6
 - PSY 811 Advanced Behavioral Neuroscience 3
 - PTH 830 Concepts in Molecular Biology 2
 - NEU 806 Advanced Neuroscience Techniques Laboratory ... 3
 - NEU 802 Advanced Behavioral Neuroscience 3
 - NEU 808 Advanced Neuroscience Techniques Laboratory ... 3
2. Complete a minimum of 8 credits in additional courses as follows:
 a. Two of the following courses:
 - ANT 885 Vertebrate Neural Systems 3
 - PHM 810 Synaptic Transmission 3
 - PHM 817 Advanced Neurotoxicology 3
 - PSL 841 Advanced Endocrine Physiology and Pharmacology 4
 - PSY 809 Developmental Psychology 3
 - PSY 851 Neuropsychology 3
 b. If necessary, one additional course related to the student’s research and approved by the student’s guidance committee . . . 0 to 2
3. Complete in the first year of enrollment in the program a one-semester laboratory rotation with each of two members of the faculty. Faculty in the departments of Anatomy, Biochemistry and Molecular Biology, Pathology, Pharmacology and Toxicology, Psychology, Physiology, and Zoology who have an interest in neuroscience are available for laboratory rotations. Each rotation is established by mutual agreement of the faculty member and the student.
4. Pass the written and oral comprehensive examinations given at the end of the second year of enrollment in the program.
5. Complete and defend a dissertation based on original research on an important problem in neuroscience.

The colleges and departments that are listed below cooperate in offering the interdepartmental Doctor of Philosophy degree program with a major in neuroscience:

- **Colleges**
 - Human Medicine
 - Osteopathic Medicine
 - Social Science
 - Veterinary Medicine

- **Departments**
 - Anatomy (Division of)
 - Biochemistry and Molecular Biology
 - Pathobiology and Diagnostic Investigation
 - Pharmacology and Toxicology
 - Physiology
 - Psychology
 - Zoology

A detailed description of the Doctor of Philosophy degree program with a major in neuroscience and of the research interests of participating faculty may be obtained upon request from the Neuroscience Program Administrator, Office 108 Giltner Hall, Michigan State University, East Lansing, MI 48824-1317, or by visiting the Web site at http://www.ns.msu.edu/neurosci/.
PHYSICAL SCIENCE—INTERDEPARTMENTAL

UNDERGRADUATE PROGRAM

The physical science—interdepartmental major, which leads to the Bachelor of Science degree, is designed for persons who want a broad background in both physics and chemistry and to understand the interrelationships between these disciplines. This major is designed primarily for persons who plan to teach physics, chemistry and/or physical science in secondary schools.

Requirements for the Bachelor of Science Degree in Physical Science—Interdepartmental

1. The University requirements for bachelor’s degrees as described in the Undergraduate Education section of this catalog; 120 credits, including general elective credits, are required for the Bachelor of Science degree in Physical Science—Interdepartmental. The University’s Tier II writing requirement for the Physical Science—Interdepartmental major is met by completing Science and Mathematics Education 401. That course is referenced in item 3. a. below.

Students who are enrolled in the College of Natural Science may complete the alternative track to Integrative Studies in Biological and Physical Sciences that is described in Item 1. under the heading Graduation Requirements in the College statement. Certain courses referenced in requirement 3. below may be used to satisfy the alternative track.

2. The requirements of the College of Natural Science for the Bachelor of Science degree. The credits earned in certain courses referenced in requirement 3. below may be counted toward College requirements as appropriate.

3. The following requirements for the major:

 a. One of the following courses (4 credits):

 CEM 141 General Chemistry 4
 CEM 151 General and Descriptive Chemistry 4

 b. One of the following courses (3 credits):

 CEM 142 General and Inorganic Chemistry 3
 CEM 152 Principles of Chemistry 3

 c. All of the following courses (57 credits):

 CEM 161 Chemistry Laboratory I 3
 CEM 162 Chemistry Laboratory II 3
 CEM 251 Organic Chemistry I 3
 CEM 252 Organic Chemistry II 3
 CEM 255 Organic Chemistry Laboratory 2
 CEM 282 Quantitative Analysis 3
 CEM 383 Introductory Physical Chemistry I 3
 MTH 132 Calculus I 3
 MTH 133 Calculus II 4
 MTH 234 Multivariable Calculus 4
 MTH 235 Differential Equations 3
 PHY 183 Physics for Scientists and Engineers I ... 4
 PHY 184 Physics for Scientists and Engineers II ... 4
 PHY 191 Physics Laboratory for Scientists, I 1
 PHY 192 Physics Laboratory for Scientists, II 1
 PHY 215 Thermodynamics and Modern Physics 3
 PHY 431 Optics I 3
 PHY 440 Electronics 4
 SME 401 Science Laboratories for Secondary Schools (W) 4
 An approved elective in chemistry or physics 3

 d. One of the following courses (3 or 4 credits):

 BS 110 Organisms and Populations 4
 ENT 205 Pests, Society and Environment 3
 PLB 105 Plant Biology 3
 PSL 250 Introductory Physiology 4
 ZOL 141 Introductory Human Genetics 3

 CREDITS

 2. Additional requirements for Plan A

 1. All of the following courses (17 credits):

 NSC 860 Problem Solving Techniques in Physical Science 3
 NSC 861 Chemistry for Teachers 2
 NSC 862 Physics for Teachers 2
 NSC 863 Earth Science for Teachers 2
 NSC 864 Interdisciplinary Seminar in Physical Science 2
 NSC 902 Frontiers in Physical Science 6

 3. Three additional credits in courses approved by the student’s graduate committee.

 CREDITS

 Additional Requirements for Plan B

 1. NSC 899 Master’s Thesis Research 10
 2. Research for the thesis involves developing laboratories and demonstrations as part of a new teaching unit and teaching that unit.

 Additional Requirements for Plan B

 1. NSC 889 Research for Inservice Teachers 10
 2. Research for inservice teachers requires a curriculum based project and implementation report.

 CREDITS

 QUANTITATIVE BIOLOGY

 Dual Major

 The interdepartmental dual major in quantitative biology is administered by the College of Natural Science. The dual major is available only to those students who plan to complete a Ph.D. degree program that involves a research project and course work in quantitative biology and a major in one of the following departments that are affiliated with the interdepartmental program: Biochemistry and Molecular Biology, Cell and Molecular Biology, Chemical Engineering and Materials Science, Chemistry, Civil and Environmental Engineering, Computer Science and Engineering, Electrical and Computer Engineering, Epidemiology, Genetics, Mathematics, Mechanical Engineering, Microbiology and Molecular Genetics, Pharmacology and Toxicology, Physics and Astronomy, Physiology, Plant Biology, Statistics and Proba-
bility, and Zoology. The student does not have the option of completing a dual major in quantitative biology alone. The educational objectives of the interdepartmental program are to:

1. provide an opportunity for doctoral students to obtain an interdisciplinary and contemporary academic experience in the field of quantitative biology.
2. stimulate doctoral students with an interest in biological sciences to develop skills in chemical/physical or mathematical/computational approaches while encouraging doctoral students in the chemical, physical, mathematical, and computational sciences to apply their skills to solve biological problems.
3. develop an intellectual environment that will foster the growth of research and teaching in the area of quantitative biology.

In addition to meeting the requirements of the university and of the department and college in which the student is enrolled, the student must meet the requirements specified below.

Admission
In order to enroll in the dual major in quantitative biology a student must also have been admitted to a major in one of the affiliated departments. A minimum undergraduate grade-point average of 3.00 and undergraduate mathematics through calculus are required for admission to the dual major. Students may apply to the quantitative biology program at any time prior to their preliminary exam.

Admission to the quantitative biology dual major is by approval of the quantitative biology graduate committee and the graduate program director. In special cases, an applicant who has deficiencies in background courses may be admitted to the dual major on a provisional basis.

Guidance Committee
The student must select two mentors, one from a biological discipline and one from a chemical, physical, mathematical, computational, or engineering discipline. Both of these mentors will serve on the guidance committee. At least two members of the student’s guidance committee must be members of the quantitative biology faculty. At least one member of the committee must be from a department or disciplinary program other than the one that administers the student’s disciplinary major. The student’s program of study will be planned in accordance with the statement on Dual Major Doctoral Degrees in the Graduate Education section of this catalog.

Requirements for the Dual Major in Quantitative Biology

1. Both of the following courses (4 credits):
 - QB 826 Introduction to Quantitative Biology Techniques
 - QB 827 Problems in Quantitative Biology

2. One of the following courses (2 or 3 credits):
 - QB 828 Biology for Interdisciplinary Scientists
 - QB 829 Introduction to Physical, Mathematical, and Computational Methods

 A minimum of 2 credits in an 800-level course or above in a field relevant to the goals of the quantitative biology program and complementary to the student’s research. The course must be approved by the program director.

3. Twenty-four credits in Doctoral Dissertation Research (course number 999) from one of the departments referenced above.

4. Pass a comprehensive examination that will be defined by the requirements of the participating department and that will include a written examination in which the student demonstrates a knowledge of quantitative biology as determined by the guidance committee.

5. Submit a dissertation that, in the judgment of the student’s guidance committee, represents the area of quantitative biology.

6. Regularly attend and participate in quantitative biology sponsored seminars.

INTERDEPARTMENTAL SPECIALIZATIONS

ENVIRONMENTAL STUDIES

The Specialization in Environmental Studies is available as an elective to all students who are enrolled in bachelor’s degree programs in the College of Agriculture and Natural Resources, the College of Communication Arts and Sciences, the College of Engineering, the College of Natural Science, and the College of Social Science. The specialization is administered jointly by the five colleges referenced above. The College of Natural Science is the primary administrative unit.

The Specialization in Environmental Studies is designed to:

1. provide knowledge essential for understanding the physical environment that is inhabited and influenced by humans.
2. explain the way in which direct and indirect policy-making by social, economic, and political institutions affects environmental issues.

Students who elect the specialization are encouraged to complete Integrative Studies in Social, Behavioral, and Economic Sciences 225 in partial fulfillment of the university Integrative Studies requirement. Students who elect the specialization may complete an optional environmental studies project of 1 to 3 credits during the sophomore year.

Freshmen who have either declared the intent to complete the Specialization in Environmental Studies or who have declared a major preference for one of the bachelor’s degree programs that are related to environmental studies may elect the two–year Residential Initiative on the Study of the Environment (RISE). Students who elect this option will be housed in Hubbard Hall, where several of the courses that are required for the specialization will be taught. This integrated living–learning environment will allow students from the several colleges and disciplines to develop a sense of community and will promote a team approach to solving environmental problems.

Requirements for the Specialization in Environmental Studies:

The student must meet the requirements specified below:

1. Biological and Physical Dimensions of the Environment: 14 to 16
 a. Both of the following courses (8 credits):
 - GLG 201 The Dynamic Earth
 - ISS 310 People and Environment (I)
 b. One of the following courses (3 or 4 credits):
 - BS 110 Organisms and Populations
 - FW 203 Resource Ecology
 c. One of the following two options (3 or 4 credits):
 (1) Both of the following courses:
 - ZOL 355 Ecology Laboratory (W)
 - ZOL 355L Ecology Laboratory
 (2) One of the following courses:
 - CE 280 Principles of Environmental Engineering and Science
 - CSS 210 Fundamentals of Soil Science
 - CSS 455 Pollutants in the Soil Environment
 - ESA 324 Water Resource Management
 - FOR 404 Forest and Agricultural Ecology
 - FW 207 Great Lakes: Biology and Management
 - FW 364 Ecological Problem Solving
 - FW 444 Conservation Biology
 - GEO 203 Introduction to Meteorology
 - GEO 206 Physical Geography
 - GLG 421 Environmental Geochemistry

17
2. Social–Environmental Interactions: ... 6 or 7
 a. One of the following courses (3 credits):
 EEP 255 Ecological Economics ... 3
 EEP 260 World Food, Population and Poverty 3
 EEP 320 Environmental Economics 3
 ENT 205 Pests, Society and Environment 3
 ESA 201 Environmental and Natural Resources 3
 ESA 460 Natural Resource Economics 3
 FOR 464 Forest Resource Economics (W) 3
 FW 211 Introduction to Gender and Environmental Issues 3
 JRN 408 Topics in Specialized Reporting and Writing 3
 PHL 342 Environmental Ethics .. 3
 PKG 370 Packaging and the Environment 3
 PLS 342 Comparative Political Economy 3
 PRR 302 Environmental Attitudes and Concepts 3
 SOC 452 Environment and Society 3
 UP 353 Land Use Planning .. 3
 WRA 341 Writing Nature and the Nature of Writing 3
 Journalism 408 may be used to satisfy requirement 2.a. only when
 the topic deals with environmental journalism.
 b. One of the following courses (3 or 4 credits):
 ESA 430 Environmental and Natural Resource Law 3
 ESA 440 Environmental and Natural Resource Policy
 in Michigan ... 3
 FOR 466 Natural Resource Policy ... 3
 PLS 301 American State Government 3
 PLS 310 Public Bureaucracy in the Policy Process 3
 PLS 313 Public Policy Analysis ... 3
 PLS 324 American Legislative Process 3
 PLS 331 Political Parties and Interest Groups 3
 TC 210 Media and Communication Policy 3
 ZOL 446 Environmental Issues and Public Policy 3
 3. Seminars, Both of the following courses: 3
 NSC 192 Environmental Issues Seminar 1
 NSC 292 Applications in Environmental Studies 1

With the prior written approval of the RISE Coordinator who ad-
ministers a course in the specialization, another course may be
substituted for that course. Before a student requests a sub-
titutuion, the student should consult with his or her academic
advisor to ensure that the substitution will not adversely affect the
requirements for his or her degree program.

Upon completion of the requirements for the Specialization in
Environmental Studies, the student should contact the RISE
Coordinator and request certification for the completion of the
specialization. After the certification is approved by the Dean of
the College of Natural Science, the Office of the Registrar will en-
ter on the student's academic record the name of the specializa-
tion and the date that it was completed. This certification will
appear on the student's transcript.

ECOLOGY, EVOLUTIONARY BIOLOGY AND
BEHAVIOR

The interdepartmental graduate Specialization in Ecology, Evolutionary Biology and Behavior is available for students who
are enrolled in master's degree programs in the departments of
Anthropology, Computer Science and Engineering, Crop and Soil
Sciences, Entomology, Fisheries and Wildlife, Forestry, Geography,
Geological Sciences, Horticulture, Microbiology and Molecular
Genetics, Philosophy, Plant Biology, Plant Pathology, Psychology,
Statistics and Probability, and Zoology. The College of Natural
Science administers the specialization.

The interdepartmental graduate Specialization in Ecology, Evolutionary Biology and Behavior is designed to:

1. provide an opportunity for master's students to obtain a com-
prehensive and contemporary academic experience in the
field of ecology, evolutionary biology and behavior.

2. help graduate students with an interest in ecology, evolution-
ary biology and behavior to become sensitive to their profes-
sional obligations and responsibilities.

3. develop an intellectual environment which will foster the
growth of research and teaching in the area of ecology, evolu-
tionary biology and behavior.

A student who is enrolled in a master's degree program in
one of the affiliated departments and who wishes to com-
plete the requirements for the interdepartmental Graduate
Specialization in Ecology, Evolutionary Biology and Behavior
should have a minimum grade–point average of
3.00 and have grades of 3.0 or higher in quantitative science
courses.

Requirements for the Interdepartmental Graduate
Specialization in Ecology, Evolutionary Biology
and Behavior

During the first year of study toward a master's degree, the stu-
dent and the major professor select a guidance committee that
will assist in planning the student's program of study for both the
degree and the specialization. At least one member of the stu-
dent's guidance committee shall be a member of the Ecology,
Evolutionary Biology and Behavior faculty.

The specialization consists of the completion of the ecology,
evolutionary biology and behavior required core courses listed
below. Credits that are used to meet the requirements for the spe-
cialization may also be counted toward the requirements for the
student's major at the discretion of the department.

Required Core Courses

1. One 3-credit course in ecology at the 800–900 level from one of the de-
partments that is affiliated with the interdepartmental graduate special-
ization in ecology, evolutionary biology and behavior. A list of approved
courses is available from the office of the ecology, evolutionary biology
and behavior program.

2. One 3-credit course in ecology at the 800–900 level from one of the de-
partments that is affiliated with the interdepartmental graduate special-
ization in ecology, evolutionary biology and behavior. A list of approved
courses is available from the office of the ecology, evolutionary biology
and behavior program.

Upon completion of the requirements for the degree program
and of the interdepartmental Graduate Specialization in Ecology,
Evolutionary Biology and Behavior, the student should contact
the Ecology, Evolutionary Biology and Behavior Office and re-
quest certification for the completion of the specialization. After
the certification is approved by the Dean of the College of Natural
Science, the Office of the Registrar will enter on the student's aca-
demic record the name of the specialization and the date that it
was completed. This certification will appear on the student's
transcript.

GRADUATE SPECIALIZATION IN
ENVIRONMENTAL TOXICOLOGY

The College of Natural Science, the College of Agriculture and
Natural Resources, the College of Engineering, and the College
of Veterinary Medicine administer the Graduate Specialization in
Environmental Toxicology. The College of Agriculture and Natural
Resources is the primary administrative unit. For additional
information, refer to the Graduate Specialization in Environmental
Toxicology statement in the College of Agriculture and Natural
Resources section of this catalog.
DEPARTMENT OF BIOCHEMISTRY and MOLECULAR BIOLOGY

Thomas D. Sharkey, Chairperson

The Department of Biochemistry and Molecular Biology is administered jointly by the colleges of Natural Science, Human Medicine, and Osteopathic Medicine.

Biochemistry is the discipline that studies the chemistry of living matter. In addition to defining the chemical nature of the molecules of life, biochemists seek to understand the processes involved in their formation and degradation and how these processes are regulated. Such knowledge is a prerequisite for understanding normal biological functions and for adapting or modifying them for useful purposes. It is also fundamental to understanding abnormal functions that underlie biochemical disorders, ultimately leading to their treatment. Thus, biochemistry is a field with significance and applications across the biological spectrum, from the microbial through the plant and animal kingdoms. The potential significance of new discoveries in biochemistry, coupled with the rapid pace of conceptual and methodological advances in the field, make modern biochemistry a most exciting area for study and research.

The Department of Biochemistry and Molecular Biology offers a program leading to the Bachelor of Science degree. The undergraduate program coexists with an extensive graduate program for students seeking the M.S. or Ph.D. degrees. Both undergraduate and graduate students have ready access to a large and diverse faculty representing expertise in the various areas of modern biochemistry.

Biochemists have many types of career opportunities open to them. These opportunities include research in industrial, academic, or government laboratories; teaching at the high school or higher levels; and marketing, management, or administrative responsibilities in enterprises where training in biochemistry is an asset.

UNDERGRADUATE PROGRAMS

BIOCHEMISTRY and MOLECULAR BIOLOGY

Bachelor of Science

The Bachelor of Science program in Biochemistry and Molecular Biology for students in the College of Natural Science combines the elements of a liberal education with thorough preparation in Biology for students in the College of Natural Science combines.

The Bachelor of Science program in Biochemistry and Molecular Biology offers the option of merging rigorous training in biochemistry and molecular biology with development of writing or pedagogical skills, leading to career options in science writing or teaching.

Graduation Requirements

1. The University requirements for bachelor's degrees as described in the Undergraduate Education section of this catalog: 120 credits, including general elective credits, are required for the Bachelor of Science degree in Biochemistry and Molecular Biology.

The University's Tier II writing requirement for the Biochemistry major is met by completing Biochemistry and Molecular Biology 471. That course is referenced in item 3. c. (2) below.

Students who are enrolled in the College of Natural Science may complete the alternative track to Integrative Studies in Biological and Physical Sciences that is described in item 1. under the heading Graduation Requirements in the College statement. Certain courses referenced in requirement 3. below may be used to satisfy the alternative track.

2. The requirements of the College of Natural Science for the Bachelor of Science degree.

The credits earned in certain courses referenced in requirement 3. below may be counted toward College requirements as appropriate.

3. The following requirements for the major:

 a. Competency in a foreign language equivalent to the completion of two 100-level courses at Michigan State University. ... 0 to 8
 b. The following courses outside the Department of Biochemistry: ... 62 to 65

 (1) All of the following courses (34 credits):

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BS 110 Organisms and Populations</td>
<td>4</td>
</tr>
<tr>
<td>BS 111 Cells and Molecules</td>
<td>3</td>
</tr>
<tr>
<td>BS 111L Cell and Molecular Biology Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>CEM 161 Chemistry Laboratory I</td>
<td>1</td>
</tr>
<tr>
<td>CEM 162 Chemistry Laboratory II</td>
<td>1</td>
</tr>
<tr>
<td>CEM 262 Quantitative Analysis</td>
<td>3</td>
</tr>
<tr>
<td>CEM 355 Organic Laboratory I</td>
<td>2</td>
</tr>
<tr>
<td>CEM 356 Organic Laboratory II</td>
<td>2</td>
</tr>
<tr>
<td>CSE 101 Computing Concepts and Competencies</td>
<td>3</td>
</tr>
<tr>
<td>MTH 132 Calculus I</td>
<td>3</td>
</tr>
<tr>
<td>MTH 133 Calculus II</td>
<td>4</td>
</tr>
</tbody>
</table>

 Seven additional credits in biology courses at the 300–400 level.

 (2) One of the following pairs of courses (7 or 6 credits):

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEM 141 General Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>CEM 142 General and Inorganic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CEM 151 General and Descriptive Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>CEM 152 Principles of Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CEM 181H Honors Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td>CEM 182H Honors Chemistry II</td>
<td>4</td>
</tr>
</tbody>
</table>

 (3) One of the following pairs of courses (6 credits):

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEM 251 Organic Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CEM 252 Organic Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CEM 351 Organic Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CEM 352 Organic Chemistry II</td>
<td>3</td>
</tr>
</tbody>
</table>

 (4) One of the following courses (2 or 3 credits):

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEM 395 Analytical/Physical Laboratory</td>
<td>2</td>
</tr>
</tbody>
</table>

 (5) One of the following pairs of courses (6 credits):

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEM 383 Introductory Physical Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CEM 384 Introductory Physical Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CEM 483 Quantum Chemistry</td>
<td>3</td>
</tr>
</tbody>
</table>

 (6) One of the following courses (3 or 4 credits):

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHY 181B Basic Physics I</td>
<td>3</td>
</tr>
<tr>
<td>PHY 183 Physics for Scientists and Engineers I</td>
<td>4</td>
</tr>
</tbody>
</table>

 (7) One of the following courses (3 or 4 credits):

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHY 182B Basic Physics II</td>
<td>3</td>
</tr>
<tr>
<td>PHY 184 Physics for Scientists and Engineers II</td>
<td>4</td>
</tr>
</tbody>
</table>

 (c) The following courses in the Department of Biochemistry and Molecular Biology: ... 15

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMB 101 Frontiers in Biochemistry</td>
<td>1</td>
</tr>
<tr>
<td>BMB 461 Biochemistry I</td>
<td>3</td>
</tr>
<tr>
<td>BMB 462 Biochemistry II</td>
<td>3</td>
</tr>
<tr>
<td>BMB 471 Biochemistry Laboratory (W)</td>
<td>3</td>
</tr>
<tr>
<td>BMB 472 Biochemistry Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>BMB 495 Undergraduate Seminar</td>
<td>2</td>
</tr>
</tbody>
</table>

 The completion of Biochemistry and Molecular Biology 495 fulfills the department's capstone course requirement.
NATURAL SCIENCE
Department of Biochemistry and Molecular Biology

BIOCHEMISTRY and MOLECULAR BIOLOGY/BIOTECHNOLOGY

Bachelor of Science

The Bachelor of Science program in Biochemistry and Molecular Biology/Biotechnology is intended primarily for those students who plan to pursue careers in industry, veterinary medicine, or related health sciences, or for students who plan advanced study in biotechnology and molecular biology.

The core curriculum in the Biochemistry and Molecular Biology/Biotechnology program is identical to that of the Biochemistry and Molecular Biology program. Additional course work introduces the student to the chemical engineering and microbiological aspects of biotechnology and allows for specialization through a broad range of approved biotechnology courses in the junior and senior years.

Requirements for the Bachelor of Science Degree in Biochemistry and Molecular Biology/Biotechnology

1. The University requirements for bachelor's degrees as described in the Undergraduate Education section of this catalog; 120 credits, including general elective credits, are required for the Bachelor of Science degree in Biochemistry and Molecular Biology.

 The University's Tier II writing requirement for the Biochemistry and Molecular Biology/Biotechnology major is met by completing Biochemistry and Molecular Biology 471. That course is referenced in item 3.b. below.

 Students who are enrolled in the College of Natural Science may complete the alternative track to Integrative Studies in Biological and Physical Sciences that is described in item 1. under the heading Graduation Requirements in the College statement. Certain courses referenced in requirement 3. below may be used to satisfy the alternative track.

2. The requirements of the College of Natural Science for the Bachelor of Science degree:

 The credits earned in certain courses referenced in requirement 3. below may be counted toward College requirements as appropriate.

 CREDITS

3. The following requirements for the major:

 a. Competency in a foreign language equivalent to the completion of two 100–level courses at Michigan State University 0 to 8
 b. All of the following courses: ... 70
 BMB 101 Frontiers in Biochemistry ... 3
 BMB 461 Biochemistry I .. 3
 BMB 462 Biochemistry II ... 3
 BMB 471 Biochemistry Laboratory (W) .. 3
 BMB 495 Undergraduate Seminar .. 2
 BS 110 Organisms and Populations ... 4
 BS 111 Cells and Molecules .. 3
 BS 111L Cell and Molecular Biology Laboratory 2
 CEM 151 General and Descriptive Chemistry 4
 CEM 152 Principles of Chemistry ... 3
 CEM 161 Chemistry Laboratory I .. 1
 CEM 162 Chemistry Laboratory II .. 1
 CEM 262 Quantitative Analysis .. 3
 CEM 351 Organic Chemistry I .. 3
 CEM 352 Organic Chemistry II .. 3
 CEM 355 Organic Laboratory I ... 2
 CEM 356 Organic Laboratory II .. 2
 CEM 383 Introductory Physical Chemistry I 3
 CHE 201 Material and Energy Balances 3
 CSE 101 Computing Concepts and Competencies 3
 MTH 133 Calculus II .. 4
 MTH 132 Calculus I ... 3
 MTH 133 Calculus II .. 4
 PHY 183 Physics for Scientists and Engineers I 3
 PHY 184 Physics for Scientists and Engineers II 4
 C. One of the following courses: ... 3
 BMB 472 Biochemistry Laboratory 3
 CSS 451 Biotechnology Applications for Plant Breeding and Genetics 3
 MMG 408 Advanced Microbiology Laboratory (W) 3
 d. One of the following courses: .. 3 or 4
 CSS 350 Introduction to Plant Genetics 3
 ZOL 341 Fundamental Genetics ... 4
 e. At least 8 credits from the following: 8
 ANS 314 Genetic Improvement of Domestic Animals 4
 ANS 407 Food and Animal Toxicology 4
 ANS 425 Principles of Animal Biotechnology 3
 CHE 321 Thermodynamics for Chemical Engineering 4
 CHE 414 Plant Breeding and Biotechnology 3
 CHE 486 Biotechnology in Agriculture: Applications and Ethical Issues .. 3
 FSC 325 Food Processing: Unit Operations 4
 FSC 441 Food Microbiology Laboratory 2
 MMG 301 Introductory Microbiology 3
 MMG 302 Introductory Microbiology Laboratory 1
 MMG 421 Prokaryotic Cell Physiology 3
 MMG 431 Microbial Genetics .. 3
 MMG 433 Microbial Genomics ... 3
 MMG 451 Immunology .. 3
 PHM 450 Introduction to Chemical Toxicology 3
 PSL 420 Membrane Biophysics: An Introduction 2
 PLB 336 Useful Plants .. 3
 PLB 402 Biology of Fungi ... 3
 PLB 415 Plant Physiology .. 3
 PLP 405 Plant Pathology ... 4
 TSM 224 Digital Systems, Sensors and Measurements 3
 ZOL 316 General Parasitology ... 3
 ZOL 318L General Parasitology Laboratory 1
 ZOL 343 Genetics Laboratory .. 2
 ZOL 425 Cells and Development (W) 4
 ZOL 428 Frontiers in Developmental and Tissue Biology (W) 3
 ZOL 450 Cancer Biology (W) .. 3
 ZOL 482 Cytochemistry (W) .. 4

GRADUATE STUDY

The Department of Biochemistry and Molecular Biology is administered jointly by the colleges of Natural Science, Human Medicine, and Osteopathic Medicine. Study for the Master of Science or Doctor of Philosophy degree with a major in biochemistry and molecular biology may be administered by any one of the three colleges referenced above. Study for the Doctor of Philosophy degree with a major in biochemistry and molecular biology—environmental toxicology is administered by the College of Natural Science. In addition, students may pursue dual majors with the Departments of Chemistry, Computer Science and Engineering, or Physics and Astronomy.

Areas of active research in the department are extensive and diverse. Such areas include biochemical genetics, plant biochemistry, biochemistry of development, biochemical instrumentation, protein structure, cell biology, eukaryotic and prokaryotic molecular biology, intermediary metabolism and metabolic regulation, membrane biochemistry and signaling mechanisms, and mechanisms of enzyme catalysis. Opportunities are also available for joint programs or research in genetics, neuroscience, toxicology, biotechnology, microbial ecology, and plant sciences.

BIOCHEMISTRY and MOLECULAR BIOLOGY

The major objectives of the graduate programs in biochemistry are to help students to develop their creative potential and to prepare them for careers in research and teaching in the biochemical sciences. Students' programs of study are designed to develop independent thought as well as broad knowledge and technical skills, through formal and informal courses, laboratory experience, seminars, individual study, and, foremost, through original research that forms the basis for the student's thesis or dissertation.

Master of Science

In addition to meeting the requirements of the university and of the College of Natural Science, Human Medicine, or Osteopathic Medicine, students must meet the requirements specified below.

Admission

Persons with bachelor's degrees in chemistry, biochemistry, or any of several biological, physical, medical, or agricultural sciences are invited to apply for admission. Undergraduate preparation should include courses in general, organic, analytical, and physical chemistry, and in physics, general biology, basic biochemistry, and mathematics through calculus. Minor deficiencies
may be rectified by taking appropriate undergraduate courses concurrently with graduate courses.

Requirements for the Master of Science Degree in Biochemistry and Molecular Biology

A total of 30 credits is required for the degree under either Plan A (with thesis) or Plan B (without thesis). Most students earn the degree under Plan A. A student may pursue Plan B only with the approval of the department's Director of Graduate Studies and chairperson. Such approval is granted only in exceptional cases. The program of study is planned by the student and the major professor. Specific courses in biochemistry, as well as courses in other areas considered relevant to the student's interests and chosen research area, are included in the program.

Doctor of Philosophy

In addition to meeting the requirements of the university and of the College of Natural Science, Human Medicine, or Osteopathic Medicine, students must meet the requirements specified below.

Admission

Person's with a bachelor's or master's degree in chemistry, biochemistry, or any of several biological, physical, medical, or agricultural sciences are invited to apply for admission. Undergraduate preparation should include courses in general, organic, analytical, and physical chemistry, and in physics, general biology, basic biochemistry, and mathematics through calculus. Minor deficiencies may be rectified by taking appropriate undergraduate collateral courses concurrently with graduate courses.

Requirements for the Doctor of Philosophy Degree in Biochemistry and Molecular Biology

The program of study is planned by the student in consultation with the major professor and a guidance committee. Specific courses in biochemistry, as well as courses in other areas considered relevant to the student's interests and chosen research area, are included in the program.

It is expected that the dissertation will show original treatment of an important research problem, will give evidence of independent thought, and will be clearly, logically, and carefully written. It is also expected that the research on which the dissertation is based will be published in the scientific literature.

BIOCHEMISTRY and MOLECULAR BIOLOGY

—ENVIRONMENTAL TOXICOLOGY

Doctor of Philosophy

For information about the Doctor of Philosophy degree program in biochemistry and molecular biology—environmental toxicology, refer to the statement on Doctoral Program in Environmental and Integrative Toxicological Sciences in the Graduate Education section of this catalog.

BIOMEDICAL LABORATORY DIAGNOSTICS PROGRAM

UNDERGRADUATE PROGRAMS

Laboratory testing to diagnose, monitor, and treat disease is a critical component of modern health care. The Biomedical Laboratory Diagnostics Program offers three undergraduate degree programs to assist students in entering the exciting, hi-tech world of the clinical laboratory. Clinical laboratory science traditionally called medical technology, is the health profession focused on the provision of high quality medical laboratory tests on blood and body fluids. Diagnostic molecular science is a related laboratory profession specializing in DNA testing. Based in the sciences of chemistry, biology, mathematics, and physics, these professions provide challenging careers for individuals interested in the medical applications of these sciences. Clinical laboratory scientists and diagnostic molecular scientists manage the testing process from the selection of high quality tests to the reporting of results to the health care provider. This includes method selection and development, assay performance, and results analysis in a highly automated and computerized environment. Clinical laboratory scientists and diagnostic molecular scientists also manage laboratory operations including quality assurance, marketing, personnel management, regulatory compliance, and financial management. Students desiring these careers should plan to gain national certification as a laboratory professional. Biomedical Laboratory Diagnostics Program advisors will assist students in this process.

The curricula in the Biomedical Laboratory Diagnostics Program build on a foundation of basic science. Courses such as hematology, immunohematology, hemostasis, clinical microbiology, molecular laboratory diagnostics, and clinical chemistry have a medical emphasis. As a result, many students preparing for graduate professional education in medicine, dentistry, veterinary sciences, forensics, and other health professions select a Biomedical Laboratory Diagnostics Program major.

Employment in medical diagnostic laboratories is just one of the many opportunities available to graduates. The skills applicable to a medical laboratory translate readily into research and industrial settings. Graduates also find employment in pharmaceutical and medical supply sales. Alumni successfully compete for admission to graduate and graduate professional schools.

Three undergraduate programs that lead to the Bachelor of Science degree are available: medical technology, clinical laboratory sciences and diagnostic molecular science. These programs are designed to meet the professional needs of graduates entering a highly regulated and rapidly changing technological environment and to prepare students for continuing professional education and advanced study beyond the bachelor's degree.
MEDICAL TECHNOLOGY

The medical technology major is designed to prepare students for careers as laboratorians in a variety of settings or to pursue graduate or advanced professional education. The clinical laboratory experience required for national certification as a laboratory professional is not included in this program. Students desiring certification are responsible for securing accredited clinical experiences subsequent to completion of the degree requirements. The Biomedical Laboratory Diagnostics Program will assist students in seeking and gaining placements.

Admission as a Junior

Students must meet the requirements for admission to the College of Natural Science.

Requirements for the Bachelor of Science Degree in Medical Technology

1. The University requirements for bachelor's degrees as described in the Undergraduate Education section of this catalog; 120 credits, including general elective credits, are required for the Bachelor of Science degree in Medical Technology. The University's Tier II writing requirement for the Medical Technology major is met by completing Biomedical Laboratory Diagnostics 455. That course is referenced in item 3. b. below.

 Students who are enrolled in the College of Natural Science may complete the alternative track to Integrative Studies in Biological and Physical Sciences that is described in item 1. under the heading Graduation Requirements in the College statement. Certain courses referenced in requirement 3. below may be used to satisfy the alternative track.

2. The requirements of the College of Natural Science for the Bachelor of Science degree.

 The credits earned in certain courses referenced in requirement 3. below may be counted toward College requirements as appropriate.

3. The following requirements for the major:

 a. Courses outside Medical Technology: 45 to 50 CREDITS

 (1) All of the following courses (31 credits):

 BLD 111 Cells and Molecules3
 BLD 111L Cell and Molecular Biology Laboratory 2
 CEM 141 General Chemistry4
 CEM 161 Chemistry Laboratory I1
 CEM 162 Chemistry Laboratory II1
 CEM 252 Organic Chemistry II3
 MMG 301 Introductory Microbiology3
 MMG 302 Medical Microbiology3
 MMG 464 Diagnostic Microbiology Laboratory2
 PHY 231 Introductory Physics I3
 PHY 232 Introductory Physics II3

 (2) One of the following courses (3 credits):

 MTH 124 Survey of Calculus I3
 MTH 125 Calculus I3

 (3) One of the following courses (3 or 4 credits):

 STT 200 Statistical Methods4
 STT 231 Statistics for Scientists3
 STT 351 Probability and Statistics for Engineering 3
 STT 421 Statistics I3

 (4) One of the following, either (a) or (b) (4 or 6 credits):

 (a) BMB 401 Basic Biochemistry4
 (b) BMB 461 Biochemistry I3

 BMB 462 Biochemistry II3

 (5) One of the following, either (a), (b), or (c) (4 or 6 credits):

 (a) PSL 250 Introductory Physiology4
 (b) PSL 310 Physiology for Pre-Health Professionals 4
 (c) PSL 431 Human Physiology I3
 (d) PSL 432 Human Physiology II3

 b. All of the following Biomedical Laboratory Diagnostics courses:

 BLD 204 Mechanisms of Disease3
 BLD 213 Application of Clinical Laboratory Principles 3
 BLD 220 Preparing for a Health Professions Career1
 BLD 324 Fundamentals of Hematology, Hemostasis and Uremia 3
 BLD 414 Clinical Chemistry Analysis and Practice3
 BLD 416 Clinical Chemistry4
 BLD 424 Advanced Hematology, Hemostasis, and Uremia 3
 BLD 430 Molecular Laboratory Diagnostics2
 BLD 434 Clinical Immunology3
 BLD 435 Transfusion and Transplantation Medicine3
 BLD 450 Eukaryotic Pathogens3
 455 Integrating Clinical Laboratory Science Discipline (W) 2

CLINICAL LABORATORY SCIENCES

The clinical laboratory sciences major is designed to prepare students for certification in medical technology/clinical laboratory science. The program includes courses in the biomedical laboratory sciences, communications, mathematics and statistics, and clinical laboratory sciences coupled with clinical practicum experiences. It is designed to prepare graduates for certification and immediate employment in clinical laboratories upon graduation by including a six-month hospital laboratory experience. Admission to this program is limited. Students seeking admission must complete the admission procedure outlined below.

The Bachelor of Science degree program in clinical laboratory sciences has been accredited by the National Accrediting Agency for Clinical Laboratory Sciences, 8410 West Bryn Mawr Avenue, Suite 670, Chicago, Illinois 60631.

Admission as a Junior

Enrollment in the clinical laboratory sciences major is limited. A new class is admitted at the junior level each academic year. Students with junior standing may be considered for admission contingent upon the projected schedule for completion of the degree requirements and availability of clinical placement sites. Applications for admission are accepted at any time.

To be considered for admission, the applicant must meet the following minimal criteria, in addition to the College of Natural Science admission requirements:

1. Have an overall grade-point average of 2.50 or better including courses taken at other institutions.

2. Have completed Biological Science 111 and 111L; Chemistry 251 and 252; and Biomedical Laboratory Diagnostics 213.

Students may apply before attainment of the above criteria in order to demonstrate their intentions to major in clinical laboratory sciences, however their applications will not be processed until all requirements are fulfilled. Students who present other exceptional credentials but do not meet the grade-point criterion noted above may be considered for admission on a probationary basis.

Applications for admission to the clinical laboratory sciences major are reviewed by a committee of faculty. Factors considered by the Admission Committee in the applicant’s review and admission action are (1) academic record including grade-point averages in science and non-science courses, (2) grades for selected preclinical courses, (3) laboratory science exposure, (4) interview, and (5) compositions.

Academic Standards

To progress to the clinical phase of the curriculum, students must earn a grade-point average of 2.0 or higher in Microbiology and Molecular Genetics 463 and Biomedical Laboratory Diagnostics 324, 417, and 435.

A specific statement of the policies for the clinical phase is provided in the Student Policies for Clinical Laboratory Science Students. These policies are provided to all students upon acceptance to the major, but may be obtained earlier from the Biomedical Laboratory Diagnostics Program, 322 N. Kedzie Hall. Admitted students are responsible for knowing and adhering to these program policies.
Requirements for the Bachelor of Science Degree in Clinical Laboratory Sciences

1. A minimum of 136 credits is required for the Bachelor of Science degree in Clinical Laboratory Sciences.
2. The University requirements for bachelor's degrees as described in the Undergraduate Education section of this catalog.
3. The requirements of the College of Natural Science for the Bachelor of Science degree.
4. The following requirements for the major:
 a. Courses outside Medical Technology: 48 to 50
 (1) All of the following courses (34 credits):
 BS 111 Cells and Molecules 3
 BS 311 Cell and Molecular Biology 2
 CEM 141 General Chemistry 4
 CEM 201 Chemistry Laboratory I 1
 CEM 162 Organic Chemistry Lab. 1
 CEM 251 Organic Chemistry I 3
 CEM 252 Organic Chemistry II 3
 CEM 333 Instrumental Methods and Applications 3
 MMG 301 Introductory Microbiology 3
 MMG 483 Medical Microbiology 3
 MMG 464 Diagnostic Microbiology Laboratory ... 2
 BLD 478 Advanced Clinical Microbiology 1
 BLD 475 Advanced Clinical Immunology and Infectious Diseases 2
 (2) One of the following courses (3 credits):
 MTH 124 Survey of Calculus I 1
 MTH 132 Calculus I 2
 (3) One of the following courses (3 or 4 credits):
 STT 200 Statistical Methods 3
 STT 201 Statistical Methods 3
 STT 231 Statistics for Scientists 3
 STT 351 Probability and Statistics for Engineering 3
 STT 421 Statistics I 3
 (4) One of the following, either (a) or (b) (4 or 6 credits):
 (a) BMB 401 Basic Biochemistry 4
 (b) BMB 461 Biochemistry I 3
 (c) BMB 462 Biochemistry II 3
 (5) One of the following, either (a), (b), or (c) (4 or 6 credits):
 (a) PSL 250 Introductory Physiology 4
 (b) PSL 310 Physiology for Pre-Health Professionals 4
 (c) PSL 431 Human Physiology I 3
 (d) PSL 432 Human Physiology II 1
 (6) All of the following Medical Technology courses:
 BLD 204 Mechanisms of Disease 3
 BLD 213 Application of Clinical Laboratory Principles 3
 BLD 220 Preparing for a Health Professions Career 1
 BLD 324 Fundamentals of Hematology, Hemostasis, and Urology 1
 BLD 324L Introductory Laboratory in Hematology, Hemostasis and Urology 1
 BLD 416 Clinical Chemistry 4
 BLD 417 Quality Processes in Diagnostic Laboratory Testing 2
 BLD 424 Advanced Hematology, Hemostasis, and Urology 2
 BLD 424L Advanced Laboratory in Hematology, Hemostasis, and Urology 1
 BLD 430 Molecular Laboratory Diagnostics 2
 BLD 433 Clinical Immunology and Immunohematology 1
 BLD 434 Clinical Immunology 3
 BLD 435 Transfusion and Transplantation Medicine 3
 BLD 442 Education and Management in the Clinical Laboratory 3
 BLD 450 Eukaryotic Pathogens 3
 BLD 455 Integrating Clinical Laboratory Science Discipline (W) 2
 (7) One of the following Biomedical Laboratory Diagnostics Program:
 BLD 471 Advanced Clinical Chemistry Laboratory 3
 BLD 472 Advanced Clinical Chemistry Laboratory 3
 BLD 473 Advanced Clinical Hematology and Body Fluids Laboratory 3
 BLD 474 Advanced Clinical Hematology and Body Fluids Laboratory 3
 BLD 475 Advanced Clinical Immunology and Immunohematology Laboratory 2
 BLD 476 Advanced Clinical Immunology and Immunohematology Laboratory 1
 BLD 477 Advanced Clinical Microbiology Laboratory 1
 BLD 478 Advanced Clinical Microbiology 1
 BLD 496 Integrative Correlations in Clinical Laboratory Science 1
 BLD 498 Focused Problems in Clinical Laboratory Science 2

During the clinical practicum, usually two semesters, the student may be required to relocate and/or commute to a clinical laboratory in an affiliated clinical facility.

Diagnostic Molecular Science

Diagnostic molecular science is the allied health profession whose practitioners specialize in performing medical laboratory tests on DNA and RNA. These tests are used to diagnose and monitor hereditary conditions and acquired diseases such as leukemia and infectious diseases. The diagnostic molecular science major is a professional program designed to prepare students for national certification in diagnostic molecular science qualifying them to work in medical laboratories performing molecular testing. Graduates will also be prepared for positions in research and industrial laboratories. The program includes courses in mathematics and statistics, molecular biology, genetics, chemistry, biochemistry, and clinical laboratory sciences and includes a semester-long practicum experience in clinical and other laboratories. The first phase of the program is the pre-professional and preparatory courses that include the university and college requirements as well as prerequisites to the major courses. The second phase is the on-campus professional (major) courses. The third phase is a clinical practicum in clinical and other laboratories.

Admission as a Junior

Enrollment in the diagnostic molecular science major is limited. A new class is admitted at the junior level each calendar year. Applications for admission must be received by December 1 in the year in which admission is sought.

To be considered for admission, the applicant must meet the following minimal criteria, in addition to the College of Natural Science requirements:
1. Have an overall grade-point average of 2.50.
2. Have completed a minimum of 56 credits which must include the following courses:
 a. Biomedical Laboratory Diagnostics 213.
 b. Chemistry 162, 251, and 252.
 c. Mathematics 116 or equivalent.
 d. Biological Science 111 and 111L.

Applications for admission to the diagnostic molecular science major are reviewed by a committee of the faculty. Factors considered by the admission committee in the applicant’s review and admission action are (1) grade-point average in science and non-science courses, (2) grade-point average for selected pre-clinical laboratory science courses, (3) diagnostic laboratory exposure, (4) interview, and (5) written compositions.

Academic Standards

To progress to the clinical phase of the curriculum, students must earn a 2.0 or higher in Zoology 341, and Biomedical Laboratory Diagnostics 436 and 438.

A specific statement of the policies for the clinical phase is provided in the Student Policies for Diagnostic Molecular Science Students. These policies are provided to all students upon acceptance to the major, but may be obtained earlier from the Biomedical Laboratory Diagnostics Program, 322 N. Kedzie Hall. Admitted students are responsible for knowing and adhering to these program policies.
Requirements for the Bachelor of Science Degree in Diagnostic Molecular Science

1. The University requirements for bachelor’s degrees as described in the Undergraduate Education section of this catalog; 120 credits, including general elective credits, are required for the Bachelor of Science degree in Diagnostic Molecular Science. The University’s Tier II writing requirement for the Diagnostic Molecular Science major is met by completing Biomedical Laboratory Diagnostics 455. That course is referenced in item 3. b. below. Students who are enrolled in the College of Natural Science may complete the alternative track to Integrative Studies in Biological and Physical Sciences that is described in item 1. under the heading Graduation Requirements in the College statement. Certain courses referenced in requirement 3. below may be used to satisfy the alternative track. The completion of Statistics 200 or 201 referenced in item 3. a. (4) may also satisfy the University mathematics requirement.

2. The requirements of the College of Natural Science for the Bachelor of Science degree. The credits earned in certain courses referenced in requirement 3. below may be counted toward College requirements as appropriate.

3. The following requirements for the major:

<table>
<thead>
<tr>
<th>a. Courses outside medical technology:</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) All of the following courses (36 credits):</td>
<td></td>
</tr>
<tr>
<td>BMB 461 Biochemistry I</td>
<td>3</td>
</tr>
<tr>
<td>BMB 462 Biochemistry II</td>
<td>3</td>
</tr>
<tr>
<td>BS 111 Cells and Molecules</td>
<td>3</td>
</tr>
<tr>
<td>BS 111L Cell and Molecular Biology Laboratory raining</td>
<td>1</td>
</tr>
<tr>
<td>CEM 141 General Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>CEM 161 Chemistry Laboratory I</td>
<td>1</td>
</tr>
<tr>
<td>CEM 162 Chemistry Laboratory II</td>
<td>1</td>
</tr>
<tr>
<td>CEM 251 Organic Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CEM 252 Organic Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CEM 333 Instrumental Methods and Applications</td>
<td>3</td>
</tr>
<tr>
<td>PHY 231 Introductory Physics I</td>
<td>3</td>
</tr>
<tr>
<td>PHY 232 Introductory Physics II</td>
<td>3</td>
</tr>
<tr>
<td>ZOL 341 Fundamental Genetics</td>
<td>4</td>
</tr>
<tr>
<td>(2) One of the following courses (3 credits):</td>
<td></td>
</tr>
<tr>
<td>MTH 124 Survey of Calculus I</td>
<td>3</td>
</tr>
<tr>
<td>MTH 132 Calculus I</td>
<td>3</td>
</tr>
<tr>
<td>(3) One of the following courses (4 credits):</td>
<td></td>
</tr>
<tr>
<td>PSL 250 Introductory Physiology</td>
<td>4</td>
</tr>
<tr>
<td>PSL 310 Physiology for Pre-Health Professionals</td>
<td>4</td>
</tr>
<tr>
<td>(4) One of the following courses (3 or 4 credits):</td>
<td></td>
</tr>
<tr>
<td>STT 200 Statistical Methods</td>
<td>3</td>
</tr>
<tr>
<td>STT 201 Statistical Methods</td>
<td>4</td>
</tr>
<tr>
<td>STT 231 Statistics for Scientists</td>
<td>3</td>
</tr>
<tr>
<td>STT 421 Statistics I</td>
<td>3</td>
</tr>
<tr>
<td>STT 446 Statistics for Biologists</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>b. All of the following medical technology courses:</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLD 204 Mechanisms of Disease</td>
<td>3</td>
</tr>
<tr>
<td>BLD 213 Application of Clinical Laboratory Principles</td>
<td>2</td>
</tr>
<tr>
<td>BLD 220 Preparing for a Health Professions Career</td>
<td>1</td>
</tr>
<tr>
<td>BLD 417 Quality Processes in Diagnostic Laboratory Testing</td>
<td>2</td>
</tr>
<tr>
<td>BLD 436 Principles of Diagnostic Molecular Science</td>
<td>2</td>
</tr>
<tr>
<td>BLD 437 Advanced Applications of Diagnostic Molecular Science</td>
<td>2</td>
</tr>
<tr>
<td>BLD 438 Molecular Diagnostic Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>BLD 442 Education and Management in the Clinical Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>BLD 455 Integrating Clinical Laboratory Science Discipline (W)</td>
<td>2</td>
</tr>
<tr>
<td>BLD 482 Advanced Diagnostic Molecular Science</td>
<td>2</td>
</tr>
<tr>
<td>BLD 483 Molecular Diagnostic Experience in Inherited and Predictive Genetics</td>
<td>2</td>
</tr>
<tr>
<td>BLD 484 Molecular Diagnostic Experience in Infectious Disease</td>
<td>2</td>
</tr>
<tr>
<td>BLD 485 Molecular Diagnostic Experience in Genotyping and Individual Identification</td>
<td>2</td>
</tr>
<tr>
<td>BLD 496 Integrative Correlations in Clinical Laboratory Science</td>
<td>1</td>
</tr>
<tr>
<td>c. At least two of the following courses:</td>
<td>5 to 7</td>
</tr>
<tr>
<td>BLD 324 Fundamentals of Hematology, Hemostasis, and Urinalysis</td>
<td>3</td>
</tr>
<tr>
<td>BLD 416 Clinical Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>BLD 424 Advanced Hematology, Hemostasis, and Urinalysis</td>
<td>2</td>
</tr>
<tr>
<td>BLD 434 Clinical Immunology</td>
<td>3</td>
</tr>
<tr>
<td>MMG 301 Introductory Microbiology</td>
<td>3</td>
</tr>
<tr>
<td>MMG 431 Microbial Genetics</td>
<td>3</td>
</tr>
<tr>
<td>MMG 433 Microbial Genomics</td>
<td>3</td>
</tr>
<tr>
<td>MMG 445 Microbial Biotechnology</td>
<td>3</td>
</tr>
<tr>
<td>MMG 461 Medical Microbiology</td>
<td>3</td>
</tr>
<tr>
<td>ZOL 404 Human Genetics</td>
<td>3</td>
</tr>
<tr>
<td>ZOL 450 Cancer Biology (W)</td>
<td>3</td>
</tr>
</tbody>
</table>

GRADUATE STUDY

Two master’s degree programs are available. The clinical laboratory science program is a traditional science-oriented degree with both thesis and non-thesis options. The non-thesis option is also available online. The biomedical laboratory operations program is a professional master’s degree blending business management with the science needed to prepare managers for positions in research, industry, and medical settings.

CLINICAL LABORATORY SCIENCES

The graduate program in clinical laboratory sciences leads to the Master of Science degree. The program emphasizes the multidisciplinary nature of the laboratory sciences, encourages research that crosses traditional laboratory disciplines, and promotes innovative thinking. The curriculum is customized to the student’s interests and to supporting the project each student identifies. Students may conduct research projects with both resident and adjunct faculty.

In addition to meeting the requirements of the university and of the College of Natural Science, students must meet the requirements specified below.

Admission

Certification as a medical technologist/clinical laboratory scientist is preferred, but not required, for admission to the master’s degree program in clinical laboratory sciences. For additional information on admission, contact the Graduate Program Director, 322 N. Kedzie Lab, Michigan State University, East Lansing, Michigan 48824–1031.

Requirements for the Master of Science Degree in Clinical Laboratory Sciences

A total of 30 credits is required for the degree under either Plan A (with thesis) or Plan B (without thesis). The student’s program of study must be approved by the student’s academic advisor.

<table>
<thead>
<tr>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLD 801 Medical Technology Seminar</td>
</tr>
<tr>
<td>BLD 810 Research Planning in the Clinical Laboratory</td>
</tr>
<tr>
<td>2. At least 4 credits of 800-level Biomedical Laboratory Diagnostics courses approved by the student’s academic advisor</td>
</tr>
<tr>
<td>3. One course in biochemistry or cell biology</td>
</tr>
<tr>
<td>4. One 400-level or above course in statistics</td>
</tr>
<tr>
<td>5. Not more than 9 credits in 400-level courses</td>
</tr>
</tbody>
</table>

Additional Requirements for Plan A:

| BLD 899 Master’s Thesis Research | 7 |

Additional Requirements for Plan B:

| BLD 890 Selected Problems in Clinical Laboratory Science | 3 |

BIOMEDICAL LABORATORY OPERATIONS

Master of Science

The master’s degree program in biomedical laboratory operations (BLOM) is designed for individuals with previous clinical laboratory experience who seek career advancement as managers, administrators, researchers, entrepreneurs and policymakers in the field. The core of this program resides in three major components: science, management and practice. The science component focuses on post-baccalaureate courses planned to develop a high level of competence within the student’s chosen biomedical laboratory discipline. The management component provides a solid foundation in general business including resource management, communication skills, organizational structures, deci-
sion making, and essential aspects of working in a regulated industry; it includes courses which specifically emphasize the management of a biomedical laboratory. The practice component requires participation in an industrial/clinical internship. This experience is intended to expose individuals to real-life problems with an expectation of generating positive, realistic solutions. Internships are conducted in a closely coordinated manner among non-academic industrial or clinical partners, Michigan State University faculty members and the student.

The program of study can be planned to meet individual interests and career paths, while providing a structured sequence useful for personal and professional development. For select students, opportunities are available for acquisition of professional credentials.

In addition to meeting the requirements of the university and the College of Natural Science, students must meet the requirements specified below.

Admission

Regular admission to the Master of Science degree in Biomedical Laboratory Operations requires completion of a bachelor of science degree, with a minimum grade-point average of 3.0, in a field of study directly related to the focus of this program and a minimum of two years’ experience in a clinical laboratory setting. Applicants with certification in a clinical laboratory profession may apply their clinical education or internship experience towards the two-year experience requirement. Scholastic record, experience, personal qualifications and career goals are taken into consideration to determine the applicant’s acceptability.

Applicants who fail to meet the criteria for regular admission, may apply for provisional admission if they have demonstrated a high probability of success. The decision regarding conversion to regular status will be made after completion of 9 credit hours of science-based courses. Students who are admitted provisionally will be required to complete 9 credits in prescribed science courses with a 3.0 grade-point average. These collateral courses will not count toward the degree.

Requirements for the Master of Science Degree in Biomedical Laboratory Operations

The student must complete 31 credits under Plan B (without thesis). The specific program of study, including an internship in collaboration with an industrial partner, and competence in statistics must be approved by the student’s guidance committee. The final oral examination, which covers both course work and research, is administered by the student’s guidance committee.

<table>
<thead>
<tr>
<th>CREDITS</th>
<th>REQUIREMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The following courses (6 credits):</td>
<td></td>
</tr>
<tr>
<td>BLD 801 Medical Technology Seminar</td>
<td>1</td>
</tr>
<tr>
<td>BLD 842 Managing Biomedical Laboratory Operations</td>
<td>2</td>
</tr>
<tr>
<td>BLD 844 Topics in Biomedical Laboratory Operations</td>
<td>1</td>
</tr>
<tr>
<td>BLD 846 Decision Processes for Biomedical Laboratory Operations</td>
<td>2</td>
</tr>
<tr>
<td>2. Complete a minimum of 5 credits in courses with a business or management focus.</td>
<td></td>
</tr>
<tr>
<td>3. Complete a minimum of 17 credits in courses with a science focus.</td>
<td></td>
</tr>
<tr>
<td>4. Complete a minimum of 3 credits of an internship with an industrial partner.</td>
<td></td>
</tr>
<tr>
<td>5. Pass a final oral examination.</td>
<td></td>
</tr>
<tr>
<td>6. All students in the program will be required to complete a Certificate in Basic Business and Communication Skills. The certificate program is organized as a series of week-end workshops covering such topics as project management, business law, intellectual property, management theory, finance, writing skills, presentation skills, information retrieval, interpersonal skills and group work. The certificate program offered by the faculty of The Eli Broad College of Business and the College of Communication Arts and Sciences, will include a case-study approach. It will normally be undertaken during the first year of enrollment and will involve an additional cost to the student beyond usual tuition and fees. The completion of the certificate program is approved by The Eli Broad College of Business and by the Associate Dean of the College of Natural Science, the Office of the Registrar will enter on the student’s academic record the name of the certificate program and the date it was completed. This certification will appear on the student’s transcript upon completion of the requirements for the degree program.</td>
<td></td>
</tr>
</tbody>
</table>

DEPARTMENT of CHEMISTRY

John L. McCracken, Chairperson

Chemistry is the science concerned with substances—their properties, composition, structures, and reactions. Scientific progress has brought problems in biology and materials science to the molecular level. As a result, chemists are employed in such diverse industries as explosives, pharmaceuticals, plastics, adhesives, paint, metals, glass, cement, insecticides, textiles, petroleum, soap, paper, semi-conductors, electronics, and cosmetics. Synthesis of new organic and inorganic chemicals is of basic importance to all chemistry. Sales of most drug and plastic companies, for example, are concentrated in substances unknown ten years ago. The development of adequate methods for analysis of these new materials requires constant research on instrumental and chemical methods of analysis. An understanding of the rates and equilibria of chemical reactions, thermodynamics and molecular structure is essential for the development of new energy sources, new treatments for diseases, and new industrial processes. Every educated person should have some knowledge of chemistry, and many interesting and rewarding careers require varying amounts of training in this field.

UNDERGRADUATE PROGRAMS

CHEMISTRY

Bachelor of Science

The degree Bachelor of Science with a major in chemistry is designed to provide a thorough foundation in the various fields of chemistry and the related sciences, as well as a proper educational balance in the liberal arts. The program is for students planning careers in the chemical industries or in governmental laboratories and for those planning graduate study in chemistry. The Bachelor of Science degree program in chemistry has been accredited by the American Chemical Society.

The completion of one or more semesters of independent research (Chemistry 400H or 420) is strongly recommended for students in this program.

A detailed description of this program may be obtained from the department.

Requirements for the Bachelor of Science Degree in Chemistry

1. The University requirements for bachelor’s degrees as described in the Undergraduate Education section of this catalog; 120 credits, including general elective credits, are required for the Bachelor of Science degree in Chemistry.
2. The University’s Tier II writing requirement for the Chemistry major is met by completing Chemistry 355, 395, 415, and 435. Those courses are referenced in items 3. b. (3) and 3. b. (4) below.
3. Students who are enrolled in the College of Natural Science may complete the alternative track to Integrative Studies in Biological and Physical Sciences that is described in item 1. under the heading Graduation Requirements in the College statement. Certain courses referenced in requirement 3. b. (4) below may be used to satisfy the alternative track.
The credits earned in certain courses referenced in requirement 3. below may be counted toward College requirements as appropriate.

3. The following requirements for the major:

a. The following courses outside the Department of Chemistry: .. 30 to 32

 (1) One of the following courses (3 or 4 credits):

 (a) CEM 141 General Chemistry 4
 (b) CEM 151 General and Inorganic Chemistry 4
 (c) CEM 152 Principles of Chemistry 4
 (d) CEM 181H Honors Chemistry I 4
 (e) CEM 182H Honors Chemistry II 4

 (2) One of the following pairs of courses (4 credits):

 (a) CEM 162 Chemistry Laboratory II 1
 (b) CEM 186H Honors Chemistry Laboratory II 2

 (3) All of the following courses (29 credits):

 CEM 351 Organic Chemistry I 3
 CEM 352 Organic Chemistry II 3
 CEM 355 Organic Laboratory I 2
 CEM 356 Organic Laboratory II 2
 CEM 395 Analytical/Physical Chemistry Laboratory 2
 CEM 411 Inorganic Chemistry 4
 CEM 434 Advanced Analytical Chemistry 2
 CEM 435 Analytical Chemistry Laboratory 2
 CEM 483 Quantum Chemistry 3
 CEM 484 Molecular Thermodynamics 3
 CEM 495 Molecular Spectroscopy 2

 (4) The following capstone course (3 credits):

 CEM 415 Advanced Synthesis Laboratory 3

b. The following courses in the Department of Chemistry: .. 43 or 44

 (1) One of the following pairs of courses (7 or 8 credits):

 (a) CEM 141 General Chemistry 4
 (b) CEM 151 General and Inorganic Chemistry 4
 (c) CEM 152 Principles of Chemistry 4
 (d) CEM 181H Honors Chemistry I 4
 (e) CEM 182H Honors Chemistry II 4

 (2) One of the following pairs of courses (4 credits):

 (a) CEM 162 Chemistry Laboratory II 1
 (b) CEM 186H Honors Chemistry Laboratory II 2

 (3) All of the following courses (29 credits):

 CEM 351 Organic Chemistry I 3
 CEM 352 Organic Chemistry II 3
 CEM 355 Organic Laboratory I 2
 CEM 356 Organic Laboratory II 2
 CEM 395 Analytical/Physical Chemistry Laboratory 2
 CEM 411 Inorganic Chemistry 4
 CEM 434 Advanced Analytical Chemistry 2
 CEM 435 Analytical Chemistry Laboratory 2
 CEM 483 Quantum Chemistry 3
 CEM 484 Molecular Thermodynamics 3
 CEM 495 Molecular Spectroscopy 2

 (4) The following capstone course (3 credits):

 CEM 415 Advanced Synthesis Laboratory 3

Bachelor of Arts

Many occupations require a moderate training in chemistry combined with training in one or more other areas. Accordingly, the Bachelor of Arts degree is intended for the students desiring a lesser degree of specialization than required for the Bachelor of Science degree. Students who desire chemistry as a major in the programs of premedicine, predentistry and prelaw, or as training for many professional or industrial positions, may elect this program. Ample opportunity in the choice of electives is provided for students who are planning to obtain positions such as the following: technical secretaries, technical librarians, technical sales personnel, chemical patent lawyers, and criminologists. Additional collateral work may be necessary if this program is presented for admission to a school of graduate studies. A more detailed statement may be obtained from the Department of Chemistry.

Requirements for the Bachelor of Arts Degree in Chemistry

1. The University requirements for bachelor’s degrees as described in the Undergraduate Education section of this catalog; 120 credits, including general elective credits, are required for the Bachelor of Arts degree in Chemistry.

 The University’s Tier II writing requirement for the Chemistry major is met by completing Chemistry 499. That course is referenced in item 3. b. (4) below.

 Students who are enrolled in the College of Natural Science may complete the alternative track to Integrative Studies in Biological and Physical Sciences that is described in item 1. under the heading Graduation Requirements in the College statement. Certain courses referenced in requirement 3. below may be used to satisfy the alternative track.

2. The requirements of the College of Natural Science for the Bachelor of Arts degree.

 The credits earned in certain courses referenced in requirement 3. below may be counted toward College requirements as appropriate.

3. The following requirements for the major:

a. The following courses outside the Department of Chemistry: ... 42 to 45

 (1) One of the following courses (3 or 4 credits):

 (a) CEM 141 General Chemistry 4
 (b) CEM 151 General and Inorganic Chemistry 4
 (c) CEM 152 Principles of Chemistry 4
 (d) CEM 181H Honors Chemistry I 4
 (e) CEM 182H Honors Chemistry II 4
 (f) CEM 162 Chemistry Laboratory II 1
 (g) CEM 186H Honors Chemistry Laboratory II 2

 (2) One of the following pairs of courses (4 credits):

 (a) CEM 141 General Chemistry 4
 (b) CEM 151 General and Inorganic Chemistry 4
 (c) CEM 152 Principles of Chemistry 4
 (d) CEM 181H Honors Chemistry I 4
 (e) CEM 182H Honors Chemistry II 4

 (3) All of the following courses (29 credits):

 CEM 351 Organic Chemistry I 3
 CEM 352 Organic Chemistry II 3
 CEM 355 Organic Laboratory I 2
 CEM 356 Organic Laboratory II 2
 CEM 395 Analytical/Physical Chemistry Laboratory 2
 CEM 411 Inorganic Chemistry 4
 CEM 434 Advanced Analytical Chemistry 2
 CEM 435 Analytical Chemistry Laboratory 2
 CEM 483 Quantum Chemistry 3
 CEM 484 Molecular Thermodynamics 3
 CEM 495 Molecular Spectroscopy 2

 (4) The following capstone course (3 credits):

 CEM 415 Advanced Synthesis Laboratory 3

CHEMICAL PHYSICS

Bachelor of Science

The major in Chemical Physics provides a strong foundation in chemistry, physics, and mathematics for those students who have a professional interest in the areas of overlapping chemical and physics. It is particularly suitable for students planning to pursue a graduate degree in the area of chemical physics.

A detailed description of this program may be obtained from either the Department of Physics and Astronomy or the Department of Chemistry.

Requirements for the Bachelor of Science Degree in Chemical Physics

1. The University requirements for bachelor’s degrees as described in the Undergraduate Education section of this catalog; 120 credits, including general elective credits, are required for the Bachelor of Science degree in Chemical Physics.

 The University’s Tier II writing requirement for the Chemical Physics major is met by completing Chemistry 499. That course is referenced in item 3. b. (6) below.

 Students who are enrolled in the College of Natural Science may complete the alternative track to Integrative Studies in Biological and Physical Sciences that is described in item 1. under the heading Graduation Requirements in the College statement. Certain courses referenced in requirement 3. below may be used to satisfy the alternative track.

2. The requirements of the College of Natural Science for the Bachelor of Science degree.

 The credits earned in certain courses referenced in requirement 3. below may be counted toward College requirements as appropriate.

3. The following requirements for the major:

a. The following courses outside the Department of Chemistry: ... 42 to 45

 (1) One of the following courses (3 or 4 credits):

 (a) CEM 141 General Chemistry 4
 (b) CEM 151 General and Inorganic Chemistry 4
 (c) CEM 152 Principles of Chemistry 4
 (d) CEM 181H Honors Chemistry I 4
 (e) CEM 182H Honors Chemistry II 4
 (f) CEM 162 Chemistry Laboratory II 1
 (g) CEM 186H Honors Chemistry Laboratory II 2

 (2) One of the following pairs of courses (4 credits):

 (a) CEM 141 General Chemistry 4
 (b) CEM 151 General and Inorganic Chemistry 4
 (c) CEM 152 Principles of Chemistry 4
 (d) CEM 181H Honors Chemistry I 4
 (e) CEM 182H Honors Chemistry II 4

 (3) All of the following courses (29 credits):

 CEM 351 Organic Chemistry I 3
 CEM 352 Organic Chemistry II 3
 CEM 355 Organic Laboratory I 2
 CEM 356 Organic Laboratory II 2
 CEM 395 Analytical/Physical Chemistry Laboratory 2
 CEM 411 Inorganic Chemistry 4
 CEM 434 Advanced Analytical Chemistry 2
 CEM 435 Analytical Chemistry Laboratory 2
 CEM 483 Quantum Chemistry 3
 CEM 484 Molecular Thermodynamics 3
 CEM 495 Molecular Spectroscopy 2

 (4) The following capstone course (3 credits):

 CEM 415 Advanced Synthesis Laboratory 3

The credits earned in certain courses referenced in requirement 3. below may be counted toward College requirements as appropriate.
COMPUTATIONAL CHEMISTRY

Bachelor of Science

The Bachelor of Science degree program with a major in computational chemistry is designed to provide a thorough foundation in the various fields of chemistry and the related sciences, as well as a proper educational balance in the liberal arts. In addition, it provides a means for chemistry majors with an interest in the application of computers and computing in chemistry to obtain expertise in computer fundamentals. The program is for students planning careers in the chemical industries or in governmental laboratories and for those planning graduate study in chemistry.

Requirements for the Bachelor of Science Degree in Computational Chemistry

1. The University requirements for bachelor’s degrees as described in the Undergraduate Education section of this catalog; 120 credits, including general elective credits, are required for the Bachelor of Science degree in Computational Chemistry.

The University’s Tier II writing requirement for the Computational Chemistry major is met by completing Chemistry 355, 395, 435, and 481. Those courses are referenced in items 3. b. (3) and 3. b. (4) below.

2. The requirements of the College of Natural Science for the Bachelor of Science degree.

The credits earned in certain courses referenced in requirement 3 below may be counted toward College requirements as appropriate.

3. The following requirements for the major:

a. The following courses outside the Department of Chemistry;...

b. The following courses in the Department of Chemistry;...

b. The following courses in the Department of Chemistry;...

CREDITS

1. One of the following courses (3 or 4 credits): 49 or 50

2. The requirements of the College of Natural Science for the Bachelor of Science degree.

TEACHER CERTIFICATION OPTIONS

The chemistry disciplinary majors leading to the Bachelor of Arts and Bachelor of Science degrees are available for teacher certification.

A chemistry disciplinary minor is also available for teacher certification.

Students who elect a chemistry disciplinary major or the chemistry disciplinary minor must contact the Department of Chemistry.

For additional information, refer to the statement on TEACHER CERTIFICATION in the Department of Teacher Education section of this catalog.
GRADUATE STUDY

The Department of Chemistry offers the graduate degree programs that are listed below:

Master of Science
- Chemistry
- Computational Chemistry

Doctor of Philosophy
- Chemical Physics
- Chemistry
- Chemistry—Environmental Toxicology

Descriptions of the degree programs, organized by fields of study in alphabetical order, are presented below.

CHEMICAL PHYSICS

Doctor of Philosophy

In addition to meeting the requirements of the university and of the College of Natural Science, students must meet the requirements specified below.

Admission

Only those persons who are enrolled in a Doctor of Philosophy degree program in the Department of Chemistry or the Department of Physics and Astronomy at Michigan State University may petition the Committee on Chemical Physics for admission to the doctoral program in chemical physics.

Requirements for the Doctor of Philosophy Degree in Chemical Physics

The student must:

1. Pass doctoral comprehensive examinations of the cumulative type. Details about these examinations may be obtained from the department.
2. Complete at least 6 credits in 800–900 level Chemistry courses.
3. Complete at least 6 credits in 800–900 level Physics and Astronomy courses.
4. Pass an oral examination on the proposed research.

CHEMISTRY

Master of Science

For the Master of Science program in chemistry, the areas of study are analytical, inorganic, organic, and physical.

In addition to meeting the requirements of the university and of the College of Natural Science, students must meet the requirements specified below.

Admission

The student must have a bachelor’s degree and an acceptable grade-point average, and must have had in an undergraduate program one year each of general, analytical, organic, and physical chemistry, one year of physics, and one year of calculus. Deficiencies in the undergraduate program, such as deficiencies in calculus or in foreign language, must be removed before the degree will be recommended.

Requirements for the Master of Science Degree in Chemistry

A total of 30 credits are required for the program under either Plan A (with thesis) or Plan B (without thesis). Most students earn the degree under Plan A. For Plan A, students are required to complete 8 credits of master’s thesis research and may be permitted to complete up to 15 credits of master’s thesis research; approximately two-thirds of the remaining credits are in the major area and the balance is in other areas.

All entering graduate students must take an orientation examination in each of the four major areas of chemistry and must ultimately achieve at the doctoral qualifying level in one area (for students on Plan A, that area must be the one in which the research is to be performed), and at the minimum proficiency level established by the department in the other three areas.

The program is planned by the student and the major professor in accordance with the student's desire for earning only the master's degree or continuing on to the doctorate.

Doctor of Philosophy

Programs for the Doctor of Philosophy degree, based on a broad and thorough undergraduate program, emphasize study and original research in one of the following areas: analytical, inorganic, organic, or physical chemistry, or chemical physics. Numerous cross-disciplinary research opportunities involving, for example, biochemistry or the cyclotron laboratory, are also available.

In addition to meeting the requirements of the university and of the College of Natural Science, students must meet the requirements specified below.

Admission

Students holding bachelor's degrees, or master's degrees or the equivalent, may be admitted for study at the doctoral level on either a provisional or regular basis. Applicants are expected to have had in their undergraduate programs one year each of general, analytical, organic, and physical chemistry, one year of physics, and one year of calculus or their equivalents. Deficiencies in the undergraduate program must be removed. Admission to the doctoral program is dependent on having a 3.00 or better grade-point average and upon satisfactory performance on the qualification examinations given in the areas of analytical, inorganic, organic, and physical chemistry. The qualification examinations will be waived for students who score at the 75th percentile or higher on the Graduate Record Examination Subject Test in Chemistry.

Requirements for the Doctor of Philosophy Degree in Chemistry

Satisfactory performance on doctoral comprehensive examinations of the cumulative type is required. Details about these and the qualification examinations may be obtained from the department.

Satisfactory performance on two oral examinations, one to demonstrate research preparedness and the other as a defense of the dissertation, is required.
CHEMISTRY—ENVIRONMENTAL TOXICOLOGY

Doctor of Philosophy

For information about the Doctor of Philosophy degree program in chemistry—environmental toxicology, refer to the statement on Doctoral Program in Environmental and Integrative Toxicological Sciences in the Graduate Education section of this catalog.

COMPUTATIONAL CHEMISTRY

Master of Science

The Master of Science with a major in Computational Chemistry is designed to prepare individuals to implement, manage, and support all aspects of the application of computers and computing in chemistry within academic, governmental, and industrial scientific settings. Graduates will also be equipped to serve as professional resources for visualization, modeling, and database activities.

Computers and computing have revolutionized the way chemistry is practiced in both academia and industry. Representative uses of computers and computing in both settings include: collecting, analyzing, and visualizing data in an experiment; devising mathematical models of chemical systems; simulating and interpreting the results of experiments using mathematical models; preparing reports and organizing information; communicating with colleagues via local networks and the Internet; calculating the properties of chemical systems using the laws of physics; and using sophisticated visualization techniques to interpret complex calculations. Each of these activities requires that students have a working understanding of computers and computing as well as of the underlying chemistry.

Students who want to enhance their managerial, leadership and business skills may elect an optional certification program in business management and communication offered by The Eli Broad College of Business and the College of Communication Arts and Sciences. This optional combination of technical and managerial skills will uniquely qualify these graduates to function as professionals in industrial, governmental, and academic settings.

Admission

To be admitted to this program, students must have earned a Bachelor of Science in Chemistry or its equivalent, and completed one year of physics, the equivalent of four semesters of calculus, and the equivalent of 16 credits in computer-science courses.

Promising students who do not possess an adequate background in computer science or mathematics will be required to complete approved undergraduate courses to remove these deficiencies. These courses may not count toward the master’s degree.

In addition to meeting the university and College of Natural Science requirements, students must meet the requirements specified below.

Requirements for the Master of Science Degree in Computational Chemistry

This program is available only under Plan B (without thesis). The student’s program of study must be approved by the academic advisor.

1. The student must complete the requirements specified below:
 a. Entering graduate students must take a qualifying examination in analytical, inorganic, organic, and physical chemistry and must earn a qualifying grade in at least two areas. Students who do not earn at least two qualifying grades will be required to complete course work that may not count toward the degree.
 b. A minimum of 30 credits.
 c. At least eight of the following courses (minimum 22 credits):
 - BMB 461 Biochemistry I
 - CEM 481 Seminar in Computational Chemistry
 - CEM 811 Advanced Inorganic Chemistry
 - CEM 838 Computer-Based Scientific Instrumentation
 - CEM 881 Atomic and Molecular Structure
 - CEM 883 Computational Quantum Chemistry
 - CEM 890 Chemical Problems and Reports
 - CEM 924 Selected Topics in Analytical Chemistry
 - CEM 967 Selected Topics in Physical Chemistry I
 - CEM 991 Quantum Chemistry and Statistical Thermodynamics
 d. Electives (a minimum of 8 credits): Courses in biochemistry, chemistry, computer science and engineering, or statistics.
 e. Pass a certifying examination.
 f. Complete an internship in a professional setting.

Optional Certificate

Concurrently, a student may choose to complete a Certificate in Basic Business and Communication Skills. The certificate program is organized as a series of weekend Workshops covering such topics as project management, business law, intellectual property, management theory, finance, writing skills, presentation skills, information retrieval, interpersonal skills and group work. The certificate program offered by the faculty of The Eli Broad College of Business and the College of Communication Arts and Sciences will include a case-study approach. It will normally be undertaken during the first year of enrollment and will involve an additional cost to the student beyond usual tuition and fees.

After the completion of the certificate program is approved by The Eli Broad College of Business and by the Associate Dean of the College of Natural Science, the Office of the Registrar will enter on the student’s academic record the name of the certificate program and the date it was completed. This certification will appear on the student’s transcript upon completion of the requirements for the degree program.

DEPARTMENT of ENTOMOLOGY

Ernest S. Delfosse, Chairperson

The Department of Entomology is administered jointly by the College of Agriculture and Natural Resources and the College of Natural Science. The College of Agriculture and Natural Resources offers Master of Science and Doctor of Philosophy degree programs with a major in entomology. For additional information about the department and its graduate degree programs, refer to the statement on the Department of Entomology in the College of Agriculture and Natural Resources section of this catalog.
DEPARTMENT of
FOOD SCIENCE
and HUMAN NUTRITION

Gale M. Strasburg, Chairperson

The Department of Food Science and Human Nutrition is administered jointly by the College of Agriculture and Natural Resources and the College of Natural Science.

UNDERGRADUATE PROGRAMS

The department offers a Bachelor of Science degree program with a major in nutritional sciences through the College of Natural Science. A Minor in Nutritional Sciences is also available.

The department also offers Bachelor of Science degree programs with majors in dietetics and food science, and a specialization in food processing and technology through the College of Agriculture and Natural Resources. For information about those programs, refer to the statement on the Department of Food Science and Human Nutrition in the College of Agriculture and Natural Resources section of this catalog.

Students who are enrolled in bachelor’s degree programs in the Department of Food Science and Human Nutrition in the College of Natural Science may elect the Specialization in Food Processing and Technology. For additional information, refer to the Specialization in Food Processing and Technology statement in the Department of Food Science and Human Nutrition statement in the College of Agriculture and Natural Resources section of this catalog.

NUTRITIONAL SCIENCES

The nutritional sciences major emphasizes intensive study in biological and physical sciences as a basis for understanding the science of nutrition and the relationships between nutrients and human health. Core course requirements emphasize human nutrition with areas of study in energy metabolism, proteins, vitamins, minerals, human development, and clinical and community nutrition. Issues and techniques involved in nutrition research, food and nutrition laboratory experiences and an independent research project are included in the core courses. Supporting discipline courses emphasize biochemistry, biology, chemistry, mathematics, microbiology, physics and physiology.

This major is designed to meet the admissions requirements of most colleges of medicine, dentistry and paramedical colleges while the student pursues a bachelor’s degree in a clinically related area. The major also prepares students to enter graduate school programs in nutrition and other life sciences. Graduates in nutritional sciences qualify for positions in the food industry, corporate wellness and health promotion programs, public health programs, pharmaceutical sales and similar occupations.

Requirements for the Bachelor of Science Degree in Nutritional Sciences

1. The University requirements for bachelor’s degrees as described in the Undergraduate Education section of this catalog.

The University's Tier II writing requirement for the Nutritional Sciences major is met by completing Human Nutrition and Foods 480. Those courses are referenced in item 3. a. below.

Students who are enrolled in the Nutritional Sciences major leading to the Bachelor of Science degree in the Department of Food Science and Human Nutrition may complete an alternative track to Integrative Studies in Biological and Physical Sciences that consists of the following courses: Chemistry 141, 161, 162; Physiology 431. The completion of Chemistry 161 and 162 satisfies the laboratory requirement.

2. The requirements of the College of Natural Science for the Bachelor of Science degree.

The credits earned in certain courses referenced in item 3. below may be counted toward college requirements as appropriate.

3. The following requirements for the major:

a. The following courses in the Department of Food Science and Human Nutrition:

<table>
<thead>
<tr>
<th>CREDITS</th>
<th>COURSE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>HNF 150</td>
<td>Introduction to Human Nutrition</td>
</tr>
<tr>
<td></td>
<td>HNF 280</td>
<td>Principles of Human Nutrition</td>
</tr>
<tr>
<td>2</td>
<td>HNF 375</td>
<td>Community Nutrition</td>
</tr>
<tr>
<td>3</td>
<td>HNF 461</td>
<td>Advanced Human Nutrition: Carbohydrates, Lipids and Proteins</td>
</tr>
<tr>
<td>3</td>
<td>HNF 462</td>
<td>Advanced Human Nutrition: Vitamins and Minerals</td>
</tr>
<tr>
<td>3</td>
<td>HNF 483</td>
<td>Nutritional Sciences Laboratory</td>
</tr>
<tr>
<td>4</td>
<td>HNF 484</td>
<td>Nutrition in the Prevention and Treatment of Disease</td>
</tr>
<tr>
<td>3</td>
<td>HNF 480</td>
<td>Human Nutrition Research</td>
</tr>
</tbody>
</table>

b. The following courses outside the Department of Food Science and Human Nutrition:

<table>
<thead>
<tr>
<th>CREDITS</th>
<th>COURSE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>59 to 64</td>
<td>(1)</td>
<td>One of the following options (4 or 6 credits):</td>
</tr>
<tr>
<td></td>
<td>(a)</td>
<td>BMB 401 Basic Biochemistry</td>
</tr>
<tr>
<td></td>
<td>(b)</td>
<td>BMB 461 Biochemistry I</td>
</tr>
<tr>
<td></td>
<td>(c)</td>
<td>BMB 462 Biochemistry II</td>
</tr>
<tr>
<td></td>
<td>(2)</td>
<td>All of the following courses (31 credits):</td>
</tr>
<tr>
<td></td>
<td>BS 111</td>
<td>Cells and Molecules</td>
</tr>
<tr>
<td></td>
<td>BS 111L</td>
<td>Cell and Molecular Biology Laboratory</td>
</tr>
<tr>
<td></td>
<td>CEM 251</td>
<td>Organic Chemistry I</td>
</tr>
<tr>
<td></td>
<td>CEM 252</td>
<td>Organic Chemistry II</td>
</tr>
<tr>
<td></td>
<td>CEM 255</td>
<td>Organic Chemistry Laboratory</td>
</tr>
<tr>
<td></td>
<td>MMG 301</td>
<td>Introductory Microbiology</td>
</tr>
<tr>
<td></td>
<td>MMG 302</td>
<td>Introductory Laboratory for General and Allied Health Microbiology</td>
</tr>
<tr>
<td></td>
<td>PHY 231</td>
<td>Introductory Physics I</td>
</tr>
<tr>
<td></td>
<td>PHY 232</td>
<td>Introductory Physics II</td>
</tr>
<tr>
<td></td>
<td>PHY 251</td>
<td>Introductory Physics Laboratory I</td>
</tr>
<tr>
<td></td>
<td>PHY 252</td>
<td>Introductory Physics Laboratory II</td>
</tr>
<tr>
<td></td>
<td>PSL 431</td>
<td>Human Physiology I</td>
</tr>
<tr>
<td></td>
<td>PSL 432</td>
<td>Human Physiology II</td>
</tr>
<tr>
<td></td>
<td>(3)</td>
<td>One of the following options (6 or 7 credits):</td>
</tr>
<tr>
<td></td>
<td>(a)</td>
<td>MTH 124 Survey of Calculus I</td>
</tr>
<tr>
<td></td>
<td>(b)</td>
<td>MTH 126 Survey of Calculus II</td>
</tr>
<tr>
<td></td>
<td>(c)</td>
<td>STT 201 Statistical Methods</td>
</tr>
<tr>
<td></td>
<td>(d)</td>
<td>STT 231 Statistics for Scientists</td>
</tr>
<tr>
<td></td>
<td>(e)</td>
<td>STT 421 Statistics I</td>
</tr>
<tr>
<td></td>
<td>One of the following courses:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MTH 132</td>
<td>Calculus I</td>
</tr>
<tr>
<td></td>
<td>MTH 133</td>
<td>Calculus II</td>
</tr>
<tr>
<td></td>
<td>STT 201</td>
<td>Statistical Methods</td>
</tr>
<tr>
<td></td>
<td>STT 231</td>
<td>Statistics for Scientists</td>
</tr>
<tr>
<td></td>
<td>STT 421</td>
<td>Statistics I</td>
</tr>
<tr>
<td></td>
<td>One of the following courses:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CEM 142</td>
<td>General and Inorganic Chemistry</td>
</tr>
<tr>
<td></td>
<td>CEM 152</td>
<td>Principles of Chemistry</td>
</tr>
<tr>
<td></td>
<td>CEM 182H</td>
<td>Honors Chemistry II</td>
</tr>
<tr>
<td></td>
<td>CEM 181H</td>
<td>Honors Chemistry I</td>
</tr>
<tr>
<td></td>
<td>CEM 185H</td>
<td>Honors Chemistry Laboratory I</td>
</tr>
<tr>
<td></td>
<td>CEM 161</td>
<td>Chemistry Laboratory I</td>
</tr>
<tr>
<td></td>
<td>CEM 162</td>
<td>Chemistry Laboratory II</td>
</tr>
<tr>
<td></td>
<td>CEM 168H</td>
<td>Honors Chemistry Laboratory II</td>
</tr>
<tr>
<td></td>
<td>ANTR 350</td>
<td>Human Gross Anatomy and Structural Biology</td>
</tr>
<tr>
<td></td>
<td>CEM 262</td>
<td>Quantitative Analysis</td>
</tr>
<tr>
<td></td>
<td>MMG 409</td>
<td>Eukaryotic Cell Biology</td>
</tr>
<tr>
<td></td>
<td>MMG 350</td>
<td>Introductory Human Pharmacology</td>
</tr>
<tr>
<td></td>
<td>ZOL 341</td>
<td>Fundamental Genetics</td>
</tr>
<tr>
<td></td>
<td>ZOL 408</td>
<td>Histology</td>
</tr>
</tbody>
</table>

MINOR IN NUTRITIONAL SCIENCES

The Minor in Nutritional Sciences, which is administered by the Department of Food Science and Human Nutrition, will broaden students’ understanding of the science of nutrition and the relationships between food and health.

The minor is available as an elective to students who are enrolled in bachelor’s degree programs at Michigan State University other than the Bachelor of Sciences Degree in Nutritional Sciences or the Bachelor of Science Degree in Dietetics. With the approval of the department and college that administers the stu-
dent’s degree program, the courses that are used to satisfy the minor may also be used to satisfy the requirements for the bache-
lor’s degree.

Students who plan to complete the requirements for the minor should consult a Nutritional Sciences undergraduate advisor in Department of Food Science and Human Nutrition.

Requirements for the Minor in Nutritional Sciences

CREDITS

Complete a 15 credits from the following:

1. One of the following courses (3 credits):
 - HNF 150 Introduction to Human Nutrition .. 3
 - HNF 151 Principles of Human Nutrition ... 3

2. All of the following courses (12 credits):
 - HNF 375 Community Nutrition ... 2
 - HNF 461 Advanced Human Nutrition: Carbohydrates, Lipids and Proteins 3
 - HNF 462 Advanced Human Nutrition: Vitamins and Minerals 3
 - HNF 464 Nutrition in the Prevention and Treatment of Disease 4

GRADUATE STUDY

The Department of Food Science and Human Nutrition is admin-
istered jointly by the College of Agriculture and Natural Resources and the College of Natural Science. The department offers Mas-
ter of Science and Doctor of Philosophy degree programs with majors in food science and a Doctor of Philosophy degree pro-
gram with a major in food science—environmental toxicology through the College of Agriculture and Natural Resources. The department also offers Master of Science and Doctor of Philosophy degree programs with majors in human nutrition and a Doctor of Philosophy degree program with a major in human nutrition-en-
vironmental toxicology through either the College of Agriculture and Natural Resources or the College of Natural Science. For in-
formation about these programs, refer to the statement on the De-
partment of Food Science and Human Nutrition in the College of Agricult-
ure and Natural Resources section of this catalog. In ad-
dition, the department offers programs for postdoctoral research.

DEPARTMENT of GEOLOGICAL SCIENCES

Ralph E. Taggart, Chairperson

The Earth is a dynamic system subject to both cyclic and direc-
tional changes over time. Energy from the Sun drives the Earth’s
water and biogeochemical cycles which, in turn, control surface
processes, including climate change and sedimentation. Energy
from the Earth’s interior drives the tectonic cycle and its surface
manifestations, including volcanic eruptions and earthquakes. Bi-
ological evolution adds directionality to the history of the Earth
and is not reducible to simple physical forces. The geological sci-
cences study these changes and processes as they exist now, as
they will develop in the future, and as they have evolved during the
4.5 billion–year history of the Earth.

The biological, chemical, isotopic, and physical aspects of the Earth
are all integrated into the geological sciences, which draw heav-
ily on all of those other sciences, as well as mathematics and
statistics. Geological studies provide knowledge concerning the
availability of natural resources, including groundwater and fossil
fuels; the reduction of damage from such hazards as landslides and
earthquakes; and processes affecting biological evolution, such as those producing major extinctions. From these diverse
studies geologists gain knowledge about the controls on the phys-
ical and biological environment. That knowledge allows people to
deal with issues ranging from groundwater pollution to climate
change.

The undergraduate programs in environmental geosciences
and geological sciences lead to the Bachelor of Science degree. The department offers degree options for more specialized study
in geophysics and secondary education.

UNDERGRADUATE PROGRAMS

ENVIRONMENTAL GEOSCIENCES

Requirements for the Bachelor of Science Degree in Environmental Geosciences

1. The University requirements for bachelor’s degrees as described in the Undergradu-
ate Education section of this catalog; 120 credits, including general elective credits,
are required for the Bachelor of Science degree in Environmental Geosciences.

The University’s Tier II writing requirement for the Environmental Geosciences ma-

or is met by completing one of the following courses: Geological Sciences 431 and
192. Those courses are referenced in item 3. b. (1) below.

Students who are enrolled in the College of Natural Science may complete the alter-
native track to Integrative Studies in Biological and Physical Sciences that is described in
item 1. under the heading Graduation Requirements in the College statement. Cer-
tain courses referenced in requirement 3. below may be used to satisfy the alternative
track.

2. The requirements of the College of Natural Science for the Bachelor of Science de-
tree.

The credits earned in certain courses referenced in requirement 3. below may be
counted toward College requirements as appropriate.

3. The following requirements for the major:

a. The following courses outside the Department of Geological
 Sciences: ... 24 to 26
 - CEM 181 Chemistry Laboratory I ... 1
 - MTH 132 Calculus I .. 3
 - MTH 133 Calculus II .. 3
 - MTH 234 Multivariable Calculus ... 4
 - PHY 183 Physics for Scientists and Engineers I 4
 - PHY 184 Physics for Scientists and Engineers II 4

 - PHYS 231 Introductory Physics I ... 3
 - PHYS 232 Introductory Physics II .. 3
 - PHYS 251 Introductory Physics Laboratory I ... 1
 - PHYS 252 Introductory Physics Laboratory II .. 1

 - PHYS 193 Physics for Scientists and Engineers I 4
 - PHYS 194 Physics for Scientists and Engineers II 4

 - ZOL 303 Oceanography ... 3
 - GEO 304 Remote Sensing of the Environment 4
 - GEO 325 Geographic Information Systems .. 3
 - GEO 311 Hydrogeology .. 3
 - GLG 412 Glacial Geology and the Record of Climate Change 4
 - GLG 421 Environmental Geochemistry .. 4
 - GLG 431 Sedimentology and Stratigraphy (W) 4
 - GLG 492 Senior Experience in Earth Sciences (W) 1

 - GE 435 Geography of Health and Disease .. 3
 - ZOL 355 Ecology .. 3

b. The following courses in the Department of Geological Sciences
 (32 credits):
 - GLG 201 The Dynamic Earth .. 4
 - GLG 304 Physical and Biological History of the Earth 4
 - GLG 321 Mineralogy and Geochemistry .. 4
 - GLG 351 Structural Geology and Tectonics .. 4
 - GLG 411 Hydrogeology .. 3
 - GLG 412 Glacial Geology and the Record of Climate Change 4
 - GLG 421 Environmental Geochemistry .. 4
 - GLG 431 Sedimentology and Stratigraphy (W) 4
 - GLG 492 Senior Experience in Earth Sciences (W) 1

 - GE 435 Geography of Health and Disease .. 3
 - ZOL 355 Ecology .. 3

 - GE 421 Engineering Hydrology ... 3
 - GEO 409 Global Climate Change and Variability 3
 - GLG 413 Groundwater Contamination .. 3
Concentration in Geophysics

A concentration in geophysics is also available. Students must complete all of the following courses. Courses that are used to satisfy the requirements for the concentration may also be used to satisfy the requirements for the Bachelor of Science degree in Environmental Geosciences. The concentration will be noted on the student’s transcript.

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLG 470 Principles of Modern Geophysics</td>
<td>3</td>
</tr>
<tr>
<td>GLG 481 Reservoirs and Aquifers</td>
<td>3</td>
</tr>
<tr>
<td>MTH 234 Multivariable Calculus</td>
<td>4</td>
</tr>
<tr>
<td>MTH 235 Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>PHY 183 Physics for Scientists and Engineers</td>
<td>4</td>
</tr>
</tbody>
</table>

GEOLOGICAL SCIENCES

Requirements for the Bachelor of Science Degree in Geological Sciences

1. The University requirements for bachelor’s degrees as described in the Undergraduate Education section of this catalog; 120 credits, including general elective credits, are required for the Bachelor of Science degree in Geological Sciences.

2. The requirements of the College of Natural Science leading to the Bachelor of Science degree is available for teacher certification. Students who complete the requirements for the disciplinary major or the requirements referenced under the heading Graduation Requirements in the College statement, but not both of those requirements.

3. Nine additional credits in Geological Sciences courses at the 300–400 level to total 40 credits. The credits that are used to satisfy this requirement may be used to satisfy either the requirements for the geological sciences major or the requirements for the environmental geosciences major, but not both of these requirements.

Concentration in Geophysics

A concentration in geophysics is also available. Students must complete all of the following courses. Courses that are used to satisfy the requirements for the concentration may also be used to satisfy the requirements for the Bachelor of Science degree in Environmental Geosciences. The concentration will be noted on the student’s transcript.

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLG 470 Principles of Modern Geophysics</td>
<td>3</td>
</tr>
<tr>
<td>GLG 471 Applied Geophysics</td>
<td>4</td>
</tr>
<tr>
<td>MTH 234 Multivariable Calculus</td>
<td>4</td>
</tr>
<tr>
<td>MTH 235 Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>PHY 183 Physics for Scientists and Engineers</td>
<td>4</td>
</tr>
</tbody>
</table>

TEACHER CERTIFICATION OPTIONS

The earth science—interdepartmental disciplinary major leading to the Bachelor of Science degree is available for teacher certification. Students who complete the requirements for the disciplinary major and the requirements for teacher certification choose whether they wish to be recommended for certification in earth science or general science.

An earth science disciplinary minor is also available for teacher certification.

Students who elect the earth science—interdepartmental disciplinary major or the earth science disciplinary minor must contact the Department of Geological Sciences.

For additional information, refer to the statement on TEACHER CERTIFICATION in the Department of Teacher Education section of this catalog.

GRADUATE STUDY

The Department of Geological Sciences offers programs in geological sciences leading to the Master of Science and Doctor of Philosophy degrees. The department also offers programs in environmental geosciences leading to the Master of Science and Doctor of Philosophy degrees.

The goal of the graduate programs in the Department of Geological Sciences is to develop creative and productive scientists who will address problems facing the modern environment and problems related to understanding the Earth’s past and future.

The department’s graduate programs emphasize the study of the biological, chemical, and physical processes of the Earth and the application of knowledge about these processes to solve applied and basic problems. Environmental studies focus on fluids, minerals, and biologically mediated processes and their interactions in the environment. Studies of the Earth’s past involve time periods ranging in days to billions of years. From this knowledge, predictions on Earth’s future may be made.
The department is focused around four research areas: solid earth systems (tectonics, earthquake seismology, structural geology, and igneous petrology), paleobiology (evolution; paleoenvironments; paleoecology; and fossil plants, invertebrates, and vertebrates), environmental geosciences (physical and chemical hydrogeology; geochemical cycles; glacial geology; isotropic, aqueous, environmental, inorganic, and organic geochemistry; sedimentology; mineral weathering; and petrology of low temperature systems) and geocognition and geoscience education (how people understand an interpret geological phenomena and how personal models of the natural world impact learning in geosciences).

The Department of Geological Sciences is affiliated with the Doctor of Philosophy degree program that involves ecology, evolutionary biology and behavior. For information about a Doctor of Philosophy degree program that involves ecology, evolutionary biology and behavior and a major in the Department of Geological Sciences, refer to the statement on the doctoral program in ecology, evolutionary biology and behavior.

Students who are enrolled in the Master of Science degree program in the Department of Geological Sciences may elect specializations in ecology, evolutionary biology and behavior and in environmental toxicology. For additional information, refer to the statement on the Specialization in Ecology, Evolutionary Biology and Behavior and to the Graduate Specialization in Environmental Toxicology statement in the College of Agriculture and Natural Resources section of this catalog.

ENVIRONMENTAL GEOSCIENCES

Master of Science

The Master of Science degree program in environmental geosciences is available under either Plan A (with thesis) or Plan B (without thesis).

In addition to meeting the requirements of the university and of the College of Natural Science, students must meet the requirements specified below.

Admission

When applying for admission to the program, an applicant must specify either Plan A or Plan B.

Academic record, letters of recommendation, and Graduate Record Examination (GRE) General Test scores are considered in admission decisions.

For regular admission to the master’s degree program in environmental geosciences under Plan A, the student must have:

1. Completed the courses in physics, chemistry, and mathematics that are required for the Bachelor of Science degree with a major in geological sciences at Michigan State University, or equivalent courses.
2. Completed the courses in physics, chemistry, and mathematics that are required for the Bachelor of Science degree with a major in geological sciences at Michigan State University, or equivalent courses.
3. At least 12 credits in geological sciences courses.
4. A grade-point average of at least 3.00.
5. Satisfactory scores on the GRE General Test.

For regular admission to the master’s degree program in environmental geosciences under Plan B, the student must have:

1. Completed a Master of Science degree in the geosciences for which a thesis was required.
2. A grade–point average of at least 3.00.
3. Satisfactory scores on the GRE General Test.

Requirements for the Master of Science Degree in Environmental Geosciences

A total of 30 credits is required for the degree under either Plan A or Plan B. The student’s program of study must be approved by the student’s guidance committee. The student must meet the requirements specified below:

Requirements for Both Plan A and Plan B

1. Tier I requirements (10 to 12 credits):
 a. General Component. The following course (1 credit):
 GLG 423 Environmental Geosciences
 b. Soil Component. One of the following courses (3 or 4 credits):
 CSS 455 Pollutants in the Soil Environment
 CSS 825 Clay Mineralogy and Soils Genesis
 c. Chemical Component. One of the following courses (3 credits):
 GLG 421 Environmental Geochemistry
 GLG 821 Aqueous Geochemistry
 GLG 823 Isotope Geochemistry
 d. Hydrogeology Component. One of the following courses (3 or 4 credits):
 CE 421 Engineering Hydrology
 CE 821 Groundwater Hydraulics
 GLG 411 Hydrogeology
 e. A given course may be used to satisfy either the Tier I requirements or the Tier II requirement, but not both of those requirements.
 f. With the approval of the guidance committee, a student may substitute a course listed in the Tier I requirements for one of the courses listed above.

A student who completed any course listed in the Tier I requirements or in the Tier II requirement prior to enrollment in the program must substitute another course approved by the student’s guidance committee.

A given course may be used to satisfy either the Tier I requirements or the Tier II requirement, but not both of those requirements.

Additional Requirements for Plan A

1. Tier III requirement:
 Seven to 13 credits in courses approved by the student’s guidance committee.

2. Tier IV requirement:
 Four to 7 credits in GLG 899 Master’s Thesis Research. The research area may focus on any topic that may have applications to solving problems related to the environment. The student must include in the thesis proposal a paragraph that addresses the environmental applications of the thesis topic selected.

Additional Requirements for Plan B

1. Tier III requirement:
 Thirteen to 16 credits in courses approved by the student’s guidance committee.

2. Tier IV requirement:
 One credit of GLG 898 Special Problems in Environmental Geosciences. The student must complete a research paper or project while enrolled in Geological Sciences 898. The topic of the paper or project must be mutually agreed upon by the student and the student’s academic advisor.

Doctor of Philosophy

The core of the Doctor of Philosophy degree program in environmental geosciences is independent research. Course requirements are designed to support the student’s professional goals. Commonly, research programs are pursued within the specialty of the staff. However, innovative research is encouraged in any area of environmental geosciences.

In addition to meeting the requirements of the university and of the College of Natural Science, students must meet the requirements specified below.
Admission
Students holding bachelor's or master's degrees may be admitted to the doctoral program in environmental geosciences on the basis of their performance during the previous two years of academic work.

Requirements for the Doctor of Philosophy Degree in Environmental Geosciences
The program of study is determined by mutual agreement between the student and the guidance committee. The student must complete, or have completed prior to admission, 9 credits of course work in geological sciences including a course in physical geology and at least 3 credits in 800-level course work.

The required comprehensive examination involves both an oral and a written portion and covers the area of the student's research specialty, those areas that interface with that specialty, and the significance of the proposed research program. Students who are admitted to the doctoral program with master's degrees must pass the comprehensive examination during the second year of enrollment in the program. Students who are admitted to the doctoral program with bachelor's degrees must pass the comprehensive examination during the third year of enrollment in the program.

ENVIRONMENTAL GEOSCIENCES—ENVIRONMENTAL TOXICOLOGY

Doctor of Philosophy
For information about the Doctor of Philosophy degree program in environmental geosciences—environmental toxicology, refer to the statement on Doctoral Program in Environmental and Integrative Toxicological Sciences in the Graduate Education section of this catalog.

GEOLOGICAL SCIENCES

Master of Science
In addition to meeting the requirements of the university and of the College of Natural Science, students must meet the requirements specified below.

Admission
Academic record, letters of recommendation, and Graduate Record Examination (GRE) General Test scores are considered in admission decisions. For regular admission, the student must have:

1. A bachelor's degree in a physical or biological science or in mathematics from a recognized educational institution.
2. Completed the courses in physics, chemistry, mathematics, and geological sciences that are required for the Bachelor of Science degree with a major in geological sciences at Michigan State University, or equivalent courses.
3. A grade-point average of at least 3.00.
4. SAT/ACT scores on the GRE General Test.

Depending on the proposed area of specialization, provisional admission may be granted to an applicant who has not completed the courses referenced in item 2. above. Deficiencies must be removed by completing collateral courses before a thesis proposal will be accepted.

Requirements for the Master of Science Degree in Geological Sciences
The student must complete a total of 30 credits for the degree under Plan A (with thesis). Of the 30 credits, no more than 7 credits may be in Geological Sciences 899.

Doctor of Philosophy
The core of the Doctor of Philosophy degree program in geological sciences is independent research. Course requirements are designed to support the student's professional goals. Commonly, research programs are pursued within the specialty of the staff. However, innovative research is encouraged in any area of geological sciences.

In addition to meeting the requirements of the university and of the College of Natural Science, students must meet the requirements specified below.

Admission
Students holding bachelor's or master's degrees may be admitted to the doctoral program in geological sciences on the basis of their performance during the previous two years of academic work.

Requirements for the Doctor of Philosophy Degree in Geological Sciences
The program of study is determined by mutual agreement between the student and the guidance committee.

The required comprehensive examination involves both an oral and a written portion and covers the area of the student's research specialty, those areas that interface with that specialty, and the significance of the proposed research program. Students who are admitted to the doctoral program with master's degrees must pass the comprehensive examination during the second year of enrollment in the program. Students who are admitted to the doctoral program with bachelor's degrees must pass the comprehensive examination during the third year of enrollment in the program.

W. K. KELLOGG BIOLOGICAL STATION

Katherine L. Gross, Director
The W. K. Kellogg Biological Station is administered jointly by the College of Natural Science and the College of Agriculture and Natural Resources. The Station developed from the environmental foresight and interest of W. K. Kellogg and has evolved into a world-renowned ecological research center and public education facility for biological, agricultural, and natural resource sciences.

Located 50 miles southwest of East Lansing near Battle Creek and Kalamazoo, the Biological Station's 3,352 acres encompass the Kellogg Bird Sanctuary, Kellogg Experimental Forest, Kellogg Farm, Kellogg Dairy Center, Kellogg Education Center and Research Laboratories, and Lux Arbor Reserve. Within this multi-land use facility, a unique community of scholars addresses ways to achieve harmony between biological conservation and productive agriculture and forestry.

The teaching and research programs of the Biological Station are closely coordinated with those of the College of Natural Science and the College of Agriculture and Natural Resources. The
programs focus on the study of natural and managed landscapes and cover a spectrum that includes basic ecology, evolutionary biology, wildlife management, forestry, and agriculture.

The Biological Station’s resident faculty hold joint appointments with appropriate departments and teach courses both at the Station and on the main campus. Field oriented courses in the biological sciences are offered at the Station during the summer session and in a new study away program in the fall semester.

Research facilities are provided for students who are candidates for Master of Science and doctor of Philosophy degrees and for postdoctoral research associates. Residence may be established upon approval of the research problem and the sponsorship of a resident faculty member.

Thesis or dissertation research is supervised by the candidate’s major professor, the guidance committee, and, if otherwise included, a member of the resident faculty at the Biological Station. Investigations by independent research workers are encouraged throughout the year.

Information concerning the instructional program and research opportunities may be obtained by either writing the Director, W.K. Kellogg Biological Station, Hickory Corners, Michigan 49060–9516.

DEPARTMENT of MATHEMATICS

Yang Wang, Chairperson

Mathematics, which may partially be defined as the science of number and form, is a vital tool in all branches of knowledge the university covers, from accounting to zoology. Mathematics is also studied for its own sake by those who become fascinated by the results of modern mathematics and the making of new discoveries. The department offers a wide variety of courses that begin with extensions of high school mathematics and reach to the frontiers of mathematical knowledge.

Mathematics majors can build their programs in many different ways to pursue a career path of their choice. The department offers several Honors sequences, so that highly motivated mathematics students will find challenging programs. Students in mathematics, regardless of their major preferences, are encouraged to consult with the department before registration concerning the possibility of advanced placement or enrollment in honors sections.

UNDERGRADUATE PROGRAMS

Either a Bachelor of Arts or Bachelor of Science degree may be earned with a major in Mathematics or Computational Mathematics. A Specialization in Actuarial Science is also available.

Requirements for the Bachelor of Science Degree in Mathematics

1. The University requirements for bachelor’s degrees as described in the Undergraduate Education section of this catalog: 120 credits, including general elective credits, are required for the Bachelor of Science degree in Mathematics.

The University’s Tier II writing requirement for the Mathematics major is met by completing Mathematics 489 and Mathematics 309 or 310 or 418H. Those courses are referenced in items 3.c.(1) and 3.c.(3) below.

Students who are enrolled in the College of Natural Science may complete the alternative track to Integrative Studies in Biological and Physical Sciences that is described in item 1. under the heading Graduation Requirements in the College statement. Certain courses referenced in requirement 3. below may be used to satisfy the alternative track.

2. The requirements of the College of Natural Science for the Bachelor of Science degree.

The credits earned in certain courses referenced in requirement 3. below may be counted toward College requirements as appropriate.

3. The following requirements for the major:

a. The following courses outside the Department of Mathematics:

 (1) One course of at least 3 credits in biology, botany, microbiology, plant physiology, or zoology.
 (2) One of the following groups of courses (8 or 10 credits):
 (a) CEM 141 General Chemistry4
 (b) CEM 161 Chemistry Laboratory I1
 (c) CEM 181H Honors Chemistry I4
 (d) CEM 182H Honors Chemistry II4
 (e) CEM 185H Honors Chemistry Laboratory II 2
 (3) One of the following courses (8 credits):
 PHY 183 Physics for Scientists and Engineers I4
 PHY 184 Physics for Scientists and Engineers II4

b. First-year competency in a foreign language

For students who have been admitted to the teacher certification program, completion of the Professional Education Courses in the Department of Teacher Education.

c. A total of 38 credits in courses in the Department of Mathematics including:

 (1) All of the following courses (17 credits):
 MTH 132 Calculus I3
 MTH 133 Calculus II3
 MTH 234 Multivariable Calculus4
 MTH 309 Linear Algebra I3
 MTH 496 Capstone in Mathematics3
 (2) A total of 24 credits in approved Mathematics courses at the 300 level or above. At least four of the approved Mathematics courses must be at the 400 level or above. Mathematics 415, 424, and 443 may not be used to fulfill the requirements of the major. The 300-400 level courses that are referenced in items 3.c.(1), 3.c.(3), 3.c.(4), and 3.c.(5) partially satisfy this requirement. Students must complete Mathematics 309 and 314 to satisfy the requirement in 3.c.(2). One course from a list of approved cognates may be used to satisfy this requirement; the list is available in the Department of Mathematics.
 (3) One of the following groups of courses (6 credits):
 (a) MTH 310 Abstract Algebra I and
 Number Theory3
 (b) MTH 411H Honors Algebra I3
 Mathematics 414 or 417 or 419H or 481 may be substituted for Mathematics 411.
 (c) MTH 419H Honors Algebra II3
 (d) MTH 420 Analysis I3
 Mathematics 425 or 441 or 442 may be substituted for Mathematics 421.
 (e) MTH 421 Honors Analysis II3
 (f) MTH 429H Honors Analysis II3
 (g) MTH 430 Higher Geometry3
 MTH 432 Axiomatic Geometry3
 Students in the teacher certification program must take either Mathematics 330 or 432. Students not in the teacher certification program must take Mathematics 340. Students not in the teacher certification program with prior credit in Mathematics 235 or 255H may substitute an approved 400-level Mathematics course for Mathematics 340.
Requirements for the Bachelor of Arts Degree in Mathematics

1. The University requirements for bachelor’s degrees as described in the Undergraduate Education section of this catalog; 120 credits, including general elective credits, are required for the Bachelor of Arts degree in Mathematics.

The University’s Tier II writing requirement for the Mathematics major is met by completing Mathematics 496 and Mathematics 309 or 310 or 418H. Those courses are referenced in items 3.c. (1) and 3.c. (3) below.

2. Students who are enrolled in the College of Natural Science may complete the alternative track to Integrative Studies in Biological and Physical Sciences that is described in item 1, under the heading Graduation Requirements in the College statement. Certain courses referenced in requirement 3. below may be used to satisfy the alternative track.

3. The requirements of the College of Natural Science for the Bachelor of Arts degree.

The credits earned in certain courses referenced in requirement 3. below may be counted toward College requirements as appropriate.

3. The following requirements for the major:

CREDITS

a. The following courses outside the Department of Mathematics:

(1) One course of at least 3 credits in biological science, entomology, microbiology, physiology, plant biology, or zoology.

(2) The following course (4 credits):

PHY 183 Physics for Scientists and Engineers 4

(3) One of the following courses (4 credits):

CEM 141 General Chemistry ... 4
CEM 181H Honors Chemistry ... 4

b. Second–year competency in a foreign language

or

For students who have been admitted to the teacher certification program, first–year competency in a foreign language and completion of the Professional Education Courses in the Department of Teacher Education.

c. A total of 38 credits in courses in the Department of Mathematics including:

(1) All of the following courses (17 credits):

MTH 132 Calculus I ... 3
MTH 133 Calculus II ... 4
MTH 234 Multivariable Calculus .. 4
MTH 309 Linear Algebra I ... 3
MTH 496 Capstone in Mathematics ... 3

The completion of Mathematics 496 fulfills the department’s capstone course requirement.

(2) A total of 24 credits in approved Mathematics courses at the 300–level or above. At least 4 of the approved Mathematics courses must be at the 400–level or above. Mathematics 415, 424, and 443 may not be used to fulfill the requirements of the major. The 300-400 level courses that are referenced in items 3.c. (1), 3.c. (3), 3.c. (4) and 3.c. (5) partially satisfy this requirement. Students may not use both Mathematics 309 and 314 to satisfy the requirement. Students may not use both Mathematics 330 or 432 and Statistics and Probability 430.

(3) One of the following groups of courses (6 credits):

(a) MTH 310 Abstract Algebra I and Number Theory 3
MTH 411 Abstract Algebra II ... 3
Mathematics 414 or 417 or 418H or 481 may be substituted for Mathematics 411.

(b) MTH 418H Honors Algebra I .. 3
MTH 419H Honors Algebra II ... 3

(4) One of the following pairs of courses (6 credits):

(a) MTH 320 Analysis I .. 3
MTH 421 Analysis II ... 3
Mathematics 425 or 441 or 442 may be substituted for Mathematics 421.

(b) MTH 428H Honors Analysis I .. 3
MTH 429H Honors Analysis II .. 3

(5) One of the following courses (3 credits):

MTH 330 Higher Geometry .. 3
MTH 340 Ordinary Differential Equations I 3
MTH 432 Axiomatic Geometry ... 3

Students in the teacher certification program must take either Mathematics 330 or 432. Students not in the teacher certification program must take Mathematics 340. Students not in the teacher certification program with prior credit in Mathematics 235 or 255H may substitute an approved 400-level Mathematics course for Mathematics 340.

Requirements for the Bachelor of Science Degree in Computational Mathematics

1. The University requirements for bachelor’s degrees as described in the Undergraduate Education section of this catalog; 120 credits, including general elective credits, are required for the Bachelor of Science degree in Computational Mathematics.

The University’s Tier II writing requirement for the Computational Mathematics major is met by completing Mathematics 309 or 310 and 496. Those courses are referenced in item 3.c. (1) below.

2. Students who are in the teacher certification program are required to complete Mathematics 330 and 432 and Statistics and Probability 430.

3. Students who are enrolled in the College of Natural Science may complete the alternative track to Integrative Studies in Biological and Physical Sciences that is described in item 1, under the heading Graduation Requirements in the College statement. Certain courses referenced in requirement 3. below may be used to satisfy the alternative track.

2. The requirements of the College of Natural Science for the Bachelor of Science degree.

The credits earned in certain courses referenced in requirement 3. below may be counted toward College requirements as appropriate.

3. The following requirements for the major:

CREDITS

a. The following courses outside the Department of Mathematics:

(1) One course of at least 3 credits in biological science, entomology, microbiology, physiology, plant biology, or zoology.

(2) One of the following groups of courses (8 credits):

(a) CEM 141 General Chemistry .. 4
CEM 142 General and Inorganic Chemistry 4
CEM 161 Chemistry Laboratory I .. 1
CEM 181H Honors Chemistry ... 4
CEM 182H Honors Chemistry II .. 4
CEM 185H Honors Chemistry Laboratory I 2

(3) Both of the following courses (9 credits):

CSE 231 Introduction to Programming .. 4
CSE 232 Introduction to Programming .. 4

(4) Both of the following courses (9 credits):

PHY 183 Physics for Scientists and Engineers 4
PHY 184 Physics for Scientists and Engineers 4

b. First–year competency in a foreign language

or

For students, who have been admitted to the teacher certification program, first–year competency in a foreign language and completion of the Professional Education Courses in the Department of Teacher Education.

c. The following courses in the Department of Mathematics:

(1) All of the following courses (29 credits):

MTH 132 Calculus I ... 3
MTH 133 Calculus II ... 4
MTH 234 Multivariable Calculus .. 4
MTH 309 Linear Algebra I ... 3
MTH 309 Abstract Algebra I and Number Theory 3
MTH 320 Analysis I ... 3
MTH 451 Numerical Analysis I .. 3
MTH 481 Discrete Mathematics I ... 3
MTH 496 Capstone in Mathematics ... 3

The completion of Mathematics 496 fulfills the capstone course requirement of the computational mathematics major.

(2) One of the following courses (3 credits):

MTH 452 Numerical Analysis II .. 3
MTH 482 Discrete Mathematics II ... 3

(3) One of the following courses (3 credits):

MTH 235 Differential Equations .. 3

(4) At least one of the following courses:

CSE 331 Algorithms and Data Structures 3
CSE 440 Introduction to Artificial Intelligence 3
MTH 360 Theory of Mathematical Interest 3
MTH 415 Applied Linear Algebra ... 3
MTH 416 Introduction to Algebraic Coding 3
MTH 441 Ordinary Differential Equations II 3
MTH 452 Numerical Analysis II .. 3
MTH 457 Introduction to Financial Mathematics 3
MTH 472 Mathematical Logic ... 3
MTH 482 Discrete Mathematics II ... 3
STT 351 Probability and Statistics for Engineering 3
STT 430 Introduction to Probability and Statistics 3
STT 441 Probability and Statistics I ... 3
STT 455 Actuarial Models .. 3
STT 461 Computations in Probability and Statistics 3

36
Requirements for the Bachelor of Arts Degree in Computational Mathematics

1. The University requirements for bachelor's degrees as described in the Undergraduate Education section of this catalog; 120 credits, including general elective credits, are required for the Bachelor of Arts degree in Computational Mathematics.

The University's Tier II writing requirement for the Computational Mathematics major is met by completing Mathematics 309 or 498. Those courses are referenced in item 3.c.(1) below.

Students who are in the teacher certification program are required to complete Mathematics 330 or 432 and Statistics and Probability 430.

Students who are enrolled in the College of Natural Science may complete the alternative track to Integrative Studies in Biological and Physical Sciences that is described in item 1. under the heading Graduation Requirements in the College statement. Certain courses referenced in requirement 3. below may be used to satisfy the alternative track.

2. The requirements of the College of Natural Science for the Bachelor of Arts degree.

The credits earned in certain courses referenced in requirement 3. below may be counted toward College requirements as appropriate.

3. The following requirements for the major:

a. The following courses outside the Department of Mathematics: 19

 (1) One course of at least 3 credits in biological science, entomology, microbiology, physiology, plant biology, or zoology.

 (2) The following course (4 credits):

 PHY 183 Physics for Scientists and Engineers I 4

 (3) One of the following courses (4 credits):

 CEM 141 General Chemistry .. 4
 CEM 181H Honors Chemistry .. 4

 (4) Both of the following courses (8 credits):

 CSE 231 Introduction to Programming I 4
 CSE 232 Introduction to Programming II 4

b. Second-year competency in a foreign language.

or

For students who have been admitted to the teacher certification program, first-year competency in a foreign language and completion of the Professional Education Courses in the Department of Teacher Education.

c. The following courses in the Department of Mathematics: 35

 (1) All of the following courses (29 credits):

 MTH 132 Calculus I .. 3
 MTH 133 Calculus II .. 4
 MTH 234 Multivariable Calculus ... 4
 MTH 309 Linear Algebra I ... 3
 MTH 310 Abstract Algebra I and Number Theory 3
 MTH 320 Analysis I .. 3
 MTH 451 Numerical Analysis I .. 3
 MTH 481 Discrete Mathematics I .. 3
 MTH 486 Capstone in Mathematics 3

 The completion of Mathematics 456 satisfies the capstone course requirement of the computational mathematics major.

 (2) One of the following courses (3 credits):

 MTH 452 Numerical Analysis II .. 3
 MTH 482 Discrete Mathematics II .. 3

 (3) One of the following courses (3 credits):

 MTH 235 Differential Equations ... 3
 MTH 340 Ordinary Differential Equations 3

 (4) At least one of the following courses: 3

 Students who select Mathematics 452 or 482 may count the credits toward either requirement 3.c.(2) or 3.d. but not toward both of those requirements.

 Approval of the Department of Computer Science and Engineering is required to enroll in Computer Science and Engineering 331 and 440.

 CSE 331 Algorithms and Data Structures 3
 CSE 440 Introduction to Artificial Intelligence 3
 MTH 309 Linear Algebra I ... 3
 MTH 415 Numerical Analysis I .. 3
 MTH 416 Introduction to Algebraic Coding 3
 MTH 441 Ordinary Differential Equations II 3
 MTH 452 Numerical Analysis II ... 3
 MTH 457 Introduction to Financial Mathematics 3
 MTH 472 Mathematical Logic .. 3
 MTH 482 Discrete Mathematics II .. 3
 STT 351 Probability and Statistics for Engineering 3
 STT 441 Probability and Statistics I: Probability and Statistics 3
 STT 445 Actuarial Models .. 3
 STT 461 Computations in Probability and Statistics 3

MINOR IN MATHEMATICS

The Minor in Mathematics, which is administered by the Department of Mathematics, will broaden students' understanding and application of mathematical concepts to their chosen field of study.

The minor is available as an elective to students who are enrolled in bachelor's degree programs at Michigan State University other than the Bachelor of Arts and Bachelor of Science Degree in Mathematics. With the approval of the department and college that administer the student's degree program, the courses that are used to satisfy the minor may also be used to satisfy the requirements for the bachelor's degree. At least 12 unique credits counted towards the requirements for a student's minor must not be used to fulfill the requirements for that student's major.

Students who plan to complete the requirements of the minor should consult the undergraduate advisor in the Department of Mathematics.

Requirements for the Minor in Mathematics

CREDITS

Complete all of the following courses (23 credits):

MTH 132 Calculus I .. 3
MTH 133 Calculus II .. 4
MTH 234 Multivariable Calculus ... 4
MTH 309 Linear Algebra I ... 3
MTH 310 Abstract Algebra I and Number Theory 3
MTH 320 Analysis I .. 3
MTH 452 Numerical Analysis II .. 3
MTH 482 Discrete Mathematics II .. 3
MTH 486 Capstone in Mathematics 3

SPECIALIZATION IN ACTUARIAL SCIENCE

The Specialization in Actuarial Science, which is administered by the Department of Mathematics within the College of Natural Science, is available as an elective to students who are enrolled in any bachelor's degree program at Michigan State University. This specialization complements a number of major fields such as mathematics, statistics and probability, finance, and economics. It is intended to prepare students for work in insurance companies, banks, investment firms, government work, hospitals and business firms where there is a need to weigh the financial consequences of risk. With the approval of the department that administers the student's degree program, courses that are used to satisfy the requirements for the specialization may also be used to satisfy the requirements for the bachelor's degree.

Requirements for the Specialization in Actuarial Science

The student must complete all of the following courses (21 credits):

CREDITS

1. All of the following courses (18 credits):

 FI 311 Financial Management .. 3
 FI 321 Theory of Investments .. 3
 FI 379 Advanced Derivatives (D) .. 3
 MTH 360 Theory of Mathematical Interest 3
 MTH 457 Introduction to Financial Mathematics 3
 STT 441 Probability and Statistics I: Probability 3
 STT 455 Actuarial Models ... 3

2. One of the following courses (3 credits):

 MTH 457 Introduction to Financial Mathematics 3
 STT 442 Probability and Statistics II: Statistics.................. 3

Upon completion of the requirements for the Specialization in Actuarial Science, the students should contact the Chairperson of the Department of Mathematics and request certification for the completion of the specialization. After the certification is approved by the Chairperson of the Department of Mathematics and the Associate Dean of the College of Natural Science, the Office of the Registrar will enter on the student's academic record the name of the specialization and the date that it was completed. This certification will appear on the student's transcript.
TEACHER CERTIFICATION OPTIONS

The mathematics disciplinary majors leading to the Bachelor of Arts and Bachelor of Science degrees are available for teacher certification.

A mathematics-elementary and mathematics-secondary disciplinary minor are also available for teacher certification.

Students who elect a mathematics disciplinary major or the mathematics-elementary or mathematics-secondary disciplinary minor must contact the Department of Mathematics.

For additional information, refer to the statement on TEACHER CERTIFICATION in the Department of Teacher Education section of this catalog.

GRADUATE STUDY

The Department of Mathematics offers graduate work leading to the degrees of Master of Science in Mathematics, Applied Mathematics, and Industrial Mathematics, and Master of Arts for Teachers. The Department also offers graduate work leading to the degrees of Doctor of Philosophy in Mathematics, and Applied Mathematics.

APPLIED MATHEMATICS

Master of Science

In addition to meeting the requirements of the university and of the College of Natural Science, students must meet the requirements specified below.

Admission

To be admitted to the Master of Science degree program in applied mathematics, a person should have completed (1) the mathematics or applied mathematics courses normally required for the bachelor's degree with a major in mathematics, physics, or engineering, (2) a minimum of a year's work in mathematical analysis at the senior year level, and (3) courses in matrices and linear algebra.

Requirements for the Master of Science Degree in Applied Mathematics

The student must complete a total of 30 credits for the degree under Plan B (without thesis). The student's program of study must be approved by the student's academic advisor and must include:

1. At least 24 credits in mathematics courses including:
 a. At least 6 credits from the following courses: Mathematics 818, 819, 828, 829, 848, 849, 868, 869,
 b. At least 12 credits in 800–level applied mathematics courses including 6 credits in one of the following groups of courses: Mathematics 841, 842; 848, 849; 850, 851; or 880, 881.
2. At least 18 credits in 800–900 level courses.

Doctor of Philosophy

In addition to meeting the requirements of the university and of the College of Natural Science, students must meet the requirements specified below.

Admission

Regular admission to the Doctor of Philosophy degree program in applied mathematics presupposes academic preparation equivalent to a Master of Science degree with a major in mathematics with a grade–point average of 3.00 or better. However, a student with a bachelor's degree whose undergraduate preparation is strong may be admitted directly to the program upon passing a qualifying examination.

Requirements for the Doctor of Philosophy Degree in Applied Mathematics

The student must:
1. Pass the qualifying examination.
2. Complete at least 30 credits in approved 800–900 level mathematics courses excluding courses taken in preparation for the qualifying examination and Mathematics 999; at least 18 of the 30 credits must be in applied mathematics courses.
3. Present at least two seminars acceptable to the faculty.
4. Pass the comprehensive examination.
5. Demonstrate a reading knowledge of one foreign language, normally from among French, German, and Russian, sufficient to read the mathematical literature written in that language.

INDUSTRIAL MATHEMATICS

Master of Science

The degree of Master of Science in Industrial Mathematics is designed to produce generalized problem solvers of great versatility, capable of moving within an organization from task to task. The graduate will have acquired not only the standard mathematical and statistical tools, but also the basic ideas of engineering and business, and will have received training in project development and in modes of industrial communication. The program is for students planning careers in business, government or industry.

Admission

To be admitted to the Master of Science in Industrial Mathematics program, a person should have completed (1) the mathematics or applied mathematics courses normally required for the bachelor's degree with a major in mathematics, physics or engineering, (2) courses at the senior level in mathematical analysis, linear algebra and differential equations, and (3) have some familiarity with mathematical software programs such as Mathematica, Matlab, etc.

Students entering the program are expected to have a mathematical preparation at the level of Mathematics 421, 414 and 442. Students with deficiencies may be required to take additional credits.

Requirements for the Master of Science Degree in Industrial Mathematics

In addition to meeting the requirements of the University and the College of Natural Science, the student must complete a total of 36 credits for the degree under Plan B (without thesis). The student's program of study must be approved by the student's academic advisor, including:

1. The following requirements for the major: 36
 a. Both of the following courses:
MTH 843 Survey of Industrial Mathematics 3
MTH 844 Projects in Industrial Mathematics 3
b. A minimum of four of the following courses:
 MTH 810 Error-Correcting Codes 3
 MTH 841 Boundary Value Problems I 3
 MTH 842 Boundary Value Problems II 3
 MTH 848 Ordinary Differential Equations 3
 MTH 849 Partial Differential Equations 3
 MTH 850 Numerical Analysis I 3
 MTH 851 Numerical Analysis II 3
 MTH 852 Numerical Methods for Ordinary
 Differential Equations 3
 MTH 880 Combinatorics 3
 MTH 881 Graph Theory 3
c. A minimum of two of the following courses:
 STT 461 Computations in Probability and Statistics 3
 STT 471 Statistics for Quality and Productivity .. 3
 STT 801 Design of Experiments 3
 STT 844 Time Series Analysis 3
 STT 852 Stochastic Methods in Operations Research 3
 STT 861 Interim Probability and Statistics I 3
 STT 862 Theory of Probability and Statistics II ... 3
 STT 887 Applications of Probability 3
d. At least four of the following courses:
 CE 810 Reliability-Based Design in Civil
 Engineering 3
 CE 841 Traffic Flow Theory 3
 CSE 802 Pattern Recognition and Analysis 4
 CSE 803 Computer Vision 3
 CSE 808 Modelling and Discrete Simulation 3
 CSE 830 Design and Theory of Algorithms 3
 CSE 835 Algorithmic Graph Theory 3
 EC 805 Microeconomic Analysis 3
 EC 807 Applied Microeconomic Analysis 3
 EC 811 The Structure of Economic Analysis 3
 EC 812A Microeconomics I 3
 EC 812B Microeconomics II 3
 EC 813A Macroeconomics I 3
 EC 813B Macroeconomics II 3
 EC 820 Econometrics I 3
 EC 827 Economic Forecasting 2
 ECE 451 Control Systems 4
 ECE 808 Modelling and Discrete Simulation 3
 ECE 826 Linear Control Systems 3
 ECE 827 Nonlinear Systems Analysis 3
 ECE 829 Optimal Multivariate Control 3
 ENE 801 Dynamics of Environmental Systems 3
 ME 451 Control Systems 4
 ME 852 Intermediate Control Systems 3
 ME 855 Digital Data Acquisition and Control 3
 ME 857 Modeling and Simulation of Dynamic
 Systems 3
 ME 860 Theory of Vibrations 3
 ME 863 Nonlinear Vibrations 3
 MSM 401 Intermediate Mechanics of Deformable
 Solids ... 3
 MSM 402 Computational Mechanics 3
 MSM 444 Introduction to Composite Materials .. 3
 MSM 809 Finite Element Method 3
 MSM 810 Continuum Mechanics 3
 MSM 813 Linear Elasticity 3
 MSM 865 Advanced Theory of Solids 3
e. Completion of a Certificate in Basic Business and
 Communication Skills. The certificate program is organized as a
 series of week-end workshops covering such topics as project
 management, business law, intellectual property, management
 theory, finance, writing skills, presentation skills, information re-
 trieval, interpersonal skills and group work. The certificate pro-
 gram offered by the faculty of The Eli Broad College of Business
 and the College of Communication Arts and Sciences, will include
 a case-study approach. It will normally be undertaken during the
 first year of enrollment and will involve an additional cost to the stu-
 dent beyond usual tuition and fees.

After the completion of the certificate program is approved by
The Eli Broad College of Business and by the Associate Dean of
the College of Natural Science, the Office of the Registrar will en-
ter on the student’s academic record the name of the certificate
program and the date it was completed. This certification will ap-
pear on the student’s transcript upon completion of the require-
ments for the degree program.

MATHEMATICS

Master of Arts for Teachers

In addition to meeting the requirements of the university and of
the College of Natural Science, students must meet the require-
ments specified below.

Admission

To be admitted to the Master of Arts for Teachers degree program
in mathematics, a person should have (1) at least one year of cal-
culus and (2) at least 10 credits of acceptable junior and senior
mathematics courses. Normally these 10 credits should include
courses in advanced calculus and modern algebra. The candi-
date should also possess, or be a candidate for, teacher certifica-
tion.

Requirements for the Master of Arts for Teachers Degree
in Mathematics

The student must complete a total of 30 credits for the degree un-
der Plan B (without thesis). The student's program of study must
be approved by the student's academic advisor and must include:

1. At least 9 credits from the following courses: Mathematics
 801, 802A, 802B, and 903.
2. At least 15 additional credits in mathematics or statistics
 courses including one course sequence, such as algebra or
discrete mathematics, from a list of approved courses that is
available in the Department of Mathematics.
3. Course work in each of the following five areas of mathemat-
 ics: geometry, algebra, analysis, discrete mathematics, and
 probability and statistics. Courses completed while enrolled
in a bachelor's degree program may be used to satisfy this
requirement.

Master of Science

In addition to meeting the requirements of the university and of
the College of Natural Science, students must meet the require-
ments specified below.

Admission

To be admitted to the Master of Science degree program in math-
ematics, a person should have (1) at least one year of calculus and
(2) at least 10 credits of acceptable junior and senior mathemat-
courses. Normally these 10 credits should include courses in
advanced calculus and modern algebra.

Requirements for the Master of Science Degree
in Mathematics

The student must complete a total of 30 credits for the degree un-
der Plan B (without thesis). The student’s program of study must
be approved by the student’s academic advisor and must include:

1. At least 24 credits in mathematics courses including at least
 6 credits from the following courses: Mathematics 818, 819,
 828, 829, 848, 849, 865, 869
2. At least 18 credits in 800–900 level courses.
Requirements for the Doctor of Philosophy Degree in Mathematics

The student must:
1. Pass the qualifying examination.
2. Complete at least 30 credits in approved 800–900 level mathematics courses excluding courses taken in preparation for the qualifying examination and Mathematics 999.
3. Present at least two seminars acceptable to the faculty.
4. Pass the comprehensive examination.
5. Demonstrate a reading knowledge of one foreign language, normally from among French, German, and Russian, sufficient to read the mathematical literature written in that language.

For detailed information regarding the qualifying and comprehensive examinations, contact the Department of Mathematics.

DEPARTMENT of MICROBIOLOGY and MOLECULAR GENETICS

Walter Esselman, Chairperson

The Department of Microbiology and Molecular Genetics is administered jointly by the colleges of Natural Science, Human Medicine, Osteopathic Medicine, and Veterinary Medicine.

Microbiology involves the study of microscopic organisms: bacteria, viruses, algae, fungi, and protozoa, as well as animal and plant cells in culture. Microbiology also includes research on the interaction of pathogenic and symbiotic microbes with their hosts and the host response to infection.

Molecular genetics and genomics includes study of the basis of heredity and the mechanisms by which genes exert their effects. Much of this study originates in microbial systems or employs microbiology-based technologies.

Every area of modern biology incorporates aspects of microbiology. Microbes are not only key players in disease, industrial processes, and the environment, but some of them are also among the most intensively studied model systems in all of biological science.

The microbiologist today may specialize in one or more of the diverse aspects of the science. At the undergraduate level, students may pursue their interests by completing a course of study that emphasizes: cell and molecular biology; microbe biology; genomics and molecular genetics; medical microbiology and immunology; and microbial biotechnology. The molecular geneticist studies genomics and heredity, as well as genetic engineering and gene manipulation.

Employment opportunities for microbiologists and molecular geneticists exist at all levels of education. Careers are available as teachers and researchers in universities and institutes, and as scientists in a variety of governmental, medical, and industrial laboratories.

Because the programs in microbiology or molecular genetics offer a broad overview of biology, they are excellent choices for students who are interested in fundamental and applied biological science. Because the programs in microbiology provide the opportunity to focus on infectious agents and the immune response, they are also excellent choices for students who plan to apply for admission to graduate professional programs, such as human or veterinary medicine.

Students who are enrolled in bachelor’s degree programs in the Department of Microbiology and Molecular Genetics may elect the Specialization in Food Processing and Technology. For additional information, refer to the Specialization in Food Processing and Technology statement in the Department of Food Science and Human Nutrition statement in the College of Agriculture and Natural Resources section of this catalog.

The Department of Microbiology and Molecular Genetics also participates in the joint bachelor's degree/master's degree of the College of Natural Science. For additional information, refer to the College of Natural Science Dual Degree Program: Bachelor of Science and Master of Science section of this catalog.

UNDERGRADUATE PROGRAMS

ENVIRONMENTAL BIOLOGY/MICROBIOLOGY

Environmental microbiology is a large and diverse field that addresses concerns such as soil fertility, water purity and quality, and safety of the food supply. Although environmental biology is concerned with all members of the biosphere and the geochemical surroundings, microorganisms are at the heart of the biological activities in the environment. Many of the environmental problems facing society are microbial, or for which microbiological solutions may be found.

The Bachelor of Science degree program with a major in environmental biology/microbiology is designed for students who plan to pursue careers involving microbiology and the environment or who plan to pursue graduate study in microbiology and related environmental areas.

The educational objectives of the program are to:
1. Help students to acquire knowledge of microbiology and related environmental areas.
2. Prepare students to solve problems in environmental microbiology.

On completion of the program, the graduate may apply for certification with the National Registry of Microbiologists of the American Society for Microbiology.

Requirements for the Bachelor of Science Degree in Environmental Biology/Microbiology

1. The University requirements for bachelor’s degrees as described in the Undergraduate Education section of this catalog: 120 credits, including general elective credits, are required for the Bachelor of Science degree in Environmental Biology/Microbiology.

The University’s Tier II writing requirement for the Environmental Biology/Microbiology major is met by completing Microbiology 408. That course is referenced in item 3.a.(3)(a) below.

Students who are enrolled in the College of Natural Science may complete the alternative track to Integrative Studies in Biological and Physical Sciences that is described in item 1. under the heading Graduation Requirements in the College statement.

Cer-
tain courses referenced in requirement 3. below may be used to satisfy the alternative
track.
2. The requirements of the College of Natural Science for the Bachelor of Science de-
gree.
 The credits earned in certain courses referenced in requirement 3. below may be
counted toward College requirements as appropriate.
3. The following requirements for the major:

 a. The following courses outside the Department of
 Microbiology: .. 67

 (1) All of the following courses (84 credits):
 BMB 461 Biochemistry I 3
 BMB 462 Biochemistry II 3
 BS 110 Organisms and Populations 3
 BS 111 Cells and Molecules 3
 BS 111L Cell and Molecular Biology Laboratory ... 2
 CEM 141 General Chemistry 4
 CEM 142 General and Inorganic Chemistry 3
 CEM 161 Chemistry Laboratory I 1
 CEM 162 Chemistry Laboratory II 2
 CEM 251 Organic Chemistry I 3
 CEM 252 Organic Chemistry II 3
 CEM 255 Organic Chemistry Laboratory 2
 CSS 210 Fundamentals of Soil Science 3
 GLG 201 The Dynamic Earth 4
 GLG 421 Environmental Geochemistry 4
 MTH 132 Calculus I 3
 PHY 231 Introductory Physics I 3
 PHY 232 Introductory Physics II 3
 PHY 251 Introductory Physics Laboratory I 1
 PHY 252 Introductory Physics Laboratory II 1
 STT 231 Statistics for Scientists 3
 ZOL 355 Ecology 3
 ZOL 355L Ecology Laboratory 1

 (2) The following courses in the Department of Microbiology
 and Molecular Genetics: 19

 (a) All the following courses (16 credits):
 MMG 301 Introductory Microbiology 3
 MMG 302 Laboratory for General
 and Allied Health Microbiology 1
 MMG 408 Advanced Microbial Culture Laboratory (W)...... 3
 MMG 421 Prokaryotic Cell Physiology 3
 MMG 425 Microbial Ecology 3
 MMG 431 Microbial Genetics 3
 (b) One of the following two options (3 credits):
 (i) MMG 491 Current Topics in Microbiology
 and Molecular Genetics 3
 (ii) MMG 492 Undergraduate Research Seminar ... 1
 One of the following courses:
 MMG 499 Undergraduate Research 2
 MMG 499H Honors Research 2
 The completion of either of these two options fulfills the
 department's capstone course requirement.

 (3) One course from two of the following seven areas: 6

 (a) CSS 455 Pollutants in the Soil Environment 3
 (b) FOR 404 Forest and Agricultural Ecology 3
 (c) FSC 440 Food Microbiology 3
 (d) GEO 208 Physical Geography 3
 (e) GEO 221 Introduction to Geographic
 Information .. 3
 (f) MMG 445 Microbial Biotechnology 3
 (g) ZOL 446 Environmental Issues and Public Policy .. 3

GENOMICS AND MOLECULAR GENETICS

The objective of the Bachelor of Science degree program with a
major in genomics and molecular genetics is to provide a broad
foundation in science, with emphasis in genomics and molecular
genetics. Although the majority of the course work is prescribed,
students have an opportunity to tailor their degree program to
their own interests within the field by choosing a suitable course
combination from a slate of options. On completion of the pro-
gram, graduates may apply for certification with the National Reg-
istry of Microbiologists of the American Society for Microbiology.

In addition to the general degree requirements of the College of
Natural Science, the undergraduate program in genomics and
molecular genetics encompasses fundamental training in chem-
istry, mathematics, physics, and biology. This foundation pro-
vides the prerequisites for undertaking the basic courses in
genomics and molecular genetics. In order to increase the flexi-
bility of the program, and to provide additional intellectual stimu-
lation, students are encouraged to participate in mentored
independent research for at least two, and ideally three or more,
semesters. Independent research is available to both Honors
College and other students, and often culminates with a report
written in manuscript style by the student. This research may fulfill
part of the department’s capstone course requirement for the
bachelor’s degree with a major in genomics and molecular genet-
ics.

Requirements for the Bachelor of Science Degree in
Genomics and Molecular Genetics

1. The University requirements for bachelor’s degrees as described in the Undergradu-
ate Education section of this catalog (220 credits, including general elective credits,
are required for the Bachelor of Science degree in Genomics and Molecular Genetics.
The University’s Tier II writing requirement for the Genomics and Molecular Genetics
major is met by completing Microbiology 434. This course is referenced in
item 3. b. (2) below.

Students who are enrolled in the College of Natural Science may complete the alter-
native track to Integrative Studies in Biological and Physical Sciences that is described
in item 1. under the heading Graduation Requirements in the College statement. Cer-
tain courses referenced in requirement 3. below may be used to satisfy the alternative
track.

2. The requirements of the College of Natural Science for the Bachelor of Science de-
gree.

The credits earned in certain courses referenced in requirement 3. below may be
counted toward College requirements as appropriate.

3. The following requirements for the major:

 a. The following courses outside the Department of Microbiology
 and Molecular Genetics: 50 or 51

 (1) All of the following courses (44 credits):
 BMB 461 Biochemistry I 3
 BMB 462 Biochemistry II 3
 BS 110 Organisms and Populations 4
 BS 111 Cells and Molecules 4
 BS 111L Cell and Molecular Biology Laboratory ... 2
 CEM 141 General Chemistry 4
 CEM 142 General and Inorganic Chemistry 3
 CEM 161 Chemistry Laboratory I 1
 CEM 162 Chemistry Laboratory II 2
 CEM 251 Organic Chemistry I 3
 CEM 252 Organic Chemistry II 3
 CEM 255 Organic Chemistry Laboratory 2
 CSS 210 Fundamentals of Soil Science 3
 GLG 201 The Dynamic Earth 4
 GLG 421 Environmental Geochemistry 4
 MTH 132 Calculus I 3
 PHY 231 Introductory Physics I 3
 PHY 232 Introductory Physics II 3
 PHY 251 Introductory Physics Laboratory I 1
 PHY 252 Introductory Physics Laboratory II 1
 STT 231 Statistics for Scientists 3
 ZOL 341 Fundamental Genetics 4

 (2) One of the following groups of courses (6 or 7 credits):

 (a) MTH 124 Survey of Calculus I 3
 MTH 126 Survey of Calculus II 3
 MTH 132 Calculus I 3
 MTH 133 Calculus II 4
 MTH 124 Survey of Calculus I 3
 STT 231 Statistics for Scientists 3
 STT 421 Statistics I 3
 (d) MTH 132 Calculus I 3
 STT 231 Statistics for Scientists 3
 STT 421 Statistics I 3

 (b) MMG 491 Current Topics in Microbiology
 and Molecular Genetics 3
 MMG 492 Undergraduate Research Seminar ... 1
 One of the following courses:
 MMG 499 Undergraduate Research 2
 MMG 499H Honors Research 2
 The completion of Microbiology 491, or Microbiology 492 and
 499H, fulfills the department’s capstone
course requirement.

 b. The following courses in the Department of Microbiology
 and Molecular Genetics: 19

 (1) All of the following courses (13 credits):
 MMG 301 Introductory Microbiology 3
 MMG 302 Introductory Microbiology Laboratory 1
 MMG 431 Microbial Genetics 3
 MMG 433 Microbial Genomics 3
 MMG 434 Laboratory in Genomics and Molecular
 Genetics (W) .. 4

 (2) One of the following courses (3 credits):
 MMG 409 Eukaryotic Cell Biology 3
 MMG 421 Prokaryotic Cell Physiology 3

 (3) One of the following two options (3 credits):

 (a) MMG 491 Current Topics in Microbiology
 and Molecular Genetics 3
 MMG 492 Undergraduate Research Seminar ... 1
 One of the following courses:
 MMG 499 Undergraduate Research 2
 MMG 499H Honors Research 2
 The completion of Microbiology 491, or Microbiology 492 and
 499H, fulfills the department’s capstone
course requirement.

 c. Two of the following courses: 6

 (a) ANS 425 Principles of Animal Biotechnology 3
 CSS 350 Introduction to Plant Genetics 3
 CSS 441 Plant Breeding and Biotechnology 3
 CEM 413 Virology 3
 MMG 425 Microbial Ecology 3

 d. GENOMICS AND MOLECULAR GENETICS

 The objectives of the Bachelor of Science degree program with a
major in genomics and molecular genetics is to provide a broad
foundation in science, with emphasis in genomics and molecular
genetics. Although the majority of the course work is prescribed,
students have an opportunity to tailor their degree program to
their own interests within the field by choosing a suitable course
combination from a slate of options. On completion of the pro-
gram, graduates may apply for certification with the National Reg-
istry of Microbiologists of the American Society for Microbiology.

In addition to the general degree requirements of the College of
Natural Science, the undergraduate program in genomics and
molecular genetics encompasses fundamental training in chem-
istry, mathematics, physics, and biology. This foundation pro-
vides the prerequisites for undertaking the basic courses in
genomics and molecular genetics. In order to increase the flexi-
bility of the program, and to provide additional intellectual stimu-
lation, students are encouraged to participate in mentored
independent research for at least two, and ideally three or more,
MICROBIOLOGY

The objective of the Bachelor of Science degree program with a major in microbiology is to provide a broad foundation in science, with emphasis in microbiology. In order to assist students in planning a course of study, elective microbiology courses are organized by interest group (cell and molecular biology, immunology and medical microbiology, microbe biology, and microbial biotechnology) and students are advised in personal consultations to select a set of electives according to their interests. Thus, different emphases may be chosen by students intending to acquire technical competence in the field, to pursue graduate education in microbiology or another biological science, or to attain competence in a basic medical science preparatory to or in conjunction with professional study in human or veterinary medicine. On completion of the program, graduates may apply for certification with the National Registry of Microbiologists of the American Society for Microbiology.

In addition to the general degree requirements of the College of Natural Science, the undergraduate program in microbiology encompasses fundamental training in chemistry, mathematics, physics, and biology. This foundation provides the prerequisites for undertaking the basic courses in microbiology.

In order to increase the flexibility of the program, and to provide additional intellectual stimulation, students are encouraged to participate in tutored independent research for at least two, and ideally three or more, semesters. Independent research is available to both Honors College and other students, and often culminates with a report written in manuscript style by the student. This research may fulfill part of the department's capstone course requirement for the bachelor's degree with a major in microbiology.

Requirements for the Bachelor of Science Degree in Microbiology

1. The University requirements for bachelor's degrees as described in the Undergraduate Education section of this catalog. 120 credits, including general elective credits, are required for the Bachelor of Science degree in Microbiology.

 The University's Tier II writing requirement for the Microbiology major is met by completing Microbiology 408. That course is referenced in item 3b. (1) below.

2. The requirements of the College of Natural Science for the Bachelor of Science degree.

 The credits earned in certain courses referenced in requirement 3b. below may be counted toward College requirements as appropriate.

3. The following requirements for the major:

 a. The following courses outside the Department of Microbiology:

 (1) All of the following courses (40 credits):

Course Code	Course Name	Credits
MMG 445	Basic Biotechnology	3
MMG 451	Immunology	3
ZOL 404	Human Genetics	3

Course Code	Course Name	Credits
MTH 124	Survey of Calculus I	3
MTH 126	Survey of Calculus I	3

 (2) One of the following groups of courses (6 or 7 credits):

Course Code	Course Name	Credits
MTH 132	Calculus I	3
MTH 133	Calculus II	4

 b. The following courses in the Department of Microbiology and Molecular Genetics:

 (1) All of the following courses (16 credits):

Course Code	Course Name	Credits
MMG 301	Introductory Microbiology	3
MMG 302	Introductory Microbiology Laboratory for General and Allied Health Microbiology	2
MMG 408	Advanced Microbiology Laboratory (W)	3
MMG 409	Eukaryotic Cell Biology	3
MMG 421	Prokaryotic Cell Physiology	3
MMG 431	Microbial Genetics	3

 (2) One of the following two options (3 credits):

 (a) MMG 491 Current Topics in Microbiology and Molecular Genetics | 3 |

 (b) MMG 492 Undergraduate Research Seminar | 1 |

 c. Complete one of the following:

 (1) MMG 413 Virology | 3 |

 (a) MMG 451 Immunology | 3 |

 One of the following courses:

 EPI 390 Disease in Society: Introduction to Epidemiology and Public Health | 4 |

 FSC 440 Food Microbiology | 3 |

 MMG 433 Microbial Genomics | 3 |

 MMG 445 Microbial Biotechnology | 3 |

 MMG 461 Molecular Pathogenesis | 3 |

 MMG 463 Medical Microbiology | 3 |

 ZOL 341 Fundamental Genetics | 4 |

 (2) MMG 425 Microbial Ecology | 3 |

 MMG 433 Microbial Genomics | 3 |

 One of the following courses:

 MMG 413 Virology | 3 |

 MMG 426 Biogeochemistry | 3 |

 MMG 445 Microbial Biotechnology | 3 |

 MMG 463 Medical Microbiology | 3 |

 MMG 433 Microbial Genomics | 3 |

 (3) MMG 445 Basic Biotechnology | 3 |

 One of the following courses:

 FSC 440 Food Microbiology | 3 |

 MMG 426 Microbial Ecology | 3 |

 MMG 451 Immunology | 3 |

GRADUATE STUDY

The Department of Microbiology and Molecular Genetics is administered jointly by the colleges of Natural Science, Human Medicine, Osteopathic Medicine, and Veterinary Medicine. Study for the Master of Science degree in microbiology and molecular genetics or the Doctor of Philosophy degree in microbiology and molecular genetics may be administered by any one of the four colleges referenced above. Study for the Master of Science degree in industrial microbiology is administered solely by the College of Natural Science. Study for the Doctor of Philosophy degree with a major in microbiology—environmental toxicology is administered by the College of Veterinary Medicine.

The Department of Microbiology and Molecular Genetics is affiliated with the Doctor of Philosophy degree program with a major in ecology, evolutionary biology and behavior. For information about a Doctor of Philosophy degree program that involves ecology, evolutionary biology and behavior and a major in the Department of Microbiology and Molecular Genetics, refer to the statement on the doctoral program in ecology, evolutionary biology and behavior.

Students who are enrolled in the Master of Science degree program in the Department of Microbiology and Molecular Genetics may elect a Specialization in Ecology, Evolutionary Biology and Behavior. For additional information, refer to the statement on the specialization.
Students who are enrolled in Master of Science degree programs in the Department of Microbiology and Molecular Genetics may elect a Specialization in Food Safety. For additional information, refer to the statement on the specialization in the College of Veterinary Medicine section of this catalog.

INDUSTRIAL MICROBIOLOGY

Master of Science

Most students who are admitted to this program plan to enter industry after they graduate.

In addition to meeting the requirements of the university and of the College of Natural Science, students must meet the requirements specified below.

Admission

In general, applicants should have had the equivalent of an academic year each of physics, inorganic chemistry, and organic chemistry; one biochemistry course; mathematics through integral calculus; and one or more courses in the biological sciences. Applicants should have proficiency in written and spoken English, a minimum grade–point average of 3.00, and grades of 3.0 or above in science and mathematics courses. Scores on the Graduate Record Examination General Test and a personal letter of professional intent and objectives are required. Although preparation in the fundamentals of microbiology is desirable, interested students with degrees in any of the physical or biological sciences or mathematics are invited to apply for admission to the program. Applicants not possessing all of the requirements may be admitted to the program provisionally and permitted to make up deficiencies on a collateral basis.

Requirements for the Master of Science Degree in Industrial Microbiology

The student must complete 30 credits under Plan B (without thesis). The specific program of study, including an internship with an industrial partner, will be determined by the student’s guidance committee. At least 7 credits of master's thesis research are required on topics appropriate for an industrial internship and as approved by the guidance committee or program director. The final oral examination, which covers both course work and thesis research, is administered by the student's guidance committee and a representative of the department's Graduate Committee.

All students in the program will be required to complete a Certificate Program in Basic Business and Communication Skills. The certificate program is organized as a series of week-end workshops covering such topics as project management, business law, intellectual property, management theory, finance, writing skills, presentation skills, information retrieval, interpersonal skills and group work. The certificate program offered by the faculty of The Eli Broad College of Business and the College of Communication Arts and Sciences, will include a case-study approach. It will normally be undertaken during the first year of enrollment and will involve an additional cost to the student beyond usual tuition and fees.

After the completion of the certificate program is approved by The Eli Broad College of Business and by the Associate Dean of the College of Natural Science, the Office of the Registrar will enter on the student's academic record the name of the certificate program and the date it was completed. This certification will appear on the student's transcript upon completion of the requirements for the degree program.

MICROBIOLOGY and MOLECULAR GENETICS

In general, qualified students will be admitted to graduate study leading directly to the Ph.D. degree in microbiology and molecular genetics. Students who are enrolled in the professional programs in the colleges of Human Medicine, Osteopathic Medicine, and Veterinary Medicine, or in professional programs in other colleges, may pursue a graduate degree in microbiology and molecular genetics concurrently.

The objective of the graduate programs in microbiology and molecular genetics is to provide basic education in various subdisciplines of microbiology and intensive research experience in specialty areas relative to the student's interest. In the master's program, students extend their comprehension of microbiology and cognate science through advanced course work, seminars, and research. The Doctor of Philosophy is a research–oriented degree; the emphasis is placed on original research, and the aim is to enable the student to become a self–educating and creative scholar. Facilities and opportunities are also available for post doctoral associates. Financial subsidy is available for qualified applicants.

A new graduate student in microbiology and molecular genetics is advised by the Director of Graduate Studies until a major professor is chosen. This choice should be made by the end of the second semester of enrollment in the program. The major professor assists the student in selecting a guidance committee. The committee helps the student in planning a program of study. The program must be approved by the end of the third semester of enrollment in the program. A Manual for Graduate Study in Microbiology and Molecular Genetics is available from the department. This manual contains a philosophy of graduate education and information about the department's master's and doctoral degree programs and related procedures.

Several members of the faculty of the Department of Microbiology and Molecular Genetics are appointed jointly in other departments or are affiliated with the NSF Science and Technology Center for Microbial Ecology or with the Michigan Biotechnology Institute. Some members of the faculty contribute to interdepartmental graduate programs of study.

Scheduled courses and research are offered at the W. K. Kellogg Biological Station located at Gull Lake, near Battle Creek.

Master of Science

Most students admitted to the M.S. program in microbiology and molecular genetics have the Ph.D. degree as their eventual goal.

In addition to meeting the requirements of the university and of the College of Natural Science, Human Medicine, Osteopathic Medicine, or Veterinary Medicine, students must meet the requirements specified below.

Admission

In general, applicants should have had the equivalent of an academic year each of physics, inorganic chemistry, and organic chemistry; one biochemistry course; mathematics through integral calculus; and one or more courses in the biological sciences. Applicants should have proficiency in written and spoken English, a minimum grade–point average of 3.00, and grades of 3.0 or above in science and mathematics courses. Scores on the Graduate Record Examination General Test and a personal letter of professional intent and objectives are required. Although preparation in the fundamentals of microbiology is desirable, interested students with degrees in any of the physical or biological sciences or mathematics are invited to apply for admission to the program. Applicants not possessing all of the requirements may be admit-
Requirements for the Master of Science Degree in Microbiology and Molecular Genetics

The student must complete 30 credits under Plan A (with thesis). At least 5 credits of master's thesis research are required. The final oral examination, which covers both course work and thesis research, is administered by the student's guidance committee and a representative of the department Graduate Committee. The examining committee recommends a grade for the thesis research and the advisability of further graduate study. All master's students are required to participate in laboratory teaching, and are expected to attend departmental seminars.

Doctor of Philosophy

In addition to meeting the requirements of the university and of the College of Natural Science, Human Medicine, Osteopathic Medicine, or Veterinary Medicine, students must meet the requirements specified below.

Admission

A student may apply for admission to the doctoral program in Microbiology and Molecular Genetics when the individual is about to earn or has earned a Bachelor of Science, Bachelor of Arts, Master of Science, or a professional medical degree. In general, applicants should have had the equivalent of an academic year each of physics, inorganic chemistry, and organic chemistry; one biochemistry course; mathematics through integral calculus; and one or more courses in the biological sciences. Applicants should have proficiency in written and spoken English, a minimum grade–point average of 3.00, and grades of 3.0 or above in science and mathematics courses. Scores on the Graduate Record Examination General Test and a personal letter of professional intent and objectives are required. Although preparation in the fundamentals of microbiology is desirable, interested students with degrees in any of the physical or biological sciences or mathematics are invited to apply for admission to the program. Applicants not possessing all of the requirements may be admitted to the program provisionally and permitted to make up deficiencies on a collateral basis.

Requirements for the Doctor of Philosophy Degree in Microbiology and Molecular Genetics

The student must:

1. Complete a minimum of four graduate courses (excluding topics and seminar courses) covering the areas of genetics, microbiology, and biochemistry. At least two of these courses must be offered by the Department of Microbiology and Molecular Genetics.
2. Complete five graduate seminar courses, each of which involves an oral presentation by the student.
3. Complete at least two, and preferably three, rotations in the laboratories of different faculty members in the Department of Microbiology and Molecular Genetics. This requirement must be completed by the end of the first calendar year of enrollment in the program.
4. Pass the preliminary examination, which involves an oral defense of the research proposal. This examination is normally given at the end of the second year of enrollment in the program.
5. Submit a dissertation and a publishable manuscript, based on original research and representing a new and significant contribution to knowledge.

All doctoral students in microbiology and molecular genetics are required to participate in laboratory teaching, and are expected to attend departmental seminars.

Academic Standards

Failure to pass the preliminary examination will result in dismissal from the program.

MICROBIOLOGY—ENVIRONMENTAL TOXICOLOGY

Doctor of Philosophy

For information about the Doctor of Philosophy degree program in microbiology—environmental toxicology, refer to the statement on Multidepartmental Doctoral Programs in Environmental Toxicology in the Graduate Education section of this catalog.

DEPARTMENT of

PHYSICS and ASTRONOMY

Wolfgang W. Bauer, Chairperson

Physics is the study of the physical universe. By means of observation, experiment, theoretical constructions and computer simulations, this science attempts to find the principles, which describe that universe. Among the topics of physics are motion and force, energy, sound, electricity and magnetism, light, atomic and nuclear structure, nuclear reactions, properties of condensed matter, the elementary particles and their interactions, and particle accelerators. A study of physics provides the basic understanding of nature, and develops the analytical skills, which are essential for progress in science and technology, e.g., conducting scientific research, solving environmental problems, advancing biomedical systems, and inventing cutting-edge technology of the 21st century.

Astronomy is the study of the universe beyond the earth. The laws of physics, as they are known from laboratory experiments, are applied to stars, interstellar gas, galaxies, and space itself in an attempt to understand the detailed physical states of these entities. Astrophysics frequently involves a study of matter under extreme conditions that cannot be duplicated in the laboratory; from this point of view the universe becomes a laboratory in which naturally occurring phenomena subject matter to very large ranges of physical parameters. Cosmology, a branch of physics and astronomy, attempts to use theory and current observations to comprehend the history and evolution of the universe.

The department offers diverse courses in physics and astronomy. Undergraduate programs with different emphases may be planned through an appropriate choice of electives from the departmental courses. Other interests may be pursued by concentrating the electives in geophysics, computer science, or other branches of science or engineering.
UNDERGRADUATE PROGRAMS

Bachelor of Science

PHYSICS

The Bachelor of Science degree with a major in physics is designed to provide a thorough foundation in the field of physics together with considerable background in mathematics and a balanced program in the liberal arts. It is designed for those with an interest in:

a. Graduate Study. Within the requirements listed below, the student’s electives should emphasize theory in such areas as electricity and magnetism, quantum mechanics, additional mathematics, and computer programming.

b. Experimental Physics as a preparation for positions in government and industry. Students taking this program have an opportunity to obtain a basic background in mechanics, electricity and electronics, thermodynamics, optics, and modern physics. They will also have an opportunity to acquire strong experimental training in at least two and probably three of the following areas: electronics, modern optics, nuclear physics, and solid state (materials) physics. Computer programming courses and experience are strongly recommended.

Recommended programs of study are available in a Department of Physics and Astronomy brochure.

Requirements for the Bachelor of Science Degree in Physics

1. The University requirements for bachelor’s degrees as described in the Undergraduate Education section of this catalog; 120 credits, including general elective credits, are required for the Bachelor of Science degree in Physics. The University’s Tier II writing requirement for the Physics major is met by completing one of the clusters of courses referenced in item 3. b. (2) below.

Students who are enrolled in the College of Natural Science may complete the alternative track to Integrative Studies in Biological and Physical Sciences that is described in item 1. under the heading Graduation Requirements in the College statement. Certain courses referenced in requirement 3. below may be used to satisfy the alternative track.

2. The requirements of the College of Natural Science for the Bachelor of Science degree.

3. The credits earned in certain courses referenced in requirement 3. below may be counted toward College requirements as appropriate.

3. The following requirements for the major:

a. The following courses outside the Department of Physics and Astronomy: 31 or 32

 (1) One of the following courses (3 or 4 credits):

 - BS 110 Organisms and Populations............. 4
 - BS 111 Cells and Molecules...................... 3
 - ENT 205 Pests, Society and Environment....... 3
 - MGG 205 Allied Health Microbiology............ 3
 - PLB 105 Plant Biology.......................... 3
 - PSL 250 Introductory Physiology................ 4
 - ZOL 141 Introductory Human Genetics.......... 3

 (2) One of the following pairs of courses (7 credits):

 (a) CEM 141 General Chemistry.................. 4
 - CEM 142 General and Inorganic Chemistry 3
 (b) CEM 151 General and Descriptive Chemistry ..3
 - CEM 152 Principles of Chemistry............... 3

 (3) All of the following courses (21 credits):

 - CEM 161 Chemistry Laboratory I 1
 - MTH 132 Calculus I 3
 - MTH 234 Multivariable Calculus................. 4
 - MTH 235 Differential Equations................ 3

 Two Mathematics courses at the 300 level or above of at least 3 credits each (6 credits).

b. The following courses in the Department of Physics and Astronomy: 34 to 48

 (1) All of the following courses (21 credits):

 - PHY 191 Physics Laboratory for Scientists, I 1
 - PHY 192 Physics Laboratory for Scientists, II 1

 (2) One of the following clusters of courses (4 to 6 credits):

 (a) Thesis cluster:

 - PHY 390 Physics Journal Seminar................ 1
 - PHY 490 Senior Thesis............................ 3

 (b) Lecture course cluster:

 - PHY 491 Atomic, Molecular, and Condensed Matter Physics........... 3
 - PHY 492 Nuclear and Elementary Particle Physics................. 3

 (3) One of the following courses (3 or 4 credits):

 - PHY 183 Physics for Scientists and Engineers I 4
 - PHY 183B Physics for Scientists and Engineers I 4
 - PHY 193H Honors Physics I—Mechanics............ 3

 (4) One of the following courses (3 or 4 credits):

 - PHY 184 Physics for Scientists and Engineers II 4
 - PHY 184B Physics for Scientists and Engineers II 4
 - PHY 294H Honors Physics II—Electromagnetism...... 3

 (5) One of the following courses (3 credits):

 - PHY 215 Thermodynamics and Modern Physics.......... 3
 - PHY 215B Thermodynamics and Modern Physics.......... 3

 The completion of Physics 390 and 490, or Physics 491 and 492, fulfills the department’s capstone course requirement.

ASTROPHYSICS

The Bachelor of Science degree with a major in Astrophysics is designed to provide an extensive background in both physics and astrophysics; a student who graduates with this degree may apply for admission to graduate study in either astronomy or physics.

Requirements for the Bachelor of Science Degree in Astrophysics

1. The University requirements for bachelor’s degrees as described in the Undergraduate Education section of this catalog; 120 credits, including general elective credits, are required for the Bachelor of Science degree in Astrophysics. The University’s Tier II writing requirement for the Astrophysics major is met by completing 3 or 4 credits of Astronomy and Astrophysics 410. That course is referenced in item 3. b. (1) below.

Students who are enrolled in the College of Natural Science may complete the alternative track to Integrative Studies in Biological and Physical Sciences that is described in item 1. under the heading Graduation Requirements in the College statement. Certain courses referenced in requirement 3. below may be used to satisfy the alternative track.

2. The requirements of the College of Natural Science for the Bachelor of Science degree.

The credits earned in certain courses referenced in requirement 3. below may be counted toward College requirements as appropriate.

3. The following requirements for the major:

a. The following courses outside the Department of Physics and Astronomy: 25 or 26

 (1) One of the following courses (3 or 4 credits):

 - BS 110 Organisms and Populations............. 4
 - BS 111 Cells and Molecules...................... 3
 - ENT 205 Pests, Society and Environment....... 3
 - MGG 205 Allied Health Microbiology............ 3
 - PLB 105 Plant Biology.......................... 3
 - PSL 250 Introductory Physiology................ 4
 - ZOL 141 Introductory Human Genetics.......... 3

 (2) One of the following pairs of courses (7 credits):

 (a) CEM 141 General Chemistry.................. 4
 - CEM 142 General and Inorganic Chemistry 3
 (b) CEM 151 General and Descriptive Chemistry ..3
 - CEM 152 Principles of Chemistry............... 3

 (3) All of the following courses (15 credits):

 - CEM 161 Chemistry Laboratory I 1
 - MTH 132 Calculus I 3
 - MTH 234 Multivariable Calculus................. 4
 - MTH 235 Differential Equations................ 3

 Two Mathematics courses at the 300 level or above of at least 3 credits each (6 credits).

b. The following courses in the Department of Physics and Astronomy: 38 to 41

 (1) All of the following courses (29 or 30 credits):

 - AST 207 The Science of Astronomy............... 3
 - AST 208 Planets and Telescopes.................. 3
 - AST 304 Stars.................................. 3
 - AST 308 Galaxies and Cosmology................ 3
Bachelor of Arts

The Bachelor of Arts degree with a major in physics is provided for those students who wish a physics major combined with a broader education in the liberal arts than the Bachelor of Science degree program permits. This degree program is also suitable for those students who plan to meet the requirements for teacher certification.

Requirements for the Bachelor of Arts Degree in Physics

1. The University requirements for bachelor's degrees as described in the Undergraduate Education section of this catalog; 120 credits, including general elective credits, are required for the Bachelor of Arts degree in Physics.

The University's Tier II writing requirement for the Physics major is met by completing one of the clusters of courses referenced in item 3. b. (2) below.

Students who are enrolled in the College of Natural Science may complete the alternative track to Integrative Studies in Biological and Physical Sciences that is described in item 1. under the heading Graduation Requirements in the College statement. Certain courses referenced in requirement 3. below may be used to satisfy the alternative track.

2. The requirements of the College of Natural Science for the Bachelor of Arts degree.

The credits earned in certain courses referenced in requirement 3. below may be counted toward College requirements as appropriate.

3. The following requirements for the major:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHY 191 Physics Laboratory for Scientists, I</td>
<td>1</td>
</tr>
<tr>
<td>PHY 192 Physics Laboratory for Scientists, II</td>
<td>1</td>
</tr>
<tr>
<td>PHY 321 Classical Mechanics I</td>
<td>3</td>
</tr>
<tr>
<td>PHY 410 Thermal and Statistical Physics</td>
<td>3</td>
</tr>
<tr>
<td>PHY 471 Quantum Physics I</td>
<td>3</td>
</tr>
<tr>
<td>PHY 481 Electricity and Magnetism I</td>
<td>3</td>
</tr>
<tr>
<td>PHY 294H Honors Physics II—Electromagnetism</td>
<td>3</td>
</tr>
</tbody>
</table>

The completion of Astronomy and Astrophysics 410 fulfills the department's capstone course requirement.

(2) One of the following courses (3 or 4 credits): PHY 183 Physics for Scientists and Engineers I | 4 |

(3) One of the following courses (3 or 4 credits): PHY 243 Physics for Scientists and Engineers I | 4 |

(4) One of the following courses (3 credits): PHY 215 Thermodynamics and Modern Physics | 3 |

(5) The completion of Physics 390 and 490 or Physics 491 and 492, fulfills the department's capstone course requirement.

PHYSICS AND GEOPHYSICS

The Bachelor of Science degree with a major in physics and geophysics is designed to provide a thorough foundation in the field of physics, considerable background in the geological sciences and mathematics, and a balanced program in the liberal arts. The degree program is designed for those with an interest in graduate study in the geological sciences or employment in the environmental or energy sector.

A Bachelor of Science degree in Geophysics is also available and is administered by the Department of Geological Sciences. For additional information, refer to the Department of Geological Sciences section of this catalog.

Requirements for the Bachelor of Science Degree in Physics and Geophysics

1. The University requirements for bachelor's degrees as described in the Undergraduate Education section of this catalog; 120 credits, including general elective credits, are required for the Bachelor of Science in Physics and Geophysics.

The University's Tier II writing requirement for the Physics and Geophysics major is met by completing Physics 431, 440, and 451. Those courses are referenced in item 3. b. (1) below.

Students who are enrolled in the College of Natural Science may complete the alternative track to Integrative Studies in Biological and Physical Sciences that is described in item 1. under the heading Graduation Requirements in the College statement. Certain courses referenced in requirement 3. below may be used to satisfy the alternative track.

2. The requirements of the College of Natural Science for the Bachelor of Science degree.

The credits earned in certain courses referenced in requirement 3. below may be counted toward College requirements as appropriate.

3. The following requirements for the major:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHY 191 Physics Laboratory for Scientists, I</td>
<td>1</td>
</tr>
<tr>
<td>PHY 192 Physics Laboratory for Scientists, II</td>
<td>1</td>
</tr>
<tr>
<td>PHY 321 Classical Mechanics I</td>
<td>3</td>
</tr>
<tr>
<td>PHY 410 Thermal and Statistical Physics</td>
<td>3</td>
</tr>
<tr>
<td>PHY 481 Electricity and Magnetism I</td>
<td>3</td>
</tr>
<tr>
<td>PHY 183 Physics for Scientists and Engineers I</td>
<td>4</td>
</tr>
<tr>
<td>PHY 183B Physics for Scientists and Engineers I</td>
<td>4</td>
</tr>
<tr>
<td>PHY 193H Honors Physics I—Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>PHY 215 Thermodynamics and Modern Physics</td>
<td>3</td>
</tr>
<tr>
<td>PHY 215B Thermodynamics and Modern Physics</td>
<td>3</td>
</tr>
<tr>
<td>PHY 431 Optics I</td>
<td>3</td>
</tr>
<tr>
<td>PHY 440 Electronics</td>
<td>4</td>
</tr>
<tr>
<td>PHY 490 Senior Thesis</td>
<td>3</td>
</tr>
<tr>
<td>PHY 491 Atomic, Molecular, and Condensed Matter Physics</td>
<td>3</td>
</tr>
<tr>
<td>PHY 492 Nuclear and Elementary Particle Physics</td>
<td>3</td>
</tr>
<tr>
<td>PHY 390 Physics Journal Seminar</td>
<td>1</td>
</tr>
<tr>
<td>PHY 490 Senior Thesis</td>
<td>3</td>
</tr>
<tr>
<td>AST 410 Senior Thesis</td>
<td>3 or 4</td>
</tr>
<tr>
<td>PHY 191 Physics Laboratory for Scientists, I</td>
<td>1</td>
</tr>
<tr>
<td>PHY 192 Physics Laboratory for Scientists, II</td>
<td>1</td>
</tr>
<tr>
<td>PHY 321 Classical Mechanics I</td>
<td>3</td>
</tr>
<tr>
<td>PHY 410 Thermal and Statistical Physics</td>
<td>3</td>
</tr>
<tr>
<td>PHY 481 Electricity and Magnetism I</td>
<td>3</td>
</tr>
<tr>
<td>PHY 294H Honors Physics II—Electromagnetism</td>
<td>3</td>
</tr>
<tr>
<td>PHY 390 Physics Journal Seminar</td>
<td>1</td>
</tr>
<tr>
<td>PHY 490 Senior Thesis</td>
<td>3</td>
</tr>
<tr>
<td>PHY 183 Physics for Scientists and Engineers I</td>
<td>4</td>
</tr>
<tr>
<td>PHY 183B Physics for Scientists and Engineers I</td>
<td>4</td>
</tr>
<tr>
<td>PHY 193H Honors Physics I—Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>PHY 215 Thermodynamics and Modern Physics</td>
<td>3</td>
</tr>
<tr>
<td>PHY 215B Thermodynamics and Modern Physics</td>
<td>3</td>
</tr>
<tr>
<td>PHY 390 Physics Journal Seminar</td>
<td>1</td>
</tr>
<tr>
<td>PHY 490 Senior Thesis</td>
<td>3</td>
</tr>
</tbody>
</table>

(1) One of the following courses (3 or 4 credits):

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHY 191 Physics Laboratory for Scientists, I</td>
<td>1</td>
</tr>
<tr>
<td>PHY 192 Physics Laboratory for Scientists, II</td>
<td>1</td>
</tr>
<tr>
<td>PHY 321 Classical Mechanics I</td>
<td>3</td>
</tr>
<tr>
<td>PHY 410 Thermal and Statistical Physics</td>
<td>3</td>
</tr>
</tbody>
</table>

(2) One of the following courses (4 to 6 credits):

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHY 390 Physics Journal Seminar</td>
<td>1</td>
</tr>
<tr>
<td>PHY 490 Senior Thesis</td>
<td>3</td>
</tr>
</tbody>
</table>

(3) One of the following courses (3 or 4 credits):

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHY 183 Physics for Scientists and Engineers I</td>
<td>4</td>
</tr>
<tr>
<td>PHY 183B Physics for Scientists and Engineers I</td>
<td>4</td>
</tr>
<tr>
<td>PHY 193H Honors Physics I—Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>PHY 215 Thermodynamics and Modern Physics</td>
<td>3</td>
</tr>
<tr>
<td>PHY 215B Thermodynamics and Modern Physics</td>
<td>3</td>
</tr>
<tr>
<td>PHY 431 Optics I</td>
<td>3</td>
</tr>
<tr>
<td>PHY 440 Electronics</td>
<td>4</td>
</tr>
<tr>
<td>PHY 490 Senior Thesis</td>
<td>3</td>
</tr>
<tr>
<td>PHY 491 Atomic, Molecular, and Condensed Matter Physics</td>
<td>3</td>
</tr>
<tr>
<td>PHY 492 Nuclear and Elementary Particle Physics</td>
<td>3</td>
</tr>
<tr>
<td>PHY 390 Physics Journal Seminar</td>
<td>1</td>
</tr>
<tr>
<td>PHY 490 Senior Thesis</td>
<td>3</td>
</tr>
</tbody>
</table>

(4) One of the following courses (3 or 4 credits):

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHY 183 Physics for Scientists and Engineers I</td>
<td>4</td>
</tr>
<tr>
<td>PHY 183B Physics for Scientists and Engineers I</td>
<td>4</td>
</tr>
<tr>
<td>PHY 193H Honors Physics I—Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>PHY 215 Thermodynamics and Modern Physics</td>
<td>3</td>
</tr>
<tr>
<td>PHY 215B Thermodynamics and Modern Physics</td>
<td>3</td>
</tr>
<tr>
<td>PHY 390 Physics Journal Seminar</td>
<td>1</td>
</tr>
<tr>
<td>PHY 490 Senior Thesis</td>
<td>3</td>
</tr>
<tr>
<td>PHY 491 Atomic, Molecular, and Condensed Matter Physics</td>
<td>3</td>
</tr>
<tr>
<td>PHY 492 Nuclear and Elementary Particle Physics</td>
<td>3</td>
</tr>
<tr>
<td>PHY 390 Physics Journal Seminar</td>
<td>1</td>
</tr>
<tr>
<td>PHY 490 Senior Thesis</td>
<td>3</td>
</tr>
</tbody>
</table>

(5) One of the following clusters of courses (4 credits):

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHY 183 Physics for Scientists and Engineers I</td>
<td>4</td>
</tr>
<tr>
<td>PHY 183B Physics for Scientists and Engineers I</td>
<td>4</td>
</tr>
<tr>
<td>PHY 193H Honors Physics I—Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>PHY 215 Thermodynamics and Modern Physics</td>
<td>3</td>
</tr>
<tr>
<td>PHY 215B Thermodynamics and Modern Physics</td>
<td>3</td>
</tr>
<tr>
<td>PHY 390 Physics Journal Seminar</td>
<td>1</td>
</tr>
<tr>
<td>PHY 490 Senior Thesis</td>
<td>3</td>
</tr>
<tr>
<td>PHY 491 Atomic, Molecular, and Condensed Matter Physics</td>
<td>3</td>
</tr>
<tr>
<td>PHY 492 Nuclear and Elementary Particle Physics</td>
<td>3</td>
</tr>
<tr>
<td>PHY 390 Physics Journal Seminar</td>
<td>1</td>
</tr>
<tr>
<td>PHY 490 Senior Thesis</td>
<td>3</td>
</tr>
</tbody>
</table>

(6) One of the following courses (3 or 4 credits):

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHY 431 Optics I</td>
<td>3</td>
</tr>
<tr>
<td>PHY 440 Electronics</td>
<td>4</td>
</tr>
<tr>
<td>PHY 490 Senior Thesis</td>
<td>3</td>
</tr>
<tr>
<td>PHY 491 Atomic, Molecular, and Condensed Matter Physics</td>
<td>3</td>
</tr>
<tr>
<td>PHY 492 Nuclear and Elementary Particle Physics</td>
<td>3</td>
</tr>
<tr>
<td>PHY 390 Physics Journal Seminar</td>
<td>1</td>
</tr>
<tr>
<td>PHY 490 Senior Thesis</td>
<td>3</td>
</tr>
</tbody>
</table>

(7) One of the following courses (3 credits):

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHY 471 Quantum Physics I</td>
<td>3</td>
</tr>
<tr>
<td>PHY 481 Electricity and Magnetism I</td>
<td>3</td>
</tr>
</tbody>
</table>

The completion of Physics 390 and 490 or Physics 491 and 492, fulfills the department's capstone course requirement.
Master of Science

In addition to meeting the requirements of the university and of the College of Natural Science, students must meet the requirements specified below.

Admission

For admission to the master's degree program in astrophysics and astronomy on regular status, the student must have:

1. Completed mathematics and astronomy or physics courses equivalent to those that are required for an undergraduate major in physics or astronomy.
2. A satisfactory grade–point average, normally at least 3.00, in the courses referenced in item 1. above.

Students who do not meet the requirements for admission to the program on regular status may be admitted on a provisional basis to remove deficiencies.

Requirements for the Master of Science Degree in Astrophysics and Astronomy

The student must:

1. Complete a total of 30 credits for the degree under either Plan A (with thesis) or Plan B (without thesis).
2. Pass a qualifying master's exam that tests basic knowledge of undergraduate physics.
3. Complete the following core physics courses or their subject equivalents specified below.
4. Complete one semester of half-time teaching.

Additional Requirements for Plan A

1. Complete at least 4 credits of Astronomy 899 Master's Thesis Research.
2. Pass a final oral examination in defense of the thesis.

Additional Requirements for Plan B

1. Complete 6 credits in Astronomy 805 Research Project. This research project is taken over two semesters and will be graded on the basis of a written paper and oral examination.
2. Pass a final examination or evaluation.
Doctor of Philosophy

In addition to meeting the requirements of the university and of the College of Natural Science, students must meet the requirements specified below.

Admission

For admission to the doctoral degree program in astrophysics and astronomy on regular status, the student must have:
1. Completed mathematics and astronomy or physics courses equivalent to those that are required for an undergraduate major in physics or astronomy.
2. A satisfactory grade–point average, normally at least 3.00, in the courses referenced in item 1. above.
 Students who do not meet the requirements for admission to the program on regular status may be admitted on a provisional basis to remove deficiencies.

Requirements for the Doctor of Philosophy Degree in Astrophysics and Astronomy

The student must:
1. Pass the doctoral qualifying exam that tests basic knowledge of undergraduate physics.
2. Complete the following core graduate physics courses or their subject examinations, and the following core of astronomy courses, with a grade-point average of 3.375 or higher.
 Physics
 - PHY 820 Classical Mechanics 3
 - PHY 831 Statistical Mechanics 3
 - PHY 841 Classical Electrodynamics 3
 Astronomy
 - AST 810 Radiation Astrophysics 3
 - AST 825 Galactic Astronomy 3
 - AST 835 Extragalactic Astronomy 3
 - AST 840 Stellar Astrophysics 3
 - PHY 983 Nuclear Astrophysics 3
3. Satisfactorily complete 6 credits in Astronomy 805 Research Project. This research project is taken over two semesters and will be graded on the basis of a written paper and oral examination that also serves as the student’s comprehensive examination.
4. Complete one semester of half-time teaching.
5. Complete a doctoral dissertation on original research.

CHEMICAL PHYSICS

For information about the Doctor of Philosophy degree program with a major in chemical physics, refer to the statement on the Department of Chemistry.

PHYSICS

Master of Science

In addition to meeting the requirements of the university and of the College of Natural Science, students must meet the requirements specified below.

Admission

For admission to the master's degree program in physics on regular status, the student must have:
1. Completed physics and mathematics courses equivalent to those that are required for an undergraduate major in physics.
2. A satisfactory grade–point average, normally at least 3.00, in the courses referenced in item 1. above.

Requirements for the Master of Science Degree in Physics

The student must complete a total of 30 credits for the degree under either Plan A (with thesis) or Plan B (without thesis).

A grade of at least 3.0 (B) on the qualifying examination based on first–year graduate–level physics courses in classical mechanics, quantum mechanics, electrodynamics, and statistical mechanics is required. This examination is offered in the fall and spring semesters and must be taken the first time that it is offered after the student has completed his or her first year of graduate study. Detailed regulations and sample examinations are available from the departmental office.

Doctor of Philosophy

In addition to meeting the requirements of the university and the College of Natural Science, students must meet the requirements specified below.

Admission

For admission to the doctoral degree program in physics on regular status, the student must have:
1. Completed physics and mathematics courses equivalent to those that are required for an undergraduate major in physics.
2. A grade–point average of at least 3.00 in the courses referenced in item 1. above.
 Evidence of some undergraduate or post graduate research experience is desirable.
 Students who do not meet the requirements for admission to the program on regular status may be admitted on a provisional basis to remove deficiencies.
Requirements for the Doctor of Philosophy Degree in Physics

A grade of 4.0 (A) on the qualifying examination based on first–year graduate–level physics courses in classical mechanics, quantum mechanics, electrodynamics, and statistical mechanics is required. This examination is offered in the fall and spring semesters and must be taken the first time that it is offered after the student has completed his or her first year of graduate study. Detailed regulations and sample examinations are available from the departmental office. A dissertation presenting the results of an original laboratory or theoretical investigation is required. One semester of half–time teaching is also required.

DEPARTMENT of PHYSIOLOGY

William S. Spielman, Chairperson

The Department of Physiology is administered jointly by the colleges of Natural Science, Human Medicine, Osteopathic Medicine, and Veterinary Medicine.

The Department of Physiology seeks to prevent and cure diseases through basic research on genes, proteins, and the regulatory signaling systems that control fundamental processes of cellular life.

Medical research in the modern era has enabled society to conquer many bacterial, viral, and parasitic diseases, including polio, diphtheria, small pox, and pneumonia. Much of medical research today focuses on diseases that result from alterations of fundamental molecular mechanisms within cells and tissues and include cancer, heart disease, kidney disease, bone and joint disorders, and diabetes. DNA carries in its sequence the genes that encode vast numbers of different proteins that are synthesized throughout the life cycle. It also encodes the regulatory instructions that determine exactly when and where each of those genes will be expressed. The Department of Physiology’s research on genes and gene regulatory mechanisms includes explorations of both the normal expression of genetic information in development and abnormal expression in diseases such as cancer, diabetes, heart and pulmonary disease, and neuro-degenerative diseases.

Genomics at the Systems Level. The Department of Physiology conducts basic research aimed at understanding how the genes and proteins of multicellular organisms work. The basic goal is to understand the flow of genetic information during life and the translation of this information into functioning proteins, organized in complex systems that act as signaling ensembles to govern how cells multiply, differentiate, migrate, and die. Research conducted in pursuit of this goal is widely acknowledged to be crucial to the advancement of medical science.

The Department of Physiology seeks to provide fundamental information into the way genes, their regulation and dysregulation, determine our biological fate and how they can cause disease. The department takes a multi-disciplinary approach that requires the scientific skills of a variety of disciplines, including many non-traditionally associated with biomedicine, and focuses on determining how genes and proteins signal cells in the processes of multiplication, differentiation, metabolism, migration, and cell death in the context of complex organisms. With a commitment to use the latest in cellular and molecular technologies, the Department of Physiology promotes an environment in which questions of fundamental importance to medicine and biology can be addressed.

The Department of Physiology’s approach is to promote research that probes the molecular mechanisms of particular medical problems, to investigate the interaction between environment and genes especially in causing disease, and to discover the role of many genes that are involved in particular diseases. Departmental scientists seek critical information into how specific genes are controlled and expressed by factors both internal and external to the organism. An ultimate aim is to achieve the ability to manipulate the expression of genes involved in disease such that illness can be ameliorated, prevented or cured.

For the most part, departmental scientists do not concentrate directly on treating patients or developing drug therapies, but instead focus on filling critical information gaps in understanding the molecular origins of a disease, and consequently serving as a knowledge bridge that is essential for other scientists and physicians, generally in collaboration, to translate that basic research into effective treatments and cures.

UNDERGRADUATE PROGRAM

Requirements for the Bachelor of Science Degree in Physiology

1. The University requirements for bachelor’s degrees as described in the Undergraduate Education section of this catalog; 120 credits, including general elective credits, are required for the Bachelor of Science degree in Physiology.

The University’s Tier II writing requirement for the Physiology major is met by completing two of the following courses: Physiology 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450. Those courses are referenced in item 3.b. (2) below.

Students who are enrolled in the College of Natural Science may complete the alternative track to Integrative Studies in Biological and Physical Sciences that is described in item 1. under the heading Graduation Requirements in the College statement. Certain courses referenced in requirement 3. below may be used to satisfy the alternative track.

2. The requirements of the College of Natural Science for the Bachelor of Science degree:

The completion of the Biological Science, Chemistry, Mathematics, and Physics courses referenced in requirement 3. below satisfies the requirements referenced in item 3.a.(1) through (5) under the heading Graduation Requirements in the College statement. The credits earned in other courses referenced in requirement 3. below may be counted toward other College requirements as appropriate.

3. The following requirements for the major:

a. The following courses outside the Department of Physiology: 64 to 66

(1) All of the following courses (43 credits):

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BBM 461 Biochemistry I</td>
<td>3</td>
</tr>
<tr>
<td>BBM 462 Biochemistry II</td>
<td>3</td>
</tr>
<tr>
<td>BS 110 Organisms and Populations</td>
<td>4</td>
</tr>
<tr>
<td>BS 111 Cells and Molecules</td>
<td>3</td>
</tr>
<tr>
<td>BS 111L Cell and Molecular Biology Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>CEM 141 General Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>CEM 142 General and Inorganic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CEM 161 Chemistry Laboratory I</td>
<td>1</td>
</tr>
<tr>
<td>CEM 162 Chemistry Laboratory II</td>
<td>1</td>
</tr>
<tr>
<td>CEM 251 Organic Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CEM 252 Organic Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CEM 255 Organic Chemistry Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>PHY 231 Introductory Physics I</td>
<td>3</td>
</tr>
<tr>
<td>PHY 232 Introductory Physics II</td>
<td>3</td>
</tr>
<tr>
<td>PHY 251 Introductory Physics Laboratory I</td>
<td>1</td>
</tr>
<tr>
<td>PHY 252 Introductory Physics Laboratory II</td>
<td>1</td>
</tr>
</tbody>
</table>

(2) One of the following courses (3 or 4 credits):

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANT 316 General Human Anatomy</td>
<td>3</td>
</tr>
<tr>
<td>KIN 216 Applied Human Anatomy</td>
<td>3</td>
</tr>
<tr>
<td>ZOL 200 Developmental Biology</td>
<td>4</td>
</tr>
<tr>
<td>ZOL 328 Comparative Anatomy and Biology of Vertebrates</td>
<td>4</td>
</tr>
</tbody>
</table>

(3) One of the following pairs of courses (6 or 7 credits):

(a) MTH 132 Calculus I | 3 |
| MTH 133 Calculus II | 4 |

(b) MTH 124 Survey of Calculus with Applications I | 3 |
| MTH 126 Survey of Calculus with Applications II | 3 |

(4) Twelve credits in nonscience courses beyond the credits that are counted toward University requirements.

b. The following courses in the Department of Physiology:

(1) All of the following courses (11 credits):

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSL 410 Computational Problem Solving in Physiology</td>
<td>3</td>
</tr>
</tbody>
</table>
GRADUATE STUDY

The Department of Physiology is administered jointly by the colleges of Natural Science, Human Medicine, Osteopathic Medicine, and Veterinary Medicine. Study for the Master of Science or Doctor of Philosophy degree with a major in physiology may be administered by any one of the four colleges referenced above. Study for the Doctor of Philosophy degree with a major in physiology—environmental toxicology is administered by the College of Veterinary Medicine.

Students who are enrolled in master’s or doctoral degree programs in the Department of Physiology may elect an Interdepartmental Specialization in Cognitive Science. For additional information, refer to the statement on Interdepartmental Specialization in Cognitive Science in the College of Social Science section of this catalog. For additional information, contact the Department of Physiology.

PHYSIOLOGY

The department offers work leading to the Doctor of Philosophy degree and in some cases to the Master of Science degree. The primary objectives of graduate education in physiology are to obtain broad, basic knowledge in the subject matter of this and related fields, and to obtain training in physiological research methods. Major emphasis is placed upon the completion by the student of original research which should provide a significant contribution to knowledge. The facilities and staff are particularly suited to offering training in the following areas of physiology: cellular and molecular physiology, endocrinology, the cardiovascular system, gastrointestinal physiology and metabolism, neurophysiology, respiration, radiobiology, lactation, renal function, reproduction, comparative physiology, and biophysics.

A manual available at the department graduate office contains information on admission policies, financial support, and requirements for the Master of Science and Doctor of Philosophy degree programs in physiology. Departmental graduate stipends are awarded on the basis of merit, subject to the availability of funds.

Master of Science

In addition to meeting the requirements of the university and of the College of Natural Science, Human Medicine, Osteopathic Medicine, or Veterinary Medicine, students must meet the requirements specified below.

Admission

An undergraduate major in physiology is not a prerequisite to graduate study. However, a broad background in the basic sciences, including biology, chemistry, physics, and mathematics (through calculus), is essential. The minimum requirements include one year of physiology, biology, or zoology; one year each of mathematics and physics; and chemistry through organic and quantitative analysis. A deficiency in these requirements may be removed by successfully completing appropriate courses as collateral work early in the graduate program. Admission is based upon evaluation of the student’s past record, results of the Graduate Record Examination, and recommendations.

Requirements for the Master of Science Degree in Physiology

The student must complete 30 credits under Plan A (with thesis). The program of study is planned by the student in consultation with a major advisor and an advisory committee that includes no fewer than two additional faculty members. Usually work in one or more supporting areas is required in addition to that taken in the major field. Completion of an original research problem and the writing of an acceptable thesis based upon at least 8 credits of research are required.

Doctor of Philosophy

In addition to meeting the requirements of the university and of the College of Natural Science, Human Medicine, Osteopathic Medicine, or Veterinary Medicine, students must meet the requirements specified below.

Admission

Entry into the Doctor of Philosophy degree program requires that the student has a major advisor and has earned 30 graduate credits, or holds a Master of Science or professional degree, or has passed the departmental Comprehensive Examination.

Requirements for the Doctor of Philosophy Degree in Physiology

Students entering a doctoral program with advanced standing must meet with the guidance committee within the first two semesters of doctoral study. The committee is composed of at least four faculty members, in addition to the major advisor, and must include one representative from another department. The course work, research program, and overall requirements needed to qualify for candidacy for the degree are planned in consultation with the guidance committee. However, the student’s Guidance Committee Report is approved by the committee only after the student has demonstrated the potential to do research. Such potential may be demonstrated by any of the following:

- previous attainment of a master’s degree with a thesis
- previous publication of research results
- other documented evidence of research capability

The student must pass the Comprehensive Examination within the first two years of graduate study. The Comprehensive Examination which tests the student’s breadth of knowledge in physiology, is administered by the Graduate and Professional Course and Curriculum Committee. The student prepares a thesis research proposal and presents the proposal to the faculty at a seminar. The proposal must be acceptable to the guidance committee. While the program is in progress, the student meets periodically with the guidance committee for evaluation.

A dissertation based on original research outlined in the proposal must be submitted to, approved by, and defended in an oral examination before the guidance committee. The dissertation is expected to show evidence of originality in its conception and execution and must be written in a clear and logical manner. Typically, three or more years of study beyond the bachelor’s degree are needed to meet these requirements.
DEPARTMENT of PLANT BIOLOGY

Richard E. Triemer, Chairperson

The Department of Plant Biology is administered jointly by the College of Natural Science and the College of Agriculture and Natural Resources.

Plant Biology is the branch of natural science that deals with all aspects of the biology of plants, encompassing all levels of biological organization from molecules to the ecosystem. Plant biology concerns itself with the study of the structure, function, evolution, physiology, molecular biology, biochemistry, genetics, and systems of all taxonomic groups of plants and fungi. Plant biology is central to the wide divergence of disciplines that make up modern plant science at Michigan State University and deals with the relationships between plants and society. Students in this program can study all aspects of plant biology and they are trained to integrate information between different hierarchies of biological organization while at the same time developing a deep understanding of their area of specialization.

UNDERGRADUATE PROGRAMS

The Department of Plant Biology offers two Bachelor of Science degree programs: one in plant biology and one in environmental biology/plant biology.

PLANT BIOLOGY

The Bachelor of Science degree program with a major in plant biology is designed for students who plan to pursue careers in plant biotechnology industries, nurseries, botanical gardens, museums, herbaria, agricultural extension, or research laboratories, or who plan to pursue graduate study in the field of plant biology or related disciplines.

The following concentrations are available to students who are enrolled in the plant biology program: (a) Plant Ecology and Evolution; (b) Plant Physiological, Molecular and Cellular Biology; and (c) General Plant Biology.

Requirements for the Bachelor of Science Degree in Plant Biology

1. The University requirements for bachelor’s degrees as described in the Undergraduate Education section of this catalog; 120 credits, including general elective credits, are required for the Bachelor of Science degree in Plant Biology.

The University’s Tier II writing requirement for the Plant Biology major is met by completing Plant Biology 498 and 499 and one of the following courses: Plant Biology 316 or 441 or Zoology 355L. Those courses are referenced in items 3. f. and 3. h. below.

Students who are enrolled in the College of Natural Science may complete the alternative track to Integrative Studies in Biological and Physical Sciences that is described in item 1. under the heading Graduation Requirements in the College statement. Students who are enrolled in the College of Natural Science must complete an alternative track to Integrative Studies in Biological and Physical Sciences that is described in item 1. under the heading Graduation Requirements in the College statement. Students who are enrolled in the College of Natural Science must complete an alternative track to Integrative Studies in Biological and Physical Sciences that is described in item 1. under the heading Graduation Requirements in the College statement. Students who are enrolled in the College of Natural Science must complete an alternative track to Integrative Studies in Biological and Physical Sciences that is described in item 1. under the heading Graduation Requirements in the College statement. Students who are enrolled in the College of Natural Science must complete an alternative track to Integrative Studies in Biological and Physical Sciences that is described in item 1. under the heading Graduation Requirements in the College statement. Students who are enrolled in the College of Natural Science must complete an alternative track to Integrative Studies in Biological and Physical Sciences that is described in item 1. under the heading Graduation Requirements in the College statement.

The requirements of the College of Natural Science for the Bachelor of Science degree.

The credits earned in certain courses referenced in requirement 3. below may be counted toward College requirements as appropriate.

3. The following requirements for the major:

a. One of the following groups of courses (6 to 9 credits):

(1) PLB 105 Plant Biology 3

(2) BS 111 Cells and Molecules 3

(3) BB 111L Cell and Molecular Biology Laboratory 2

(4) BS 110 Organisms and Populations 4

(5) BS 111 Cells and Molecules 3

(6) BS 111L Cell and Molecular Biology Laboratory 2

(7) LB 144 Biology I: Organismal Biology 4

(8) LB 145 Biology II: Cellular and Molecular Biology 5

(9) BS 148H Honors Organismal Biology 3

(10) BS 149H Honors Cell Molecular Biology 3

b. One of the following groups (8 credits):

(1) CEM 141 General Chemistry 4

(2) CEM 142 General and Inorganic Chemistry 3

(3) CEM 161 Chemistry Laboratory I 1

(4) CEM 151 General and Descriptive Chemistry 4

(5) CEM 152 Principles of Chemistry 3

(6) CEM 161 Chemistry Laboratory I 1

c. All of the following courses (9 credits):

(1) BMB 461 Biochemistry I 3

(2) CEM 251 Organic Chemistry I 3

(3) CEM 252 Organic Chemistry II 3

d. One of the following groups of courses (6 credits):

(1) PHY 181 Physics for Scientists and Engineers I 4

(2) PHY 184 Physics for Scientists and Engineers II 4

(3) PHY 231 Introductory Physics I 3

(4) PHY 232 Introductory Physics II 3

(5) PHY 251 Introductory Physics Laboratory I 1

(6) PHY 252 Introductory Physics Laboratory II 1

e. One of the following groups of courses (6 or 7 credits):

(1) MTH 124 Survey of Calculus I 3

(2) MTH 126 Survey of Calculus II 3

(3) MTH 132 Calculus I 3

(4) MTH 133 Calculus II 4

(5) MTH 124 Survey of Calculus I 3

(6) STT 231 Statistics for Scientists 3

(7) STT 231 Statistics for Scientists 3

f. All of the following courses (18 credits):

(1) PLB 203 Biology of Plants 3

(2) PLB 316 Experiments in Plant Biology 4

(3) PLB 415 Plant Physiology 3

(4) PLB 445 Evolution (W) 4

(5) PLB 498 Undergraduate Research 3

(6) PLB 499 Senior Seminar 2

g. One of the following courses (3 or 4 credits):

(1) CSS 350 Introduction to Plant Genetics 3

(2) BS 149H Honors Cell Molecular Biology 3

(3) LB 145 Biology II: Cellular and Molecular Biology 5

(4) PLB 105 Plant Biology 3

(5) ZOL 440 Field Ecology and Evolution 4

h. One of the following three concentrations:

Plant Ecology and Evolution (14 to 17 credits):

(1) All of the following courses (13 credits):

(2) PLB 418 Plant Systematics 3

(3) PLB 434 Plant Structure and Function 4

(4) PLB 441 Plant Ecology 3

(5) ZOL 355 Ecology 3

(6) FW 417 Wetland Ecology and Management 3

(7) PLB 335 Plants Through Time 3

(8) PLB 402 Biology of Fungi 3

(9) PLB 424 Algal Biology 4

(10) ZOL 355L Ecology Laboratory 1

(11) ZOL 440 Field Ecology and Evolution 4

Plant Physiological, Molecular, and Cellular Biology (12 to 14 credits):

(1) Both of the following courses (6 credits):

(2) MMG 409 Eukaryotic Cell Biology 3

(3) PLB 418 Plant Systematics 3

(4) MMG 431 Microbial Genetics 3

(5) PLB 402 Biology of Fungi 3

(6) PLB 441 Plant Ecology 3

(7) PLB 424 Algal Biology 4

(8) PLB 434 Plant Structure and Function 4

(9) PLB 441 Plant Ecology 3

(10) PLP 405 Plant Pathology 3

(11) ZOL 355 Ecology 3

If Zoology 355 is chosen, the student must concurrently enroll in Zoology 355L for 1 credit.
ENVIRONMENTAL BIOLOGY/PLANT BIOLOGY

The Bachelor of Science degree program in environmental biology/plant biology is designed for students who plan to pursue careers involving plants and the environment or who plan to pursue graduate study in the biological sciences. Graduates may be employed in nature organizations, environmental impact firms, or government.

Requirements for the Bachelor of Science Degree in Environmental Biology/Plant Biology

1. The University requirements for bachelor's degrees as described in the Undergraduate Education section of this catalog; 120 credits, including general elective credits, are required for the Bachelor of Science degree in Environmental Biology/Plant Biology. The University's Tier II writing requirement for the Environmental Biology/Plant Biology major is met by completing the following courses: Plant Biology 423, 498, and 499 and Zoology 355L. Those courses are referenced in item 3.a. below.

2. The credits earned in certain courses referenced in requirement 3.b. below may be used to satisfy the alternative track to Integrative Studies in Biological and Physical Sciences that is described in item 1. under the heading Graduation Requirements in the College statement. Certain courses referenced in requirement 3.b. below may be used to satisfy the alternative track.

3. The requirements of the College of Natural Science for the Bachelor of Science degree. The credits earned in certain courses referenced in requirement 3.b. below may be counted toward College requirements as appropriate.

3. The following requirements for the major:

a. All of the following courses: CREDITS
 CEM 141 General Chemistry 4
 CEM 142 General and Inorganic Chemistry 3
 CEM 161 Chemistry Laboratory I 1
 CEM 251 Organic Chemistry I 3
 CEM 252 Organic Chemistry II 3
 CSS 210 Fundamentals of Soil Science 4
 FW 417 Wetland Ecology and Management 3
 GEO 221 Introduction to Geographic Information 3
 MTH 124 Survey of Calculus I 3
 PHY 231 Introductory Physics I 3
 PHY 232 Introductory Physics II 3
 PHY 251 Introductory Physics Laboratory I 1
 PHY 252 Introductory Physics Laboratory II 2
 PLB 498 Undergraduate Research 3
 PLB 499 Senior Seminar 3
 STT 231 Statistics for Scientists 3
 ZOL 355 Ecology 3
 ZOL 355L Ecology Laboratory 1
 b. One of the following courses: 3
 PLB 105 Plant Biology 3
 PLB 418 Plant Systematics 3
 c. One of the following courses: 3
 PLB 301 Introductory Plant Physiology 3
 PLB 415 Plant Physiology 3
 d. One of the following courses: 3 or 4
 CSS 310 Introduction to Plant Genetics 1
 ZOL 341 Fundamental Genetics 4
 e. One of the following courses: 3 or 4
 ENT 404 Fundamentals of Entomology 3
 PLP 407 Diseases and Insects of Forest and Shade Trees 4
 f. One of the following courses: 3
 FW 410 Upland Ecosystem Management 3
 FW 444 Conservation Biology 3
 g. One of the following groups of courses: 6 to 9
 h. Two 300–400 level courses relating to environmental biology approved by the Department of Plant Biology.

GRADUATE STUDY

The Department of Plant Biology is administered jointly by the College of Natural Science and the College of Agriculture and Natural Resources. The department offers Master of Science and Doctor of Philosophy degree programs with majors in plant biology. Those programs are referenced below. The department also offers Master of Science and Doctor of Philosophy degree programs with majors in plant breeding and genetics—botany and plant pathology through the College of Agriculture and Natural Resources. For information about those programs, refer to the statement on the Department of Plant Biology in the College of Agriculture and Natural Resources section of this catalog.

The Department of Plant Biology is affiliated with the Doctor of Philosophy degree program that involves ecology, evolutionary biology and behavior. For information about a Doctor of Philosophy degree program that involves ecology, evolutionary biology and behavior and a major in the Department of Plant Biology, refer to the statement on the doctoral program in ecology, evolutionary biology and behavior.

Students who are enrolled in Master of Science degree programs in the Department of Plant Biology may elect a Specialization in Ecology, Evolutionary Biology and Behavior. For additional information, refer to the statement on the specialization.

PLANT BIOLOGY

Graduate students in plant biology may emphasize one or more of a number of special areas, including anatomy, bryology, cell biology, ecology, genetics, molecular biology, morphology, mycology, paleobotany, physiology, and taxonomy. Students are urged to take courses which provide a broad background in biological and physical sciences in addition to training in specialized areas.

Master of Science

In addition to meeting the requirements of the university and of the College of Natural Science, students must meet the requirements specified below.

Admission

Regular admission may be granted to those students who have a bachelor's degree or its equivalent, a 3.00 grade–point average, one year each of chemistry, mathematics, and physics, and appropriate training in the biological sciences.

Provisional admission may be granted to those students who do not meet the requirements for regular admission.
Requirements for the Master of Science Degree in Plant Biology
The master’s degree program in plant biology is available under either Plan A (with thesis) or Plan B (without thesis). The student’s program of study is arranged by a guidance committee which includes the major professor.

For either Plan A or Plan B, the student must complete at least 30 credits including:
1. Both of the following courses:
 - PLB 800 Seminar in Plant Biology 1
 - PLB 803 Integrative Topics in Plant Biology 2

2. Acquire teaching experience by assisting in at least one course.
 - A reading knowledge of a foreign language may be required.

Doctor of Philosophy
In addition to meeting the requirements of the university and of the College of Natural Science, students must meet the requirements specified below.

Admission
Regular admission may be granted to those students who have a master’s degree or its equivalent, a 3.00 grade–point average, and appropriate training in the biological sciences. Outstanding students without a master’s degree may be accepted.

Provisional admission may be granted to those students who do not meet the requirements for regular admission.

Requirements for the Doctor of Philosophy Degree in Plant Biology
All doctoral students in plant biology must meet the requirements specified below:
1. Complete the following courses:
 a. Both of the following courses:
 - PLB 800 Seminar in Plant Biology 1
 - PLB 803 Integrative Topics in Plant Biology 2
 b. One of the following courses:
 - NSC 830 Nature and Practice of Science 1
 - Students who do not complete NSC 830 must complete the workshop series offered by The Graduate School:
 - Responsible Conduct of Research 0
 c. One of the following courses:
 - CMB 800 Cell and Molecular Biology Seminar 1
 - ENT 812 Graduate Seminar 1
 - FOR 804 Forest Ecology 3
 - FW 893 Seminar in Fisheries and Wildlife 1
 - GEN 800 Genetics Seminar 1
 - GEO 874 Seminar in Geographic Information Science 1
 - HRT 892 Plant Breeding and Genetics Seminar 1
 - PLP 894 Seminar in Plant Pathology 1
 - ZOL 891 Current Topics in Ecology and Evolution 1
 - ZOL 895 Seminar 1

2. Pass a preliminary examination.
3. Acquire teaching experience by assisting in two courses.
 - Additional requirements, such as reading knowledge of one or two foreign languages, may be specified.

DEPARTMENT of PLANT PATHOLOGY
Raymond Hammerschmidt, Chairperson
The Department of Plant Pathology is administered jointly by the College of Agriculture and Natural Resources and the College of Natural Science. The department offers Master of Science and Doctor of Philosophy degree programs with majors in plant pathology through the College of Agriculture and Natural Resources. For information about those programs, refer to the statement on the Department of Plant Pathology in the College of Agriculture and Natural Resources section of this catalog.

Students who are enrolled in Doctor of Philosophy degree programs in the Department of Plant Pathology may elect a Specialization in Biotechnology. For additional information, refer to the statement on the specialization.

Students who are enrolled in Master of Science degree programs in the Department of Plant Pathology may elect a Specialization in Food Safety. For additional information, refer to the statement on the specialization in the College of Veterinary Medicine section of this catalog.

DEPARTMENT of STATISTICS and PROBABILITY
Mark M. Meerschaert, Chairperson
Statistics is the study of methods of drawing inferences from sets of data. These methods are based on probability theory and depend for their application upon the existence of a statistical regularity in natural events. In the present century, tremendous strides have been made in the physical, biological, and social sciences as well as in engineering and business by the use of statistical methods and models to describe and aid in the explanation of basic phenomena. In the last few decades, a strong interest has developed in the intensive study of statistical inference aside from its uses, in the same way that physical sciences have developed aside from engineering.

UNDERGRADUATE PROGRAMS
The first two years of an undergraduate program in statistics stress development of a solid background in two areas: basic mathematics and computers. In addition, it is recommended that students planning to major in statistics complete either Statistics and Probability 201 or 231 in their freshman or sophomore years. The rest of the student's program involves a mixture of work selected from statistics, mathematics, computer programming, and possibly one or more fields of application. Statistics majors who plan to do graduate work should include advanced calculus in their undergraduate programs and should acquire proficiency in at least one of the following languages: French, German, or Russian.
Requirements for the Bachelor of Science or Bachelor of Arts Degree in Statistics

1. The University requirements for bachelor’s degrees as described in the Undergraduate Education section of this catalog; 120 credits, including general elective credits are required for the Bachelor of Science or Bachelor of Arts degree in Statistics. The University’s Tier II writing requirement for the Statistics major is met by completing Mathematics 310 and Statistics and Probability 481. Those courses are referenced, respectively, in items 3. a. (1) and 3. b. (1) below.

2. The requirements of the College of Natural Science for the Bachelor of Science degree or Bachelor of Arts degree.

3. The following requirements for the major:

 a. The following courses outside the Department of Statistics and Probability:

 (1) All of the following courses (10 credits):
 - MTH 234 Multivariable Calculus (4)
 - MTH 309 Linear Algebra I (3)
 - MTH 310 Abstract Algebra I and Number Theory (3)

 (2) One of the following courses (3 credits):
 - CSE 101 Computing Concepts and Competencies
 - CSE 131 Introduction to Technical Computing

 Students who pass a waiver examination for Computer Science and Engineering 101 will not be required to complete Computer Science and Engineering 101 or 131.

 b. Three additional credits in Mathematics 235 or in 300–400 level Mathematics courses.

 c. Demonstrate knowledge of at least one software package in statistics either by completing relevant courses or by completing a departmentally approved project through enrollment in Statistics and Probability 490.

 Additional Statistics and Probability courses that may be counted toward the requirements for the Statistics major:
 - STT 441 Probability and Statistics I (3)
 - STT 442 Probability and Statistics II (3)
 - STT 443 Probability and Statistics III (3)
 - STT 455 Actuarial Models (3)
 - STT 461 Computations in Probability and Statistics (3)
 - STT 462 Computations in Probability and Statistics II (3)
 - STT 471 Statistics for Quality and Productivity (3)
 - STT 825 Sample Surveys (3)
 - STT 863 Applied Statistics Methods I (3)
 - STT 886 Stochastic Processes and Applications (3)

 3. Complete an additional 6 credits in courses in the Department of Statistics and Probability.

 c. Three additional credits in Mathematics 235 or in 300–400 level Mathematics courses.

 d. Demonstrate knowledge of at least one software package in statistics either by completing relevant courses or by completing a departmentally approved project through enrollment in Statistics and Probability 490.

 Additional Statistics and Probability courses that may be counted toward the requirements for the Statistics major:
 - STT 441 Probability and Statistics I (3)
 - STT 442 Probability and Statistics II (3)
 - STT 443 Probability and Statistics III (3)
 - STT 455 Actuarial Models (3)
 - STT 471 Statistics for Quality and Productivity (3)
 - STT 825 Sample Surveys (3)
 - STT 863 Applied Statistics Methods I (3)
 - STT 886 Stochastic Processes and Applications (3)

APPLIED STATISTICS

Master of Science

The goals of the master’s degree program in applied statistics are to provide students with a broad understanding of the proper application of statistical methodology and with experience in using computers effectively for statistical analysis. The student may emphasize either theoretical or applied material. Special emphasis is placed on the concerns that an applied statistician must address in dealing with practical problems.

In addition to meeting the requirements of the university and of the College of Natural Science, students must meet the requirements specified below.

Admission

To be admitted to the master’s degree program in applied statistics, the applicant should have completed at least 6 credits of junior or senior level mathematics with a minimum grade–point average of 3.00 over the last 6 credits. No previous course work in statistics or probability is required.

Requirements for the Master of Science Degree in Applied Statistics

The program is available only under Plan B (without thesis). An academic advisor coordinates the student’s program of study, which must be approved by the chairperson of the department.

The student must:

1. Complete either a. or b. For students who select option b., at least half of the courses completed for the degree must be at the 800-level or above.

 a. All of the following courses (12 credits):
 - MTH 415 Applied Linear Algebra (3)
 - STT 461 Computations in Probability and Statistics (3)
 - STT 861 Theory of Probability and Statistics I (3)
 - STT 862 Theory of Probability and Statistics II (3)

 b. All of the following courses (15 credits):
 - MTH 415 Applied Linear Algebra (3)
 - STT 441 Ordinary Differential Equations II (3)
 - STT 442 Partial Differential Equations III (3)
 - STT 461 Computations in Probability and Statistics (3)

2. Complete at least an additional 15 credits in courses in the Department of Statistics and Probability which may include the following courses:

 a. All of the following courses (12 credits):
 - STT 455 Actuarial Models (3)
 - STT 471 Statistics for Quality and Productivity (3)

 b. Additional 6 credits in courses in the Department of Statistics and Probability or in a field of application of probability and statistics.

 c. Pass a written master’s examination based on materials covered in Statistics and Probability 441 and 442 or 861 and 862, depending on the sequence the student has taken.
STATISTICS

Master of Science

The goal of the master's degree program in statistics is to provide students with a sound foundation in probability, mathematical statistics, and statistical methodology. The student may emphasize either theoretical or applied material.

In addition to meeting the requirements of the university and of the College of Natural Science, students must meet the requirements specified below.

Admission

To be admitted to the master's degree program in statistics, the applicant should have completed at least 12 credits of junior or senior level mathematics with a minimum grade–point average of at least 3.00 over the last 12 credits. Preferably courses in advanced calculus and matrices would be included in the 12 credits. No previous course work in statistics or probability is required.

Requirements for the Master of Science Degree in Statistics

The program is available under either Plan A (with thesis) or Plan B (without thesis). An academic advisor coordinates the student's program of study, which must be approved by the chairperson of the department.

The student must complete:

1. At least 30 credits in courses in the Department of Statistics and Probability, in the Department of Mathematics, or in a field of application of probability and statistics, including computer science.

2. One of the following three options:
 a. Mathematics 415 and 421.
 b. Mathematics 415 and 428H.
 c. Mathematics 428H and 429H.

 This requirement must be met as soon as possible after admission to the program, if the student did not complete the courses in one of the options previously.

3. One of the following programs of study:
 a. Statistics and Probability 871, 872, or 881, 882 and at least 6 additional credits in Statistics and Probability at the 800 or 900 level.
 b. Statistics and Probability 861, 862 and at least 12 additional credits in Statistics and Probability at the 800 or 900 level. Of these 12 credits, at least 9 credits must be from the following courses: Statistics and Probability 801, 825, 826, 841, 842, 843, 844, 886.

Doctor of Philosophy

The Doctor of Philosophy degree program with a major in statistics is designed for students who plan to pursue careers in university teaching and research or in industrial and government consulting and research. The major emphasis in the doctoral program is on the attainment of a sound background in theoretical probability and statistics. A doctoral student may choose to emphasize either probability theory or mathematical statistics.

In addition to meeting the requirements of the university and of the College of Natural Science, students must meet the requirements specified below.

Admission

Completion of course work equivalent to that required for any one of the master's degree programs in this department and evidence of ability to work at the doctoral level are required for admission. Applicants who have not had courses equivalent to Statistics and Probability 861 and 862 or advanced calculus or linear algebra will be required to complete these courses.

Requirements for the Doctor of Philosophy Degree in Statistics

The program of study is developed by the guidance committee in consultation with the student. The program of study will usually emphasize theory, although courses in applications should be included. Although the doctorate is awarded primarily on the ability of the student to carry on significant original research in statistics or probability, as demonstrated in the dissertation, the student must also meet the requirements specified below:

2. Complete ten additional courses from a list approved by the department. At least five must be at the 900-level including:
 a. two of the following advanced statistics courses: Statistics and Probability 953, 954, or 997.
 b. two of the following advanced probability courses: Statistics and Probability 961, 964, or 996.
3. Complete at least five additional courses at the 800-level or above from inside or outside of the department.

DEPARTMENT of ZOOLOGY

Fred C. Dyer, Chairperson

Zoology is the branch of natural science that deals with animal biology. It is concerned with every level of biological organization from the gene to the ecosystem, and with the structure, physiology, behavior, genetics, development, distribution, and evolution of animals in all taxonomic groups. In a broad sense, zoology also deals with the interrelationships between humans and other animals. The courses in the department span the diversity of animal life and the entire range of modern biological disciplines concerned with animals. There is ample scope for students to obtain a broad education in biology while also specializing in the particular aspects of biology that interest them most.

Programs in zoology can help students to prepare for a wide variety of careers including biomedical research, biotechnology, medicine, dentistry, veterinary science, marine biology, conservation, environmental science, behavioral biology, and teaching.

UNDERGRADUATE PROGRAMS

Majors are expected to acquire broad background in the sciences fundamental to the understanding of modern zoology. The chemistry, mathematics, and physics requirements are those of the College. Chemistry and mathematics are normally taken in the freshman year, and physics in the junior year. The Biological Science sequence (110, 111, 111L) should be started in the freshman year since these courses are prerequisite to further study. Course electives in zoology are to be chosen so that they furnish an un-
understanding of the several branches of zoology: animal behavior, cell biology, comparative anatomy, developmental biology, ecology, environmental physiology, evolution, genetics, marine biology, neurobiology, organismal biology, and zoo and aquarium science.

Normally no more than 8 credits of upper-level course work in classes such as directed studies, internship, independent study, study abroad, selected topics, or special topics from any department or college other than Zoology may be counted as Zoology electives toward any Zoology degree. Students may petition the Director of Undergraduate Studies in the department to exceed this 8-credit limit.

ENVIRONMENTAL BIOLOGY/ZOOLOGY

Bachelor of Science

The objective of the Bachelor of Science degree program with a major in environmental biology/zoology is to help students to understand the concepts of environmental biology and to apply those concepts to improve both the natural environment and the environment perturbed by human activities. The focus of the program is on animal biology. The zoology courses in the program emphasize ecology, systemsatics, and environmental science.

Students who are enrolled in this program may complete an optional capstone course: Zoology 494 or 496.

Requirements for the Bachelor of Science Degree in Environmental Biology/Zoology

1. The University requirements for bachelor’s degrees as described in the Undergraduate Education section of this catalog; 120 credits, including general elective credits, are required for the Bachelor of Science degree in Environmental Biology/Zoology.

2. The requirements of the College of Natural Science for the Bachelor of Science degree.

3. The following requirements for the major:

 a. All of the following courses: 55

Course	Credits
BS 110 Organisms and Populations	4
BS 111 Cells and Molecules	3
BS 111L Cell and Molecular Biology Laboratory	2
CEM 141 General Chemistry	4
CEM 161 Chemistry Laboratory	1
CEM 251 Organic Chemistry I	3
CEM 252 Organic Chemistry II	3
CEM 255 Organic Chemistry Laboratory	2
CSS 210 Fundamentals of Soil Science	3
PHY 231 Introductory Physics I	3
PHY 232 Introductory Physics II	3
PHY 251 Introductory Physics Laboratory I	1
PHY 252 Introductory Physics Laboratory II	1
PLB 441 Plant Ecology	3
ZOL 306 Invertebrate Biology	4
ZOL 341 Fundamental Genetics	3
ZOL 355 Ecology	3
ZOL 445 Evolution	3
ZOL 483 Environmental Physiology	4

 b. One of the following groups of courses (6 to 7 credits):

 (a) MTH 124 Survey of Calculus I | 3 |
 | MTH 126 Survey of Calculus II | 3 |
 | MTH 132 Calculus I | 3 |
 | MTH 133 Calculus II | 4 |
 | STT 201 Statistical Methods | 3 |
 | STT 224 Introduction to Probability and Statistics for Ecologists | 3 |
 | Or | |

 c. One of the following courses: 4

Course	Credits
ZOL 360 Biology of Birds	4
ZOL 365 Biology of Mammals	4
ZOL 384 Biology of Amphibians and Reptiles	4

 d. One course from each of the following three groups of courses: 9 to 11

 (1) PLB 218 Plants of Michigan | 3 |
 | PLB 418 Plant Systematics | 3 |
 | FW 420 Stream Ecology | 3 |
 | ZOL 353 Marine Biology (W) | 4 |
 | ZOL 418 Plant Systematics | 4 |
 | GLG 421 Environmental Geochemistry | 4 |

 e. A minimum of 33 credits in Zoology courses including the Zoology courses that satisfy the Tier II writing requirement referenced in item 1. above. Zoology courses that are not listed above must be approved in writing by the student’s academic advisor. Courses offered by other departments may be substituted for Zoology courses with the written approval of the student’s academic advisor.

ZOOLOGY

Bachelor of Arts

The Bachelor of Arts degree with a major in zoology is for students who wish to combine study in zoology with a significant amount of course work outside the sciences. It is also intended for those students who wish to prepare for careers in the applications of science to such fields as public policy, law, business, and communications.

Requirements for the Bachelor of Arts Degree in Zoology

1. The University requirements for bachelor’s degrees as described in the Undergraduate Education section of this catalog; 120 credits, including general elective credits, are required for the Bachelor of Arts degree in Zoology.

2. The requirements of the College of Natural Science for the Bachelor of Arts degree.

3. The following requirements for the major:

 a. One of the following options:

 (1) Second year competency in a foreign language.
 (2) First year competency in a foreign language, Computer Science and Engineering 101 or 131, Mathematics 124 or 132, and Statistics and Probability 201, 224, 231, or 421.

 Students who pass a waiver examination for Computer Science and Engineering 101 will not be required to complete Computer Science and Engineering 101 or 131. Mathematics 124 or 132 and Statistics and Probability 201, 224, 231, or 421 may be used to satisfy both the requirement referenced in item 3. a. (2) and the requirement referenced in item 3. d.

 b. All of the following courses: 43

Course	Credits
BS 110 Organisms and Populations	4
BS 111 Cells and Molecules	3
BS 111L Cell and Molecular Biology Laboratory	2
CEM 141 General Chemistry	4
CEM 143 Survey of Organic Chemistry	4
CEM 161 Chemistry Laboratory I	1
PHY 231 Introductory Physics I	3
PHY 232 Introductory Physics II	3
PHY 251 Introductory Physics Laboratory I	1
PHY 252 Introductory Physics Laboratory II	1
PLB 441 Plant Ecology	3
ZOL 306 Invertebrate Biology	4
ZOL 341 Fundamental Genetics	3
ZOL 355 Ecology	3
ZOL 445 Evolution	3
ZOL 483 Environmental Physiology	4
Entomology 404 may be substituted for Zoology 306. Forestry 404 may be substituted for Plant Biology 441.	

 c. One of the following courses: 3

Course	Credits
MTH 124 Survey of Calculus I	3
MTH 126 Survey of Calculus II	3
MTH 132 Calculus I	3
MTH 133 Calculus II	4
STT 201 Statistical Methods	3
STT 224 Introduction to Probability and Statistics for Ecologists	3
Or	
Bachelor of Science

The Bachelor of Science degree program with a major in zoology is for students who seek professional employment in animal biology, or who seek admission to graduate programs in animal biology or to health–related professional schools. Students may pursue a degree program in general zoology that encompasses the several branches of modern zoology while permitting focused study in any one of these fields. Alternatively, with the prior approval of an academic advisor, students may elect to pursue one of the following specialized concentrations in zoology: cell and developmental biology; ecology, evolution and organismal biology; genetics; neurobiology and animal behavior; zoo and aquarium science, or marine biology.

Requirements for the Bachelor of Science Degree in Zoology

1. The University requirements for bachelor’s degrees as described in the Undergraduate Education section of this catalog; 120 credits, including general elective credits, are required for the Bachelor of Science degree in Zoology.

The University’s Tier II writing requirement for the Zoology major is met by completion of two of the following courses: Zoology 328, 343, 353, 355L, 384, 415, 425, 428, 445, 450, 457, 483, 499. Those courses are referenced in item 1.c. below.

Students who are enrolled in the College of Natural Science may complete the alternative track to Integrative Studies in Biological and Physical Sciences that is described in item 1. under the heading General Education. The requirements in the College statement. Certain courses referenced in requirement 3. below may be used to satisfy the alternative track.

2. The requirements of the College of Natural Science for the Bachelor of Science degree.

The credits earned in certain courses referenced in requirement 3. below may be counted toward College requirements as appropriate.

3. The following requirements for the major:

 a. All of the following courses: 30
 BS 110 Organisms and Populations 4
 BS 111 Cells and Molecules 3
 BS 111L Cell and Molecular Biology Laboratory 2
 CEM 141 General Chemistry 4
 CEM 161 Chemistry Laboratory I 1
 CEM 251 Organic Chemistry I 3
 CEM 252 Organic Chemistry II 3
 CEM 255 Organic Chemistry Laboratory 2
 PHY 231 Introductory Physics I 3
 PHY 232 Introductory Physics II 3
 PHY 251 Introductory Physics Laboratory I 1
 PHY 252 Introductory Physics Laboratory II 1

 b. One of the following groups of courses (6 or 7 credits):
 (a) MTH 124 Survey of Calculus I 3
 MTH 126 Survey of Calculus II 3
 (b) MTH 132 Calculus I 3
 MTH 133 Calculus II 4
 (c) MTH 124 Survey of Calculus I 3
 And
 STT 201 Statistical Methods 4
 Or
 STT 224 Introduction to Probability and Statistics for Ecologists ... 3
 Or
 STT 231 Statistics for Scientists ... 3
 Or
 STT 421 Statistics I 3
 And
 STT 201 Statistical Methods 4
 Or
 STT 224 Introduction to Probability and Statistics for Ecologists ... 3
 Or
 STT 231 Statistics for Scientists ... 3
 Or
 STT 421 Statistics I 3
 And
 STT 201 Statistical Methods 4
 Or
 STT 224 Introduction to Probability and Statistics for Ecologists ... 3
 Or
 STT 231 Statistics for Scientists ... 3
 Or
 STT 421 Statistics I 3

 c. One of the following seven concentrations:

 General Zoology

 (1) All of the following courses: 11
 ZOL 341 Fundamental Genetics 4
 ZOL 355 Ecology ... 3
 ZOL 355L Ecology Laboratory (W) 1
 ZOL 445 Evolution (W) 3

 (2) One course from each of the following groups of courses: ... 11 or 12
 (a) ZOL 306 Invertebrate Biology 4
 ZOL 328 Comparative Anatomy and Biology of Vertebrates (W) ... 4
 (b) ZOL 313 Animal Behavior ... 3
 ZOL 483 Environmental Physiology (W) 4
 (c) ZOL 320 Developmental Biology 4
 ZOL 408 Histology .. 4
 ZOL 425 Cells and Development (W) 4

 (3) A minimum of 4 laboratory courses at the 300-400 level selected from the following: Zoology 306, 316L, 320, 328, 343, 355L, 360, 365, 384, 408, and 425. Courses offered by other departments may be substituted for zoology courses with the written approval of the student's academic advisor.

 (4) A minimum of 33 credits in Zoology courses including the Zoology courses that satisfy the Tier II writing requirement referenced in item 1. above. Zoology courses that are not listed above must be approved in writing by the student's academic advisor. Courses offered by other departments may be substituted for Zoology courses with the written approval of the student's academic advisor.

 Cell and Developmental Biology

 (1) All of the following courses: 11
 ZOL 341 Fundamental Genetics 4
 ZOL 355 Ecology ... 3
 ZOL 355L Ecology Laboratory (W) 1
 ZOL 445 Evolution (W) 3

 (2) One of the following courses: 4
 ZOL 320 Developmental Biology 4
 ZOL 425 Cells and Development (W) 4

 (3) Eighteen credits from the following courses: 18
 MMG 301 Introductory Microbiology 3
 MMG 302 Introductory Laboratory for General and Allied Health Microbiology .. 1
 MMG 409 Eukaryotic Cell Biology 3
 ZOL 328 Comparative Anatomy and Biology of Vertebrates (W) ... 4
 ZOL 343 Genetics Laboratory ... 3
 ZOL 402 Neurobiology .. 3
 ZOL 408 Histology .. 4
 ZOL 450 Cancer Biology (W) ... 4
 Either Biochemistry and Molecular Biology 401, or Biochemistry and Molecular Biology 461 and 462 combined, may be substituted for one of the courses listed above.

 (4) A minimum of 33 credits in Zoology courses including the Zoology courses that satisfy the Tier II writing requirement referenced in item 1. above. Zoology courses that are not listed above must be approved in writing by the student's academic advisor. Courses offered by other departments may be substituted for Zoology courses with the written approval of the student's academic advisor.

 Ecological, Evolution, and Organismal Biology

 (1) All of the following courses: 11
 ZOL 341 Fundamental Genetics 4
 ZOL 355 Ecology ... 3
 ZOL 355L Ecology Laboratory (W) 1
 ZOL 445 Evolution (W) 3

 (2) One of the following courses: 4
NATURAL SCIENCE

Department of Zoology

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZOL 306</td>
<td>Invertebrate Biology</td>
<td>4</td>
</tr>
<tr>
<td>ZOL 328</td>
<td>Comparative Anatomy and Biology of Vertebrates (W)</td>
<td>4</td>
</tr>
<tr>
<td>ZOL 313</td>
<td>Animal Behavior</td>
<td>3</td>
</tr>
<tr>
<td>ZOL 316</td>
<td>General Parasitology</td>
<td>3</td>
</tr>
<tr>
<td>ZOL 316L</td>
<td>General Parasitology Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>ZOL 483</td>
<td>Environmental Physiology (W)</td>
<td>4</td>
</tr>
<tr>
<td>ZOL 316 and 316L combined must be completed to satisfy this requirement.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(4) Fourteen additional credits in courses in ecology, evolution, and organismal biology approved in writing by the student's academic advisor.

(5) A minimum of 33 credits in Zoology courses including the Zoology courses that satisfy the Tier II writing requirement referenced in item 1. above. Zoology courses that are not listed above must be approved in writing by the student's academic advisor. Courses offered by other departments may be substituted for Zoology courses with the written approval of the student's academic advisor.

Genetics

(1) All of the following courses: 3 or 4

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMB 461</td>
<td>Biochemistry I</td>
<td>3</td>
</tr>
<tr>
<td>BMB 462</td>
<td>Biochemistry II</td>
<td>3</td>
</tr>
<tr>
<td>MMG 431</td>
<td>Microbial Genetics</td>
<td>3</td>
</tr>
<tr>
<td>ZOL 341</td>
<td>Fundamental Genetics</td>
<td>3</td>
</tr>
<tr>
<td>ZOL 343</td>
<td>Genetics Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>ZOL 355</td>
<td>Ecology</td>
<td>3</td>
</tr>
<tr>
<td>ZOL 355L</td>
<td>Ecology Laboratory (W)</td>
<td>1</td>
</tr>
<tr>
<td>ZOL 445</td>
<td>Evolution (W)</td>
<td>4</td>
</tr>
</tbody>
</table>

(2) One of the following courses: 3 or 4

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMB 472</td>
<td>Biochemistry Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>ZOL 425</td>
<td>Cells and Development</td>
<td>4</td>
</tr>
<tr>
<td>ZOL 494</td>
<td>Independent Study</td>
<td>4</td>
</tr>
<tr>
<td>ZOL 499</td>
<td>Undergraduate Thesis (W)</td>
<td>4</td>
</tr>
</tbody>
</table>

(4) A minimum of 33 credits in Zoology courses including the Zoology courses that satisfy the Tier II writing requirement referenced in item 1. above. Zoology courses that are not listed above must be approved in writing by the student's academic advisor. Courses offered by other departments may be substituted for Zoology courses with the written approval of the student's academic advisor.

Zoology 316 and 316L combined must be completed to satisfy this requirement.

Neurobiology and Animal Behavior

(1) All of the following courses: 24

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZOL 313</td>
<td>Animal Behavior</td>
<td>3</td>
</tr>
<tr>
<td>ZOL 320</td>
<td>Developmental Biology</td>
<td>3</td>
</tr>
<tr>
<td>ZOL 341</td>
<td>Fundamental Genetics</td>
<td>3</td>
</tr>
<tr>
<td>ZOL 355</td>
<td>Ecology</td>
<td>3</td>
</tr>
<tr>
<td>ZOL 355L</td>
<td>Ecology Laboratory (W)</td>
<td>1</td>
</tr>
<tr>
<td>ZOL 402</td>
<td>Neurobiology</td>
<td>3</td>
</tr>
<tr>
<td>ZOL 415</td>
<td>Ecological Aspects of Animal Behavior (W)</td>
<td>3</td>
</tr>
<tr>
<td>ZOL 445</td>
<td>Evolution (W)</td>
<td>3</td>
</tr>
</tbody>
</table>

(2) One of the following courses: 4

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZOL 306</td>
<td>Invertebrate Biology</td>
<td>4</td>
</tr>
<tr>
<td>ZOL 328</td>
<td>Comparative Anatomy and Biology of Vertebrates (W)</td>
<td>4</td>
</tr>
</tbody>
</table>

(3) One of the following courses: 3 or 4

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSY 413</td>
<td>Laboratory in Behavioral Neuroscience (W)</td>
<td>4</td>
</tr>
<tr>
<td>ZOL 457</td>
<td>Foundations of Evolutionary Biology (W)</td>
<td>3</td>
</tr>
<tr>
<td>ZOL 483</td>
<td>Environmental Physiology (W)</td>
<td>4</td>
</tr>
</tbody>
</table>

(4) A minimum of 33 credits in Zoology courses including the Zoology courses that satisfy the Tier II writing requirement referenced in item 1. above. Zoology courses that are not listed above must be approved in writing by the student's academic advisor. Courses offered by other departments may be substituted for Zoology courses with the written approval of the student's academic advisor.

Zoo and Aquarium Science

(1) All of the following courses: 31

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZOL 313</td>
<td>Animal Behavior</td>
<td>3</td>
</tr>
<tr>
<td>ZOL 320</td>
<td>Developmental Biology</td>
<td>3</td>
</tr>
<tr>
<td>ZOL 328</td>
<td>Comparative Anatomy and Biology of Vertebrates (W)</td>
<td>3</td>
</tr>
<tr>
<td>ZOL 341</td>
<td>Fundamental Genetics</td>
<td>3</td>
</tr>
<tr>
<td>ZOL 355</td>
<td>Ecology</td>
<td>3</td>
</tr>
<tr>
<td>ZOL 355L</td>
<td>Ecology Laboratory (W)</td>
<td>1</td>
</tr>
<tr>
<td>ZOL 369</td>
<td>Introduction to Zoology and Aquarium Science</td>
<td>2</td>
</tr>
<tr>
<td>ZOL 445</td>
<td>Evolution (W)</td>
<td>4</td>
</tr>
<tr>
<td>ZOL 489</td>
<td>Seminar in Zoo and Aquarium Science</td>
<td>2</td>
</tr>
<tr>
<td>ZOL 498</td>
<td>Internship in Zoo and Aquarium Science</td>
<td>4</td>
</tr>
</tbody>
</table>

(2) One of the following courses: 4

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FW 471</td>
<td>Ichthyology</td>
<td>4</td>
</tr>
<tr>
<td>ZOL 360</td>
<td>Biology of Birds</td>
<td>4</td>
</tr>
<tr>
<td>ZOL 365</td>
<td>Biology of Mammals</td>
<td>3</td>
</tr>
<tr>
<td>ZOL 384</td>
<td>Biology of Amphibians and Reptiles (W)</td>
<td>4</td>
</tr>
</tbody>
</table>

(3) One of the following courses: 3 or 4

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANS 313</td>
<td>Principles of Animal Feeding and Nutrition</td>
<td>4</td>
</tr>
<tr>
<td>ANS 314</td>
<td>Genetic Improvement of Domestic Animals</td>
<td>4</td>
</tr>
</tbody>
</table>

GRADUATE STUDY

The Department of Zoology offers Master of Science and Doctor of Philosophy degree programs in zoology. The department also offers a Master of Science in Zoo and Aquarium Management and a Doctor of Philosophy degree program in zoology-environmental toxicology.

Students who are enrolled in master’s or doctoral degree programs in the Department of Zoology may elect an Interdepartmental Specialization in Cognitive Science. For additional information, refer to the statement on **Interdepartmental Graduate Specializations in Cognitive Science** in the [College of Social Science](#) section of this catalog. For additional information, contact the Department of Zoology.

Students who are enrolled in the Master of Science degree program in the Department of Zoology may elect specializations in ecology, evolutionary biology and behavior and in environmental toxicology. For additional information, refer to the statement on **Interdepartmental Graduate Specializations in Cognitive Science** in the [College of Social Science](#) section of this catalog. For additional information, contact the Department of Zoology.
the Specialization in Ecology, Evolutionary Biology and Behavior and to the Graduate Specialization in Environmental Toxicology statement in the College of Agriculture and Natural Resources section of this catalog.

ZOO AND AQUARIUM MANAGEMENT

Master of Science

The objective of Master of Science in Zoo and Aquarium Management is to train professionals in the foundations of zoo and aquarium management and to develop business management and communication skills. The program should appeal to working professionals with Bachelor of Arts or Bachelor of Science degrees who wish to advance or change their careers.

In addition to meeting the requirements of the university and the College of Natural Science, students must meet the requirements specified below.

Requirements for the Master of Science Degree in Zoo and Aquarium Management

The student must complete 30 credits under Plan B (without thesis). The specific program of study, including an internship in collaboration with an industrial partner, must be approved by the student’s guidance committee. The final oral examination, which covers both course work and research, is administered by the student’s guidance committee.

CREDITS

1. The following Core courses (6 credits):
 - ZOL 892 Biodiversity 2
 - ZOL 896 Population and Community Ecology 4
 - ZOL 897 Ecosystem Ecology 4

2. All of the following courses (16 credits):
 - ENT 442 Concepts of Biological Information Systems 3
 - FW 444 Conservation Biology 3
 - GEO 459 Tourism in Regional Development 3
 - PRR 841 Park and Recreation Administration and Policy ... 3
 - ZOL 890 Special Problems 4

3. A minimum of 8 credits from the following courses:
 - FW 424 Population Analysis and Management 4
 - FW 811 Fisheries and Wildlife Laws and Regulation 3
 - PRR 443 Park and Recreation Planning and Design Concepts ... 3
 - PRR 451 Park Interpretive Services and Visitor Information Systems ... 3
 - PRR 460 Resource and Environmental Economics 3
 - PRR 485 Legal Aspects of Parks, Recreation, and Sport 3
 - PRR 823 The Economics of Environmental Resources ... 3
 - PRR 848 The Law and Leisure Services 3
 - PRR 870 Park, Recreation and Natural Resources Marketing .. 3
 - ZOL 851 Quantitative Methods in Ecology and Evolution 3

4. Complete an internship with an industrial partner.
5. Pass a final oral examination.
6. All students in the program will be required to complete a Certificate Program in Basic Business and Communication Skills. The certificate program is organized as a series of week-end workshops covering such topics as project management, business law, intellectual property, management theory, finance, writing skills, presentation skills, information retrieval, interpersonal skills and group work. The certificate program offered by the faculty of The W. K. Kellogg Biological Station located near Kalamazoo.

A brochure describing faculty research interests as well as information on admission, financial aid, and the requirements for the Master of Science and Doctor of Philosophy degrees is available from the department graduate office. Interested students are also encouraged to contact the Chairperson of the Graduate Affairs Committee for further information.

In addition to meeting the requirements of the university and of the College of Natural Science, students must meet the requirements specified below.

Admission

Regular admission to the graduate programs in zoology is granted to students having a bachelor’s degree, with training in the biological sciences at least equal to that required for this degree at Michigan State University; a grade–point average of 3.00 or better; and one year each of chemistry, physics, and mathematics. Satisfactory scores on the Graduate Record Examination General Test and approval of the department also are required. Students who do not meet the requirements for regular admission may, under certain circumstances, be admitted on a provisional basis while deficiencies are being corrected.

Requirements for the Master of Science Degree

The student must complete a total of 30 credits for the degree under either Plan A (with thesis) or Plan B (without thesis).

ZOOLOGY—ENVIRONMENTAL TOXICOLOGY

Doctor of Philosophy

For information about the Doctor of Philosophy degree program in zoology—environmental toxicology, refer to the statement on Doctoral Program in Environmental and Integrative Toxicological Sciences in the Graduate Education section of this catalog.
ABRAMS PLANETARIUM

D. David Batch, Director

Abrams Planetarium, with its panoramic space science theater, is an acknowledged leader in the popularization of astronomy. The facility was financed by alumni and friends of the university through contributions to the Michigan State University Development Fund. Original gifts included $250,000 from Dr. and Mrs. Talbert Abrams. The building features a 150-seat Sky Theater housing the planetarium projector, a black light art gallery, an exhibit hall, and a gift shop.

This exciting astronomical and multimedia facility presents university instruction, public sky shows, observing sessions, and programs tailored to the needs of visiting elementary and secondary school children.

Star shows, seasonal shows, sky lectures, and observing sessions are offered to the public on weekends and on special occasions. Visitors to the exhibit hall are welcome at the times of public presentations and from 9:00 a.m. to noon and 1 p.m. to 4:30 p.m. on weekdays.

Telephone 355–4672 for recorded public show information, 332–STAR for recorded sky information, and 355–4676 to reach the Planetarium office. For further information visit www.pa.msu.edu/abrams.

BIOLOGICAL SCIENCE PROGRAM

The Biological Science Program office is responsible for the development and operation of a balanced core curriculum in general biology appropriate for majors and others interested in a comprehensive introduction to the field. Currently the core consists of the two semester sequence Biological Science 110, 111 and 111L. Advanced work and research projects for undergraduates are also coordinated by this office under Biological Science 499.

MSU/DOE PLANT RESEARCH LABORATORY

Michael Thomashow, Director

A center for modern plant biology, the MSU/DOE Plant Research Laboratory was established in 1964. The Laboratory is administered jointly by the College of Natural Science and the College of Agriculture and Natural Resources under a grant form with the U.S. Department of Energy.

The Laboratory conducts a broadly based research program which includes studies at the molecular, subcellular, cellular, tissue, organ, and organismal levels and draws on plant physiology, biochemistry, cell and molecular biology, genetics, and other disciplines. Among problems under investigation are photosynthesis; transduction of environmental information by the plant; effects of stress conditions upon growth and productivity; developmental biology of nitrogen fixing cyanobacteria; action of plant hormones; plant cell wall biosynthesis; mechanisms of tissue–specificity and protein targeting; molecular genetics of plant systems; genetic analysis of physiological traits; molecular mechanics for plant gene expression; molecular biology of symbiotic nitrogen fixation; and molecular basis of disease resistance in plants. Emphasis is placed on the role of plants in energy conversion, consumption, and conservation.

The Laboratory provides facilities and support for students intending to proceed toward the Doctor of Philosophy degree, and for postdoctoral research associates. The doctoral degree programs are administered through academic units with which the Laboratory faculty have joint appointments, particularly the departments of Biochemistry and Molecular Biology, Crop and Soil Sciences, Microbiology and Molecular Genetics, and Plant Biology. The interdepartmental doctoral program in genetics that is administered by the College of Natural Science is also available. The student's admission and program of study are subject to the regulations and approval of the appropriate department and of either the College of Natural Science or the College of Agriculture and Natural Resources.

The aim of graduate work in the Laboratory is to give students training in independent research and to provide them with sufficient strength, both in biology and in the basic sciences, to enable them to keep in the forefront of their continuously changing and developing field. Doctoral programs consist of course work in advanced subjects and research leading to a dissertation.

To be accepted for graduate work in the Laboratory the student is generally expected to have at least the Bachelor of Science degree and to have had courses in organic chemistry, mathematics through calculus, physics, and general botany or biology. Courses in plant physiology, physical chemistry, and biochemistry are desirable. In the case of highly qualified students, part of the course requirements may be completed after admission to graduate work, but admission will in such cases be on a provisional basis until these requirements have been completed satisfactorily.

Graduate students are given freedom of choice in selecting, within the Laboratory, the areas of their research and their major advisors. These selections must be compatible with the Laboratory's objectives. Students are expected to spend the first two semesters following admission familiarizing themselves with the research programs of the Laboratory's staff and related research in other departments, including participation in several research projects, and to make their selection on this basis.

Because of the intensity of the program the student is expected to work on a year–round basis.

CENTER FOR ADVANCED MICROSCOPY

Stanley L. Flegler, Director

Microscopy, the science of microscope use, traces its origins to the work of Hooke and Leeuwenhoek in the late 1600’s. There are now many types of microscopes and dozens of different imaging and analytical methods. Images may be created using visible and invisible light, electrons, magnetic forces, mechanical probes, current flow, and atomic level attractive and repulsive forces. Much of the technology in our modern world would not have been possible without the images and analytical data from microscopes.

Microscopy is a vital resource in creating and applying knowledge to help address the critical problems of the 21st century.

The Center for Advanced Microscopy (CAM), a university core facility, is the Central microscopy laboratory for the Michigan State University campus. Teaching, research, and service work are provided in Scanning Electron Microscopy (SEM), Transmis-
sion Electron Microscopy (TEM), Confocal Laser Scanning Microscopy (CLSM), Scanning tunneling Microscopy (STM), Atomic Force Microscopy (AFM), and Energy Dispersive X-ray Spectroscopy (EDS). CAM has a large user base from 49 departments in nine colleges. Outreach is provided on a local and national level. Our comprehensive teaching program includes NSC-802 Lecture (FS), NSC-810 TEM Lab (FS, SS), NSC-820 SEM Lab (FS, SS), NSC-825 Independent Study (FS, SS, US) and NSC-837 LSM Lab (FS, SS).

In scanning electron microscopy we offer the following imaging/analytical capabilities: secondary electron imaging; backscattered electron imaging; energy dispersive x-ray spectroscopy including qualitative and quantitative analysis, linescans, and X-ray dot maps; high resolution field emission scanning electron microscopy, and cryo scanning electron microscopy. Imaging may be done in both analog and digital modes.

In transmission electron microscopy we offer the following imaging/analytical capabilities: conventional bright/dark field imaging; high-resolution electron microscopy (HREM) imaging; selected area diffraction (SAD), micro/nano-diffraction, convergent beam electron diffraction (CBED); scanning transmission electron microscopy (STEM) with Z-contrast atomic resolution imaging; Lorenz electron microscopy; electron energy filtered imaging (EFI); high spatial/energy resolution electron energy loss spectroscopy (EELS); simultaneous EELS and dark field STEM imaging for line scans and spectrum imaging; energy dispersive X-ray spectroscopy (EDS) with line scans and spectrum imaging; Internet remote electron microscopy.

In confocal laser scanning microscopy, we offer the following imaging/analytical capabilities: serial optical sectioning and time series imaging in fluorescence or reflection confocal modes; transmitted imaging, including bright field, darkfield, phase contrast, DIC and polarization; and three-dimensional image rendering on many kinds of images. Laser lines available include 458, 488, 514, 543 and 633 nm. Imaging may be done in analog or digital modes.

In scanning probe microscopy we offer the following imaging/analytical capabilities: atomic force microscopy contact mode, conventional and wet cell; and scanning tunneling microscopy.

Microscopy is closely linked with modern computer technology. Numerous image processing programs and techniques enable investigations and image analysis that were not previously possible. CAM has a modern image processing center that utilizes numerous powerful computers including Unix, PC, and MAC platforms. The image processing center is equipped with a variety of digital printers utilizing laser jet, ink jet, dye sublimation, and silver halide technologies.